

М. Н. Гребенников, А. Г. Дибир, Н. И. Пекельный

РАСЧЕТ МНОГОПРОЛЕТНЫХ НЕРАЗРЕЗНЫХ БАЛОК. УРАВНЕНИЕ ТРЕХ МОМЕНТОВ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

М. Н. Гребенников, А. Г. Дибир, Н. И. Пекельный

РАСЧЕТ МНОГОПРОЛЕТНЫХ НЕРАЗРЕЗНЫХ БАЛОК. УРАВНЕНИЕ ТРЕХ МОМЕНТОВ

Учебное пособие

УДК 539.385

Гребенников М.Н. Расчет многопролетных неразрезных балок. Уравнение трех моментов : учеб. пособие / М. Н. Гребенников, А. Г. Дибир, Н. И. Пекельный. – Х.: Нац. аэрокосм. ун-т «Харьк. авиац. ин-т», 2010. - 46 с.

Изложена методика раскрытия статической неопределимости конструктивных элементов типа «балка» с помощью уравнения трех моментов. Оговорены особенности наличия жесткой заделки, консоли и момента на промежуточной опоре. Приведены таблицы справочных данных и примеры решения задач.

Для студентов, изучающих курс «Механика материалов и конструкций».

Ил. 32. Табл. 5. Библиогр.: 8 назв.

Рецензенты: д-р техн. наук, проф. С.А. Бычков, канд. техн. наук, доц. Е.Т. Василевский

© Национальный аэрокосмический университет им. Н. Е. Жуковского «Харьковский авиационный институт», 2010 г.

1. МНОГОПРОЛЕТНАЯ НЕРАЗРЕЗНАЯ БАЛКА

Неразрезными называют балки, лежащие более чем на двух опорах и не имеющие промежуточных шарниров. Крайние опоры могут быть или шарнирными, или защемленными.

Неразрезные балки широко применяются в различных конструкциях и относятся к статически неопределимым.

На рис. 1 показана балка, опирающаяся на m шарнирных опор. Одна из опор (обычно левая) выполняется шарнирно-неподвижной для восприятия осевой нагрузки, остальные — шарнирно-подвижными, что дает возможность балке свободно изменять свою длину при изменении температуры (компенсация температурных удлинений).

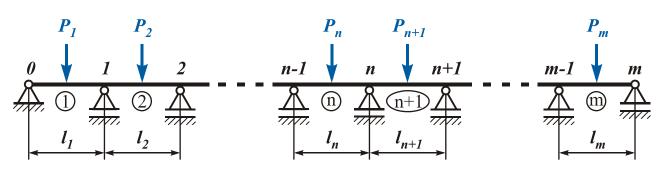


Рис. 1

Опоры нумеруют слева направо: 0, 1, 2, ..., m. Крайняя левая опора имеет номер "0".

Номер пролета соответствует номеру правой опоры (1, 2, ..., m);

 l_i – длина i-го пролета балки;

 P_i – любая внешняя нагрузка, действующая в пределах i-го пролета.

Степень статической неопределимости такой конструкции равна числу промежуточных опор (лишних пролетов):

$$k = m - 1, \tag{1}$$

где k – степень статической неопределимости балки;

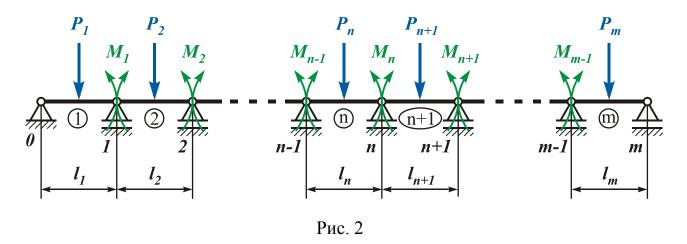
m – общее число пролетов.

Если одно из крайних сечений защемлено, то это, соответственно, повышает на единицу степень статической неопределимости конструкции.

2. ВЫВОД УРАВНЕНИЯ ТРЕХ МОМЕНТОВ

Применение метода сил для раскрытия статической неопределимости позволяет при выборе основной системы отбрасывать не только внешние лишние связи, но и внутренние. Решение задач в этом случае оказывается более удачным при рассмотрении многопролетных неразрезных балок.

При выборе основной системы в тело балки вводят шарниры над промежуточными опорами. В этом случае лишними неизвестными будут изгибающие моменты на промежуточных опорах, т. е. эквивалентная система представляет собой ряд простых шарнирно опертых балок, нагруженных заданными нагрузками и неизвестными изгибающими моментами $M_1, M_2, \ldots, M_{m-1}$, приложенными в сечениях, где установлены шарниры (рис. 2).

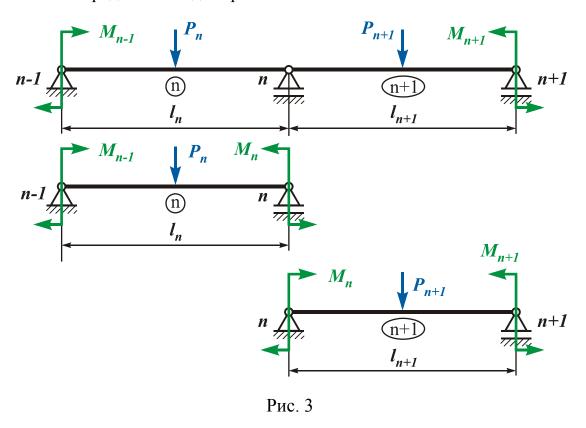


При таком выборе основной системы действие заданной нагрузки распространяется только на пролет, где она приложена. Влияние ее на другие пролеты проявляется только в виде опорных изгибающих моментов M_i .

Рассмотрение смежных пролетов, примыкающих к опоре, над которой введен шарнир, позволяет записать так называемое уравнение трех моментов. Количество таких уравнений равно степени статической неопределимости системы, что позволяет определить все неизвестные опорные моменты, а затем построить эпюры Q_z и M_y для этой балки.

Рассмотрим два расположенных рядом пролета n и n+1 (рис. 3). Действие отброшенных частей заменяем моментами. На этом рисунке M_{n-1} , M_n , M_{n+1} — моменты взаимодействия соседних пролетов на соответствующих опорах. Показанное направление моментов взаимодействия принято считать положительным.

Если определить величину и направление моментов взаимодействия, то работу каждого из пролетов можно рассматривать изолированно, как работу статически определимой однопролетной балки.



Каждая двухопорная балка основной системы под действием заданной нагрузки и опорных моментов деформируется независимо от других. Это значит, что торцы двух смежных балок, примыкающих к одной опоре, например n- ой, могут повернуться на некоторые углы θ_n^{nee} и θ_n^{npae} (рис. 4).

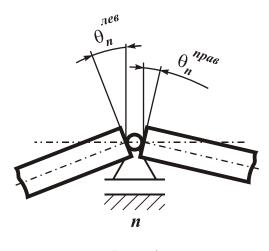


Рис. 4

Так как в исходной статически неопределимой системе каждая пара таких сечений представляет собой единое сечение, то при совместной работе левой и правой частей балки должно выполняться условие совместности деформаций. Следовательно, на опоре n угол поворота сечения, относящегося к левой части балки, от нагрузок, действующих на эту часть, равен углу поворота сечения на этой же опоре, но относящегося к правой части балки, от нагрузок, действующих на правую часть (рис. 5):

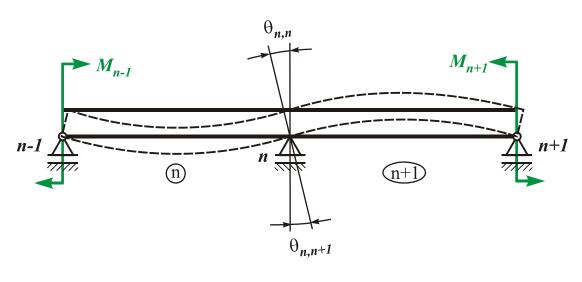


Рис. 5

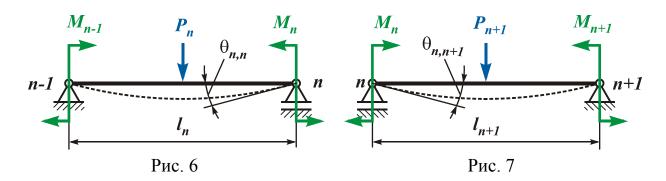
Таким образом, можем записать

$$\theta_{n,n} = \theta_{n,n+1},\tag{2}$$

где 1-й индекс – номер опоры;

2-й индекс – номер пролета.

Для определения углов $\theta_{n,n}$ и $\theta_{n,n+1}$ рассмотрим пролеты n (рис. 6) и n+1 (рис. 7).



Рассмотрим равновесие пролета n (рис. 8) и определим $\theta_{n,n}$.

$$\theta_{n,n} = \theta_{n,n}(M_{n-1}) + \theta_{n,n}(M_n) + \theta_{n,n}(P_n). \tag{3}$$

1. Запишем, применив метод Мора, угол поворота сечения на правой опоре левого пролета, вызванный внешними силами, приложенными к левому пролету, т.е. $\theta_{n,n}(P_n)$:

$$\theta_{n,n}(P_n) = \frac{1}{EI_y} \int_{l_n} M_y(P_n) \overline{M}_y dx = \alpha_{n,n}.$$

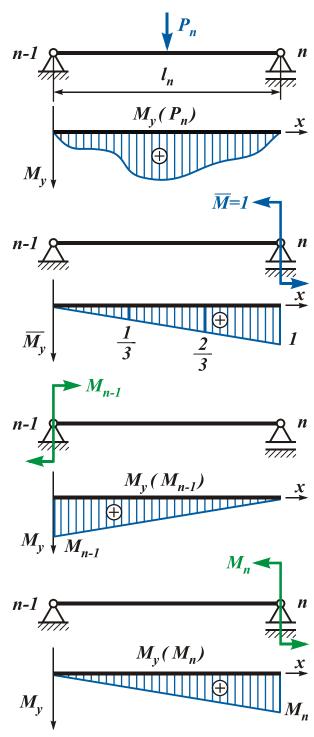
2. Угол поворота сечения на правой опоре левого пролета, вызванный моментом M_{n-1} , т.е. $\theta_{n,n}(M_{n-1})$:

$$\theta_{n,n}(M_{n-1}) = \frac{1}{EI_y} \frac{M_{n-1} \cdot l_n}{2} \frac{1}{3} = \frac{M_{n-1}l_n}{6EI_y}.$$

3. Угол поворота сечения на правой опоре левого пролета, вызванный моментом M_n , т.е. $\theta_{n,n}(M_n)$:

$$\theta_{n,n}(M_n) = \frac{1}{EI_y} \frac{M_n \cdot l_n}{2} \frac{2}{3} = \frac{M_n l_n}{3EI_y}.$$

Подставив найденные значения углов в уравнение (3), получим

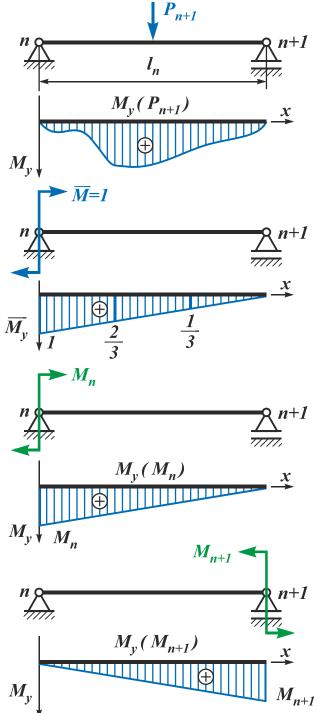


$$\theta_{n,n} = \alpha_{n,n} + \frac{M_{n-1}l_n}{6EI_y} + \frac{M_nl_n}{3EI_y}.$$
 (4)

Рис. 8

Рассмотрим равновесие пролета n+1 (рис. 9) и определим $\theta_{n,n+1}$.

$$\theta_{n,n+1} = \theta_{n,n}(P_{n+1}) + \theta_{n,n+1}(M_n) + \theta_{n,n+1}(M_{n+1}). \tag{5}$$



1. Запишем, применив метод Мора, угол поворота сечения на левой опоре правого пролета, вызванный внешними силами, приложенными к правому пролету, т.е. $\theta_{n,n+1}(P_{n+1})$:

$$\theta_{n,n+1}(P_{n+1}) = \frac{1}{EI_y} \int_{l_{n+1}} M_y(P_{n+1}) \overline{M}_y dx = \alpha_{n,n+1}.$$

2. Угол поворота сечения на левой опоре правого пролета, вызванный моментом M_{ν} , т.е. $\theta_{n,n+1}(M_n)$:

$$\theta_{n,n+1}(M_n) = \frac{1}{EI_y} \frac{M_n \cdot l_{n+1}}{2} \frac{2}{3}$$
$$= \frac{M_n l_{n+1}}{3EI_y}.$$

3. Угол поворота сечения на правой опоре левого пролета, вызванный моментом M_{n+1} , т.е. $\theta_{n,n+1}(M_{n+1})$:

$$\theta_{n,n+1}(M_{n+1}) = \frac{1}{EI_y} \frac{M_{n+1} \cdot l_{n+1}}{2} \frac{1}{3} = \frac{M_{n+1}l_{n+1}}{6EI_y}.$$

Подставив найденные значения M_{n+1} углов в уравнение (5), получим

Рис. 9

$$\theta_{n,n+1} = \alpha_{n,n+1} + \frac{M_n l_{n+1}}{3E l_v} + \frac{M_{n+1} l_{n+1}}{6E l_v}.$$
 (6)

Замечание. Так как при определении $\theta_{n,n}$ и $\theta_{n,n+1}$ единичные моменты на вспомогательных системах направлены в противоположные стороны, то знак одной из величин угадан, а знак другой необходимо изменить на противоположный при подстановке в уравнение (2).

Таким образом, получим

$$\alpha_{n,n} + \frac{M_{n-1}l_n}{6EI_y} + \frac{M_nl_n}{3EI_y} = -\alpha_{n,n+1} - \frac{M_nl_{n+1}}{3EI_y} - \frac{M_{n+1}l_{n+1}}{6EI_y}.$$

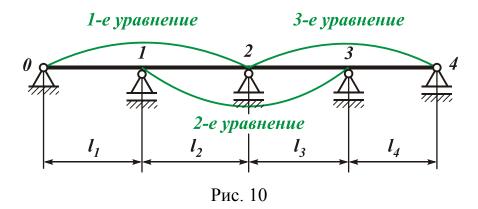
Умножив это выражение на $6EI_y$ и перенеся неизвестные величины в левую часть, а известные в правую, получим

$$M_{n-1}l_n + 2M_n(l_n + l_{n+1}) + M_{n+1}l_{n+1} = -6EI_v(\alpha_{n,n} + \alpha_{n,n+1}).$$
 (7)

Выражение (7) называется уравнением трех моментов.

Входящие в формулу (7) углы $\alpha_{n,n}$ и $\alpha_{n,n+1}$ – это углы поворота, вызванные внешними силами, приложенными в пределах левого и правого пролетов соответственно.

Для любой многопролетной неразрезной балки уравнения трех моментов записываются для каждой пары соседних пролетов и их количество равно числу промежуточных опор, т.е. количеству лишних неизвестных (степени статической неопределимости системы). Решив систему уравнений, можно определить моменты на всех промежуточных опорах и тем самым раскрыть ее статическую неопределимость. Например, в случае трижды статически неопределимой балки получим три уравнения трех моментов, связывающие соседние пролеты, как показано на рис. 10.



$$\begin{cases} M_0 l_1 + 2 M_1 (l_1 + l_2) + M_2 l_2 = -6 E I_y (\alpha_{1,1} + \alpha_{1,2}) \\ M_1 l_2 + 2 M_2 (l_2 + l_3) + M_3 l_3 = -6 E I_y (\alpha_{2,2} + \alpha_{2,3}) \\ M_2 l_3 + 2 M_3 (l_3 + l_4) + M_4 l_4 = -6 E I_y (\alpha_{3,3} + \alpha_{3,4}). \end{cases}$$

3. ОСОБЫЕ СЛУЧАИ ПРИ РЕШЕНИИ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЯ ТРЕХ МОМЕНТОВ

1. Если неразрезная балка оканчивается нагруженной консолью (рис. 11, a), то ее как пролет в уравнение трех моментов не включают. Консоль заменяют моментом от приложенной к ней нагрузки, вычисленным относительно ближайшей опоры и приложенным к ней с соответствующим знаком (рис. $11, \delta$). Этот момент целесообразно рассматривать как внутренний и включать в левую часть уравнения трех моментов.

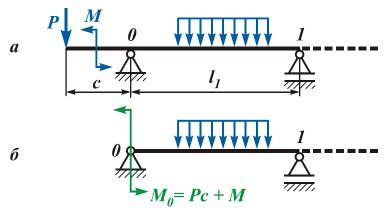


Рис. 11

2. Если концевое сечение неразрезной балки жестко защемлено (заделано) (рис. 12, a), то его угол поворота равен нулю ($\alpha_{1,1}=0$). В раскрытом виде это условие можно описать уравнением трех моментов, заменив заделку фиктивным пролетом $l_0=0$ (рис. 12, δ).

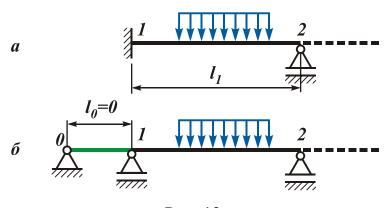


Рис. 12

Рассмотрев два смежных пролета l_0 и l_1 и использовав уравнение трех моментов, условие $\alpha_{1,1}=0$ можно записать в виде

$$2M_1l_1 + M_2l_1 = -6EI_y\alpha_{n,n+1}.$$

3. Если внешний момент приложен в сечении над промежуточной опорой неразрезной балки (рис. 13, a), то его целесообразно относить к внутрипролетной нагрузке. Этот момент можно отнести либо к одному левому пролету (рис. 13, δ), либо к одному правому пролету (рис. 13, ϵ), либо одновременно и к левому, и к правому пролетам при расчленении в произвольном отношении (рис. 13, ϵ).

Момент над промежуточной опорой целесообразно относить к менее нагруженному пролету.

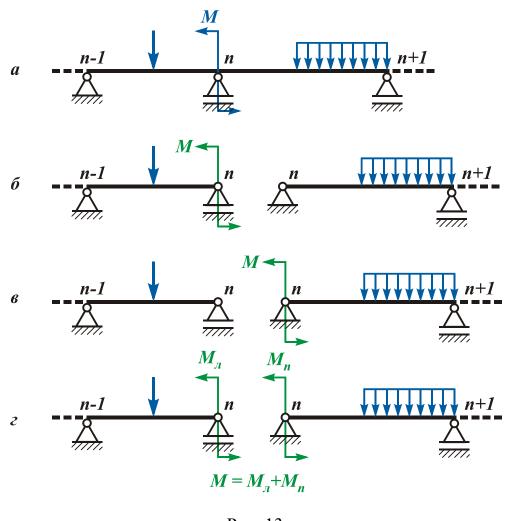


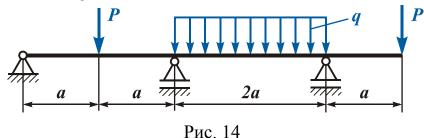
Рис. 13

4. Если внешний момент приложен в сечении над крайней опорой неразрезной балки, то его целесообразно считать внутренним и учитывать в левой части уравнения трех моментов.

4. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1

Построить эпюры Q_z , M_y и подобрать двутавровое поперечное сечение для заданной балки (рис. 14), если ее жесткость постоянна ($EI_y=const$), a=1 м, P=10 кH, q=4 кH/м, $[\sigma]=160$ МПа.



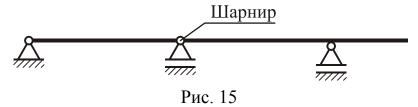
Решение

1. Определим степень статической неопределимости

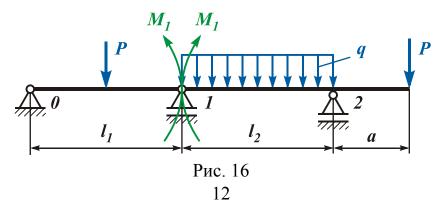
$$k = 2 - 1 = 1$$
,

т.е. балка один раз статически неопределима.

2. Выберем основную систему, введя над средней опорой в тело балки шарнир (рис. 15).



Построим эквивалентную систему (рис. 16), приложив к основной системе все заданные силы и реакцию отброшенных связей в виде изгибающих моментов M_1 . Моменты первоначально изобразим положительными для смежных пролетов. Одновременно пронумеруем опоры слева направо (0, 1, 2) и обозначим пролеты номером опоры справа от пролета $(l_1 \ u \ l_2)$.



3. Запишем уравнение трех моментов:

$$M_0 l_1 + 2M_1 (l_1 + l_2) + M_2 l_2 = -6E I_y (\alpha_{1,1} + \alpha_{1,2}),$$

где $M_0 = 0$ – момент на левой опоре (отсутствует по условию задачи);

 M_1 – неизвестная величина (подлежит определению);

 $M_2 = -Pa = -10 \ \kappa H_M$ – момент на правой опоре от силы P на консоли;

 $l_1 = l_2 = 2a = 2 M$ – длина пролетов, т.е. расстояния между опорами;

 $\alpha_{1,1}$ и $\alpha_{1,2}$ – углы поворотов на средней опоре в однопролетных балках от своих пролетных нагрузок (первый индекс – номер опоры, второй – пролета).

4. Определим углы $\alpha_{1,1}$ и $\alpha_{1,2}$ по методу Мора. Для этого построим грузовые системы и соответствующие им единичные.

Левый пролет (рис. 17).

Грузовая система.

Реакции опор:

$$\sum M_A = 0; R_{B_1} 2a - P \frac{a}{2} = 0;$$

$$R_{B_1} = \frac{P}{2} = \frac{10}{2} = 5 \kappa H;$$

$$\sum M_{B_1} = 0; -R_A 2a + P \frac{a}{2} = 0;$$

$$R_A = \frac{P}{2} = \frac{10}{2} = 5 \kappa H.$$

Проверка:

$$\sum P_z = R_{B_1} + R_A - P = 10 - 5 - 5 = 0.$$

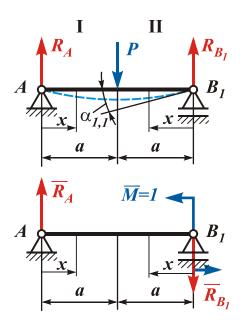


Рис. 17

Уравнения изгибающих моментов по участкам:

$$M_{\nu}^{I} = R_{A}x = 5x;$$
 $M_{\nu}^{II} = R_{B_{1}}x = 5x.$

Единичная система.

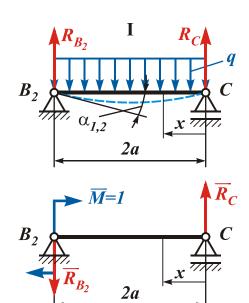
Реакции опор:
$$\sum M_A = 0 \; ; \qquad -\bar{R}_{B_1} 2a + \bar{M} = 0 ; \qquad \bar{R}_{B_1} = \frac{\bar{M}}{2a} = \frac{1}{2} \; \kappa H;$$

$$\sum M_{B_1} = 0 \; ; \qquad -\bar{R}_A 2a + \bar{M} = 0; \qquad \bar{R}_A = \frac{\bar{M}}{2a} = \frac{1}{2} \; \kappa H.$$

Проверка:
$$\sum P_z = \bar{R}_{B_1} + \bar{R}_A = \frac{1}{2} - \frac{1}{2} = 0.$$

Уравнения изгибающих моментов по участкам:

$$ar{M}_y^I = ar{R}_A x = rac{1}{2} x;$$
 $ar{M}_y^{II} = -ar{R}_{B_1} x + ar{M} = -rac{1}{2} x + 1.$ Вычислим интеграл Мора $lpha_{1,1} = rac{1}{EI_y} \Biggl(\int\limits_0^1 M_y^I \cdot ar{M}_y^I \, dx + \int\limits_0^1 M_y^{II} \cdot ar{M}_y^{II} \, dx \Biggr) =$ $= rac{1}{EI_y} \Biggl(\int\limits_0^1 5x rac{1}{2} x \, dx + \int\limits_0^1 5x \Biggl(-rac{1}{2} x + 1 \Biggr) \, dx \Biggr) =$ $= rac{1}{EI_y} \Biggl(rac{5}{2} rac{x^3}{3} \Biggr|_0^1 + \Biggl(-rac{5}{2} rac{x^3}{3} + 5 rac{x^2}{2} \Biggr) \Biggr|_0^1 \Biggr) = rac{1}{EI_y} rac{5}{2}.$



<u>равый пролет (рис. 18).</u>

$$\frac{\Gamma_{
m рузовая} \ {
m система}.}{\Gamma_{
m Peak} \ {
m R}_{
m C}}$$
 Реакции опор:
$$\sum M_{B_2} = 0 \ ; \qquad R_C 2a - \frac{q(2a)^2}{2} = 0;$$

$$R_C = \frac{q(2a)^2}{2 \cdot 2a} = \frac{2qa}{2} = 4 \ \kappa H;$$

$$\sum M_C = 0 \ ; \qquad -R_{B_2} 2a + \frac{q(2a)^2}{2} = 0;$$

$$R_{B_2} = \frac{q(2a)^2}{2 \cdot 2a} = \frac{2qa}{2} = 4 \ \kappa H.$$
 Проверка:
$$\sum P_Z = 2qa - R_{B_2} + R_C = 4 \cdot 2 - 4 - 4 = 0.$$

Уравнение изгибающих моментов:

$$M_y^I = R_C x - \frac{qx^2}{2} = 4x - 2x^2.$$

Единичная система.

Рис. 18

Уравнение изгибающих моментов:

$$\begin{split} \overline{M}_y^I &= \overline{R}_{\mathbb{C}} x = \frac{1}{2} x. \\ \text{Вычислим интеграл Мора } \alpha_{1,2} &= \frac{1}{EI_y} \int\limits_0^2 M_y^I \cdot \overline{M}_y^I \, dx = \frac{1}{EI_y} \int\limits_0^2 (4x - 2x^2) \frac{1}{2} x dx = \\ &= \frac{1}{EI_y} \left(2\frac{x^3}{3} \bigg|_0^2 - \frac{x^4}{4} \bigg|_0^2 \right) = \frac{1}{EI_y} \left(\frac{2 \cdot 8}{3} - 4 \right) = \frac{1}{EI_y} \frac{4}{3} \, . \end{split}$$

Замечание. Углы $\alpha_{1,1}$ и $\alpha_{1,2}$ можно вычислить, воспользовавшись справочными материалами, приведенными в табл. П. 1 (углы, соответствующие выгибанию балки вниз, считают положительными):

$$\alpha_{1,1} = \frac{Pl_1^2}{16EI_y} = \frac{10 \cdot 4}{16EI_y} = \frac{2,5}{EI_y}; \qquad \alpha_{1,2} = \frac{ql_2^3}{24EI_y} = \frac{4 \cdot 8}{24EI_y} = \frac{4}{3EI_y}.$$

5. Решим уравнение трех моментов

$$2M_1(2+2) - 10 \cdot 2 = -6EI_y \left(\frac{2.5}{EI_y} + \frac{4}{3EI_y}\right);$$

 $8M_1 = -2.29;$
 $M_1 = -0.37 \ \kappa Hm.$

Так как момент M_1 получился отрицательным, то его направление необходимо изменить на противоположное.

6. Возвратимся к эквивалентной системе. Рассмотрим отдельные балки, разделенные введенным шарниром, под действием заданных сил и найденного момента M_1 с учетом его знака. Для каждой из простых балок найдем реакции опор, запишем выражения для определения Q_z и M_y и, состыковав эпюры отдельных балок, т.е. изобразив их на одной оси x, получим эпюры Q_z и M_y для всей неразрезной балки (рис. 19).

Балка *АВ*₁

Реакции опор:

$$\sum M_A = 0; P \cdot 1 + M_1 - R_{B_1} = 0; R_{B_1} = 5,19 \ \kappa H;$$

$$\sum M_{B_1} = 0; 2R_A - 10 \cdot 1 - M_1 = 0; R_A = 4,81 \ \kappa H.$$

Проверка:
$$\sum P_z = P - R_{B_1} - R_A = 10 - 5,19 - 4,81 = 0.$$

Балка В2С

Реакции опор:

$$\sum M_{B_2} = 0 \; ; \qquad \qquad 2q \cdot 1 - 2R_C - P \cdot 3 = 0 ; \qquad \qquad R_C = 19 \; \kappa H;$$

$$\sum M_C = 0 \; ; \qquad \qquad 2R_{B_2} + 2q \cdot 1 - P \cdot 1 = 0 ; \qquad \qquad R_{B_2} = 1 \; \kappa H.$$
 Проверка:
$$\sum P_z = R_{B_2} + 2q\alpha + P - R_C = 1 + 4 \cdot 2 + 10 - 19 = 0.$$

Уравнения поперечных сил Q_z и изгибающих моментов M_y по участкам:

$$\begin{split} Q_{Z}^{I} &= R_{A} = 4,81 \, \kappa H; \\ Q_{Z}^{II} &= -R_{B_{1}} = -5,19 \, \kappa H; \\ Q_{Z}^{III} &= R_{B_{2}} - qx \big|_{x=0} = -1 \, \Big|_{x=2} = -9 \, \kappa H; \\ Q_{Z}^{IV} &= P = 10 \, \kappa H m; \\ M_{y}^{I} &= R_{A} \cdot x \big|_{x=0} = 0 \, \Big|_{x=1} = 4,81 \, \kappa H m; \\ M_{y}^{II} &= -M_{1} + R_{B_{1}} \cdot x \big|_{x=0} = -0,375 \, \Big|_{x=1} = 4,81 \, \kappa H m; \\ M_{y}^{III} &= R_{B_{2}} \cdot x - \frac{qx^{2}}{2} - M_{1} \Big|_{x=0} = 0,375 \, \Big|_{x=2} = -10 \, \kappa H m; \\ M_{y}^{IV} &= -P \cdot x \big|_{x=0} = 0 \, \Big|_{x=1} = -10 \, \kappa H m. \end{split}$$

7. Подберем двутавровое поперечное сечение.

Максимальный изгибающий момент $|M_{max}| = 10 \ \kappa H_{M}$.

Условие прочности при изгибе $\sigma_{max} = \frac{|M_{max}|}{W_{H,O}} \le [\sigma];$

$$W_{\text{\tiny H.O}} \ge \frac{|M_{max}|}{|\sigma|} = \frac{10 \cdot 10^3}{160 \cdot 10^6} = 62,5 \cdot 10^{-6} \,\text{M}^3.$$

По сортаменту (табл. П. 2) подберем двутавры

№ 12
$$W_y = 58.4 \cdot 10^{-6} \, \text{м}^3$$
 и № 14 $W_y = 81.7 \cdot 10^{-6} \, \text{м}^3$.

Определим перегрузку ближайшего меньшего двутавра

$$\Delta\sigma\% = \left|\frac{W_y - W_{_{H.O}}}{W_v}\right| \cdot 100\% = \left|\frac{58,4 - 62,5}{58,4}\right| \cdot 100\% = 7\% > 5\%.$$

Окончательно выберем двутавр № 14.

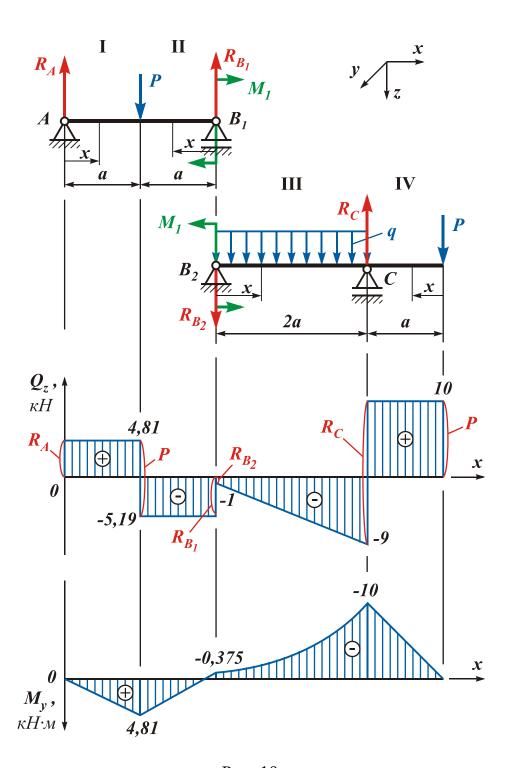
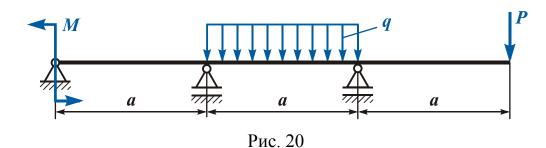


Рис. 19

Замечание. Для статически неопределимой балки эпюра M_y должна иметь различные знаки.

Пример 2

Построить эпюры Q_z , M_y и подобрать прямоугольное поперечное сечение для заданной балки (рис. 20), если ее жесткость постоянна ($EI_y = const$), $\alpha = 2$ м, P = 1 кH, q = 2 кH/м, M = 4 кHм, h/b = 2, $[\sigma] = 160$ М Πa .



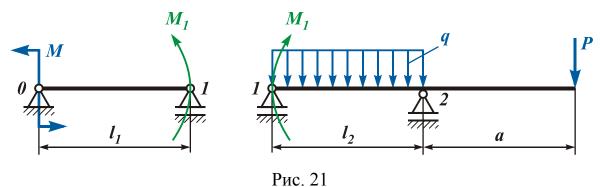
Решение

1. Определим степень статической неопределимости

$$k = 2 - 1 = 1$$
,

т.е. балка один раз статически неопределима.

2. Введем эквивалентную систему (рис. 21).



3. Запишем уравнение трех моментов

$$M_0 l_1 + 2M_1 (l_1 + l_2) + M_2 l_2 = -6E I_{\nu} (\alpha_{1,1} + \alpha_{1,2}),$$

где $M_0 = -M = -4 \ \kappa H_M$ – момент на левой опоре;

 M_1 – неизвестная величина (подлежит определению);

 $M_2 = -Pa = -2 \ \kappa H_M$ – момент на правой опоре от силы P на консоли;

 $l_1 = l_2 = a = 2 \, \mathit{m}$ – длина пролетов, т.е. расстояния между опорами;

 $\alpha_{1,1}$ и $\alpha_{1,2}$ – углы поворотов у средней опоры в однопролетных балках от своих пролетных нагрузок (первый индекс – номер опоры, второй – номер пролета).

4. Определим углы $\alpha_{1,1}$ и $\alpha_{1,2}$ (рис. 22).

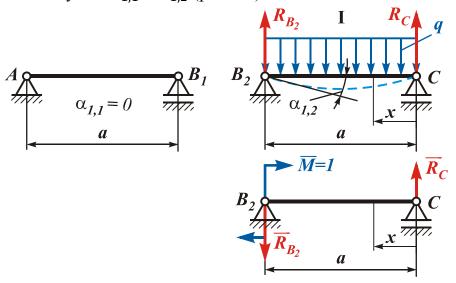


Рис. 22

Угол $\alpha_{1,1}=0$, так как отсутствуют внутрипролетные нагрузки.

Угол $\alpha_{1,2}$ определим с помощью интеграла Максвелла–Мора. Для этого построим грузовую систему и соответствующую ей единичную.

Грузовая система.

Реакции опор:

$$\sum M_{B_2} = 0; \qquad R_C a - \frac{q a^2}{2} = 0; \qquad R_C = \frac{q a^2}{2a} = \frac{q a}{2} = 2 \ \kappa H;$$

$$\sum M_C = 0; \qquad -R_{B_2} a + \frac{q a^2}{2} = 0; \qquad R_{B_2} = \frac{q a^2}{2a} = \frac{q a}{2} = 2 \ \kappa H.$$
 Проверка:
$$\sum P_Z = q a - R_{B_2} - R_C = 4 - 2 - 2 = 0.$$

Уравнение изгибающих моментов: $M_y^I = R_C x - \frac{qx^2}{2} = 2x - x^2$.

Единичная система.

Реакции опор:

$$\sum M_{B_2} = 0$$
; $ar{R}_C 2 - ar{M} = 0$; $ar{R}_C = rac{ar{M}}{2a} = rac{1}{2} \ \kappa H$; $\sum M_C = 0$; $ar{R}_{B_2} 2a - ar{M} = 0$; $ar{R}_{B_2} = rac{ar{M}}{2a} = rac{1}{2} \ \kappa H$. Проверка: $\sum P_z = ar{R}_{B_2} - ar{R}_C = rac{1}{2} - rac{1}{2} = 0$.

Уравнение изгибающих моментов: $\bar{M}_{y}^{I} = \bar{R}_{C}x = \frac{1}{2}x$.

Вычислим интеграл Мора

$$\alpha_{1,2} = \frac{1}{EI_y} \int_0^2 M_y^I \cdot \overline{M}_y^I dx = \frac{1}{EI_y} \int_0^2 (2x - x^2) \frac{1}{2} x dx =$$

$$= \frac{1}{EI_y} \left(\frac{x^3}{3} \Big|_0^2 - \frac{x^4}{4 \cdot 2} \Big|_0^2 \right) = \frac{1}{EI_y} \left(\frac{8}{3} - 2 \right) = \frac{1}{EI_y} \frac{2}{3}.$$

Замечание. Угол $\alpha_{1,2}$ можно вычислить, воспользовавшись справочными материалами, приведенными в табл. П. 1:

$$\alpha_{1,2} = \frac{q l_1^3}{24EI_y} = \frac{2 \cdot 8}{24EI_y} = \frac{2}{3EI_y}.$$

5. Определим M_1 , решив уравнение трех моментов:

$$-Ma + 2M_1 2a - Paa = -6EI_y \left(0 + \frac{1}{EI_y} \frac{2}{3} \right);$$

$$-8 + 8M_1 - 4 = -4; \qquad 8M_1 = 8; \qquad M_1 = 1 \ \kappa H_M.$$

6. Возвратимся к эквивалентной системе и построим эпюры Q_z и M_y (рис. 23). Определим опорные реакции и запишем уравнения внутренних силовых факторов для каждой отдельно взятой балки.

Балка АВ 1

$$\sum M_A=0$$
; $\sum M_{B_1}=0$; $R_A=R_{B_1}=rac{M+M_1}{a}=rac{5}{2}=2$,5 к H . Проверка: $\sum P_Z=R_{B_1}-R_A=2$,5 $=2$,5 $=2$.

Балка B_2C

$$\sum M_{B_2} = 0; \qquad -2Pa + R_C a - \frac{qa^2}{2} - M_1 = 0; \qquad R_C = \frac{4+4+1}{2} = 4,5 \, \kappa H;$$

$$\sum M_C = 0; \qquad -Pa + \frac{qa^2}{2} - M_1 - R_{B_2} a = 0; \qquad R_{B_2} = \frac{-2+4-1}{2} = \frac{1}{2} \, \kappa H.$$

$$\text{Проверка:} \qquad \sum P_Z = P + qa - R_{B_2} - R_C = 1 + 2 \cdot 2 - 4,5 - 0,5 = 0.$$

$$Q_Z^I = R_A = 2,5 \, \kappa H;$$

$$Q_Z^{II} = R_{B_2} - qx \big|_{x=0} = 0,5 \, \big|_{x=2} - 3,5 \, \kappa H;$$

$$Q_Z^{II} = 0 = R_{B_2} - qx_3; \qquad \qquad x_3 = \frac{R_{B_2}}{q} = 0,25 \, \text{M};$$

$$Q_Z^{III} = P = 1 \, \kappa H;$$

$$M_V^I = R_A \cdot x - M \big|_{x=0} = -4 \, \big|_{x=2} = 1 \, \kappa H \text{M};$$

$$M_y^{II} = M_1 + R_{B_2} \cdot x - \frac{qx^2}{2} \Big|_{x=0} = 1 \quad \Big|_{x=2} = -2 \quad \Big|_{x=x_9=0,25} = 1,07 \ \kappa H_M;$$
 $M_y^{III} = -Px|_{x=0} = 0 \quad |_{x=2} = -2 \ \kappa H_M.$

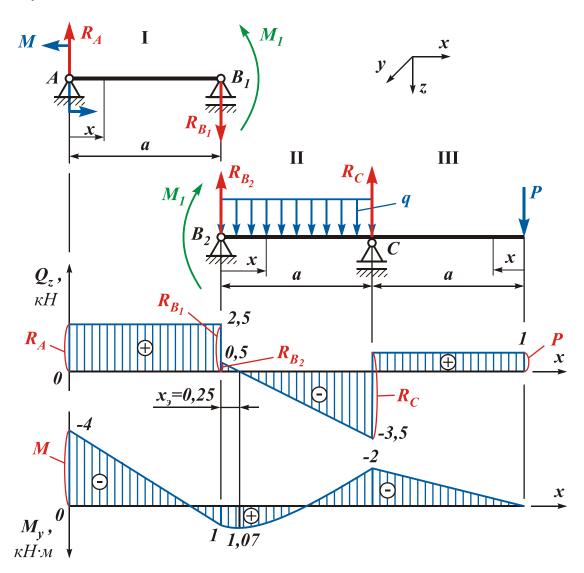


Рис. 23

7. Определим размеры прямоугольного поперечного сечения.

Максимальный изгибающий момент
$$M_{y\;max} = -4 \; \kappa H_M$$
. Условие прочности: $\sigma_{x\;max} = \frac{|M_{y\;max}|}{W_{H,O}} \leq [\sigma];$

$$W_{\text{H.O}} = \frac{I_{\text{H.O}}}{h/2} = \frac{bh^2}{6} = \frac{h^3}{12}; \qquad h \ge \sqrt[3]{\frac{12 M_{y max}}{[\sigma]}} = \sqrt[3]{\frac{12 \cdot 4 \cdot 10^3}{160 \cdot 10^6}} = 0,053 \text{ M.}$$
 $h = 53 \text{ MM}; \qquad b = h/2 = 26,5 \text{ MM.}$

Пример 3

Построить эпюры поперечных сил Q_z и изгибающих моментов M_y для заданной балки (рис. 24), если $P=10~\kappa H$, $M=30~\kappa H$ м, $q=20~\kappa H$ /м, $a=3~\kappa$.

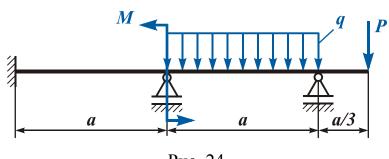


Рис. 24

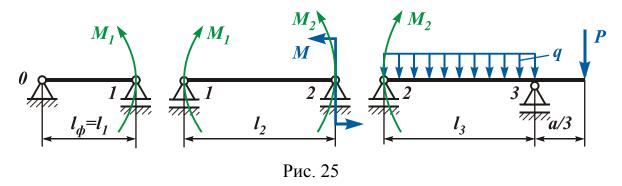
Решение

1. Определим степень статической неопределимости

$$k = 5 - 3 = 2$$
,

т.е. балка два раза статически неопределима.

2. Построим эквивалентную систему, заменив жесткое защемление добавочным пролетом l_{ϕ} (рис. 25).



3. Запишем два уравнения теоремы трех моментов:

$$\begin{cases} M_0 l_1 + 2M_1 (l_1 + l_2) + M_2 l_2 = -6EI_y (\alpha_{1,1} + \alpha_{1,2}) \\ M_1 l_2 + 2M_2 (l_2 + l_3) + M_3 l_3 = -6EI_y (\alpha_{2,2} + \alpha_{2,3}), \end{cases}$$

где $M_0 = 0$ — момент на левой опоре фиктивного пролета (опора $\boldsymbol{\theta}$);

 M_1, M_2 – неизвестные величины (подлежат определению);

 $M_3 = -P\frac{a}{3} = -10 \ \kappa H M$ — момент на правой опоре от силы P на консоли;

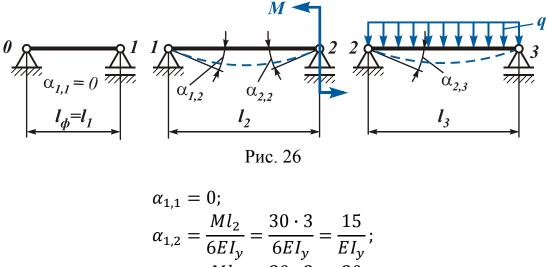
 $l_1 = l_\phi = 0$ — длина фиктивного пролета;

 $l_2 = l_3 = a = 3 \, \mathit{м}$ – длина пролетов, т.е. расстояния между опорами;

 $\alpha_{1,1}$, $\alpha_{1,2}$, $\alpha_{2,2}$ и $\alpha_{2,3}$ — углы поворотов на опорах $\mathbf{1}$ и $\mathbf{2}$ в однопролетных балках от своих пролетных нагрузок (первый индекс — номер опоры, второй — пролета).

Заданный момент M отнесем к пролету l_2 .

4. Определим углы поворота $\alpha_{1,1}$, $\alpha_{1,2}$, $\alpha_{2,2}$ и $\alpha_{2,3}$ (рис. 26), воспользовавшись справочными материалами, приведенными в табл. П. 1.



$$\alpha_{1,2} = \frac{Ml_2}{6EI_y} = \frac{30 \cdot 3}{6EI_y} = \frac{15}{EI_y};$$

$$\alpha_{2,2} = \frac{Ml_2}{3EI_y} = \frac{30 \cdot 3}{3EI_y} = \frac{30}{EI_y};$$

$$\alpha_{2,3} = \frac{ql_3^3}{24EI_y} = \frac{20 \cdot 27}{24EI_y} = \frac{45}{2EI_y}.$$

5. Подставим полученные значения углов поворота $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2}$ и $\alpha_{2,3}$ в систему уравнений. После преобразования получим

$$\begin{cases} 2M_1 + M_2 = -30 \\ M_1 + 4M_2 = -95. \end{cases}$$

Решив совместно два уравнения, найдем неизвестные опорные моменты

$$M_1 = -3,57 \text{ } \kappa H_M;$$
 $M_2 = -22,86 \text{ } \kappa H_M.$

Так как моменты M_1 и M_2 получились отрицательными, то их направление необходимо изменить на противоположное.

6. Построим эпюры Q_z и M_y (рис. 27). Для этого определим опорные реакции и запишем уравнения внутренних силовых факторов для каждой из балок с пролетами l_2 и l_3 и приложенными к ним силовыми воздействиями, включая внутренние опорные моменты M_1 и M_2 .

Балка АВ 1

Реакции опор:

$$\sum M_A = 0; \qquad M + M_1 - M_2 - R_{B_1} a = 0;$$

$$R_{B_1} = \frac{M + M_1 - M_2}{a} = \frac{30 + 3,57 - 22,86}{3} = 3,57 \ \kappa H;$$

$$\sum M_{B_1} = 0; \qquad M + M_1 - M_2 - R_A a = 0;$$

$$R_A = \frac{M + M_1 - M_2}{a} = \frac{30 + 3,57 - 22,86}{3} = 3,57 \ \kappa H.$$
 Проверка:
$$\sum P_Z = R_{B_1} - R_A = 3,57 - 3,57 = 0.$$

Балка B_2C

Реакции опор:

$$\sum M_{B_2} = 0; \qquad M_2 + R_C a - P\left(a + \frac{a}{3}\right) - qa\frac{a}{2} = 0;$$

$$R_C = \frac{P\left(a + \frac{a}{3}\right) + qa\frac{a}{2} - M_2}{a} = \frac{40 + 90 - 22,86}{3} = 35,7 \, \kappa H;$$

$$\sum M_C = 0; \qquad M_2 - R_{B_2} a - P\frac{a}{3} + qa\frac{a}{2} = 0;$$

$$R_{B_2} = \frac{M_2 - P\frac{a}{3} + qa\frac{a}{2}}{a} = \frac{22,86 - 10 + 90}{3} = 34,29 \, \kappa H.$$

$$\text{Проверка: } \sum P_Z = -R_{B_2} - R_C + P + qa = -35,71 - 34,29 + 10 + 30 = 0.$$

$$Q_Z^I = R_A = 3,57 \, \kappa H;$$

$$Q_Z^{II} = R_{B_2} - qx|_{x=0} = 34,29 \, \Big|_{x=3} - 25,71 \, \kappa H;$$

$$Q_Z^{II} = R_{B_2} - qx|_{x=0} = 34,29 \, \Big|_{x=3} - 25,71 \, \kappa H;$$

$$Q_Z^{III} = P = 10 \, \kappa H;$$

$$M_Y^I = R_A \cdot x - M_1|_{x=0} = -3,57 \, |_{x=3} = 7,14 \, \kappa H m;$$

$$M_Y^{III} = -M_2 + R_{B_2} \cdot x - \frac{qx^2}{2} \Big|_{x=0} = -22,86 \, \Big|_{x=3} = -10 \, \Big|_{x=x_3=1,71} = 6,53 \, \kappa H m;$$

$$M_Y^{III} = -Px|_{x=0} = 0 \qquad |_{x=1} = -10 \, \kappa H m.$$

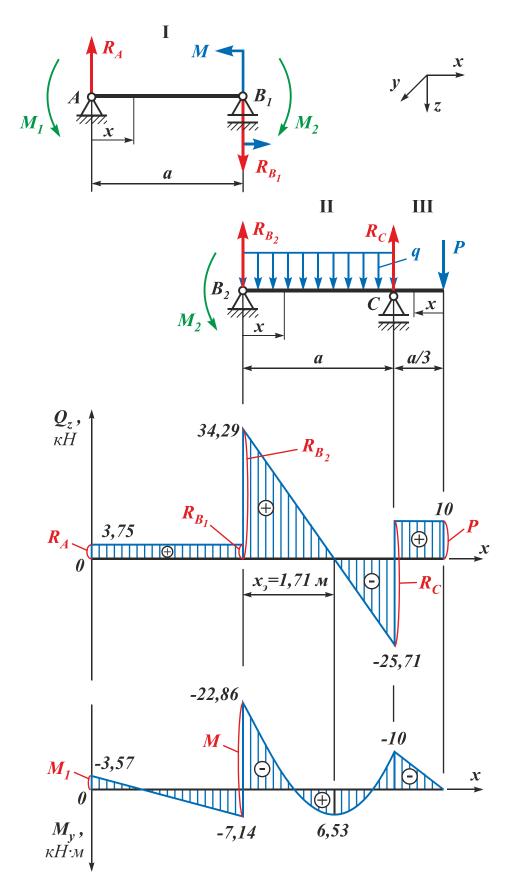


Рис. 27

Пример 4

Построить эпюры поперечных сил Q_z и изгибающих моментов M_y для заданной балки (рис. 28), если $P=40~\kappa H,~M=20~\kappa H M,~\alpha=2~m$.

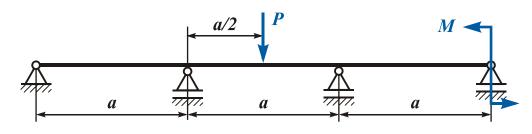


Рис. 28

Решение

1. Определим степень статической неопределимости

$$k = 5 - 3 = 2$$
,

- т.е. балка два раза статически неопределима.
 - 2. Построим эквивалентную систему (рис. 29).

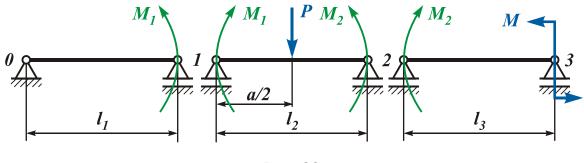


Рис. 29

3. Запишем два уравнения теоремы трех моментов:

$$\begin{cases} M_0 l_1 + 2 M_1 (l_1 + l_2) + M_2 l_2 = -6 E I_y (\alpha_{1,1} + \alpha_{1,2}) \\ M_1 l_2 + 2 M_2 (l_2 + l_3) + M_3 l_3 = -6 E I_y (\alpha_{2,2} + \alpha_{2,3}), \end{cases}$$

где $M_0 = 0$ – момент на левой опоре пролета (опора θ);

 M_1 , M_2 – неизвестные величины (подлежат определению);

 $M_3 = M = 20 \ \kappa H M$ – момент на правой опоре (опора 3);

 $l_1 = l_2 = l_3 = a = 2$ м – длина пролетов, т.е. расстояния между опорами;

 $\alpha_{1,1}$, $\alpha_{1,2}$, $\alpha_{2,2}$ и $\alpha_{2,3}$ — углы поворотов на опорах $\mathbf{1}$ и $\mathbf{2}$ в однопролетных балках от своих пролетных нагрузок (первый индекс — номер опоры, второй — пролета).

4. Определим углы поворота $\alpha_{1,1}$, $\alpha_{1,2}$, $\alpha_{2,2}$ и $\alpha_{2,3}$ (рис. 30), воспользовавшись справочными материалами, приведенными в табл. П.1.

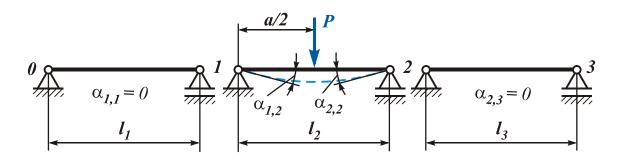


Рис. 30

$$\alpha_{1,1} = \alpha_{2,3} = 0;$$

$$\alpha_{1,2} = \alpha_{2,2} = \frac{Pl_2^2}{16EI_v} = \frac{40 \cdot 4}{16EI_v} = \frac{10}{EI_v}.$$

5. Подставим полученные значения углов поворота $\alpha_{1,1}, \alpha_{1,2}, \alpha_{2,2}$ и $\alpha_{2,3}$ в систему уравнений. После преобразования получим

$$\begin{cases} 4M_1 + M_2 = -30 \\ M_1 + 4M_2 = -50. \end{cases}$$

Решив совместно два уравнения, найдем неизвестные опорные моменты:

$$M_1 = -4,68 \, \kappa H_M;$$

 $M_2 = -11,33 \, \kappa H_M.$

Так как моменты M_1 и M_2 получились отрицательными, то их направление необходимо изменить на противоположное.

 $\pmb{6}$. Построим эпюры Q_z и M_y .

Замечание. Эпюры Q_z и M_y в задачах 1–3 строили по вырезанным пролетам с одновременной стыковкой их для неразрезной балки. Эти же эпюры при известных реакциях R_A , R_B , R_C и R_D можно строить по участкам для всей неразрезной балки.

Определим опорные реакции, отдельно рассмотрев балки с пролетами l_1 , l_2 , l_3 и приложенными к ним нагрузками, включая внутренние опорные моменты M_1 и M_2 (рис. 31).

Балка АВ1 (первый пролет)

Реакции опор:

$$\sum M_A = 0; \qquad R_{B_1} a - M_1 = 0; \qquad R_{B_1} = \frac{M_1}{a} = \frac{4,68}{2} = 2,34 \ \kappa H;$$

$$\sum M_{B_1} = 0; \qquad R_A a - M_1 = 0; \qquad R_A = \frac{M_1}{a} = \frac{4,68}{2} = 2,34 \ \kappa H.$$
 Проверка:
$$\sum P_Z = R_A - R_{B_1} = 2,34 - 2,34 = 0.$$

Балка B_2C_1 (второй пролет)

Реакции опор:

$$\sum M_{B_2} = 0; \qquad M_1 - M_2 + R_{C_1} a - P \frac{a}{2} = 0;$$

$$R_{C_1} = \frac{P \frac{a}{2} - M_1 + M_2}{a} = \frac{40 - 4,68 + 11,33}{2} = 23,33 \, \kappa H;$$

$$\sum M_{C_1} = 0; \qquad M_1 - M_2 - R_{B_2} a - P \frac{a}{2} = 0;$$

$$R_{B_2} = \frac{M_1 - M_2 - P \frac{a}{2}}{a} = \frac{4,68 - 11,33 + 40}{2} = 16,67 \, \kappa H.$$

$$\sum P_{C_1} = -R_{C_1} - R_{C_2} + P = -16,67 - 23,33 + 40 = 0$$

 $\sum_{z} P_{z} = -R_{B_{2}} - R_{C_{1}} + P = -16,67 - 23,33 + 40 = 0.$

Балка C_2D (третий пролет)

Реакции опор:

$$\sum M_{C_2} = 0; \qquad M + M_2 - R_D a = 0;$$

$$R_D = \frac{M + M_2}{a} = \frac{11,33 + 20}{2} = 15,67 \,\kappa H;$$

$$\sum M_D = 0; \qquad M + M_2 - R_{C_2} a = 0;$$

$$R_{C_2} = \frac{M + M_2}{a} = \frac{11,33 + 20}{2} = 15,67 \,\kappa H.$$

Проверка:
$$\sum P_z = R_{C_2} - R_D = 15,67 - 15,67 = 0.$$

Реакции в опорных сечениях:

$$R_A = 2.34 \, \kappa H;$$

 $R_B = R_{B_1} + R_{B_2} = 2.34 + 16.67 = 19.01 \, \kappa H;$
 $R_C = R_{C_1} + R_{C_2} = 23.33 + 15.67 = 39 \, \kappa H;$
 $R_D = 15.67 \, \kappa H.$

Проверка:

$$\sum P_z = R_A - R_B - R_C + R_D + P = 2,34 - 19,01 - 39 + 15,67 + 40 = 0.$$

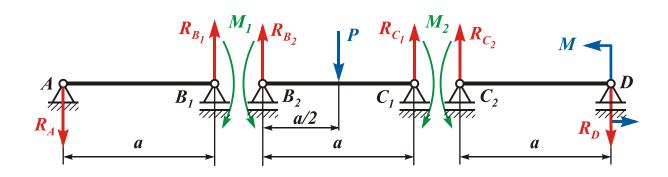
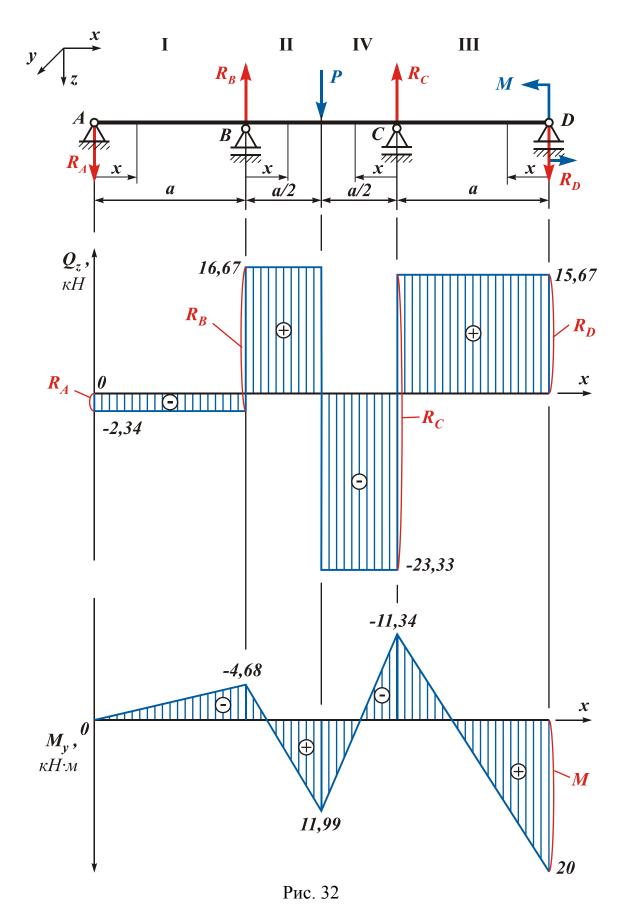


Рис. 31

Запишем уравнения поперечных сил Q_z и изгибающих моментов M_y по участкам при известных реакциях R_A , R_B , R_C , R_D и построим по ним эпюры (рис. 32):

$$Q_{z}^{I} = -R_{A} = 2,34 \,\kappa H;$$
 $Q_{z}^{II} = -R_{A} + R_{B} = 16,67 \,\kappa H;$
 $Q_{z}^{III} = R_{D} = 15,67 \,\kappa H;$
 $Q_{z}^{IV} = R_{D} - R_{C} = -23,33 \,\kappa H;$
 $M_{y}^{I} = -R_{A} \cdot x|_{x=0} = 0 \quad |_{x=2} = -4,68 \,\kappa Hm;$
 $M_{y}^{II} = -R_{A}(a+x) + R_{B} \cdot x|_{x=0} = -4,68 \quad |_{x=1} = 11,99 \,\kappa Hm;$
 $M_{y}^{III} = M - R_{D}x|_{x=0} = 20 \quad |_{x=2} = -11,34 \,\kappa Hm;$
 $M_{y}^{IV} = M - R_{D}(a+x) + R_{C}x|_{x=0} = -11,34 \quad |_{x=1} = 11,99 \,\kappa Hm.$



ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ

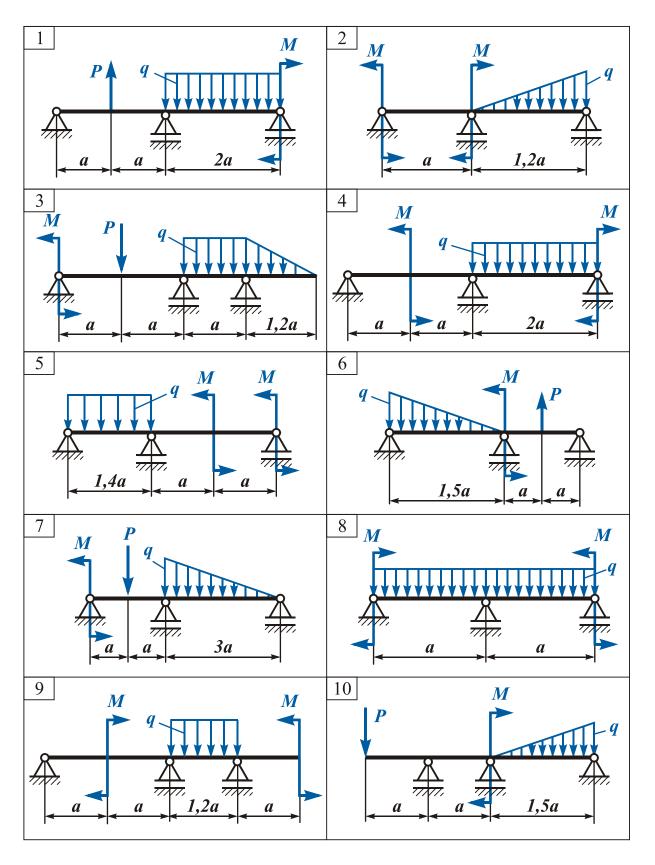
- 1. Установить степень статической неопределимости балки.
- 2. Составить эквивалентную систему.
- 3. Записать систему уравнений трех моментов.
- **4**. Определить углы $\alpha_{n,n}$ и $\alpha_{n,n+1}$.
- 5. Решить систему уравнений и определить неизвестные моменты.
- **6**. Построить эпюры поперечных сил Q_z и изгибающих моментов M_y для эквивалентной системы.
- 7. Подобрать двутавровое или прямоугольное поперечное сечение балки. Принять для материала $\sigma_T = 240~M\Pi a,~~K_T = 1,2 \dots 1,8$.

Допускаемые напряжения вычислить по формуле $[\sigma] = \frac{\sigma_T}{K_T}$.

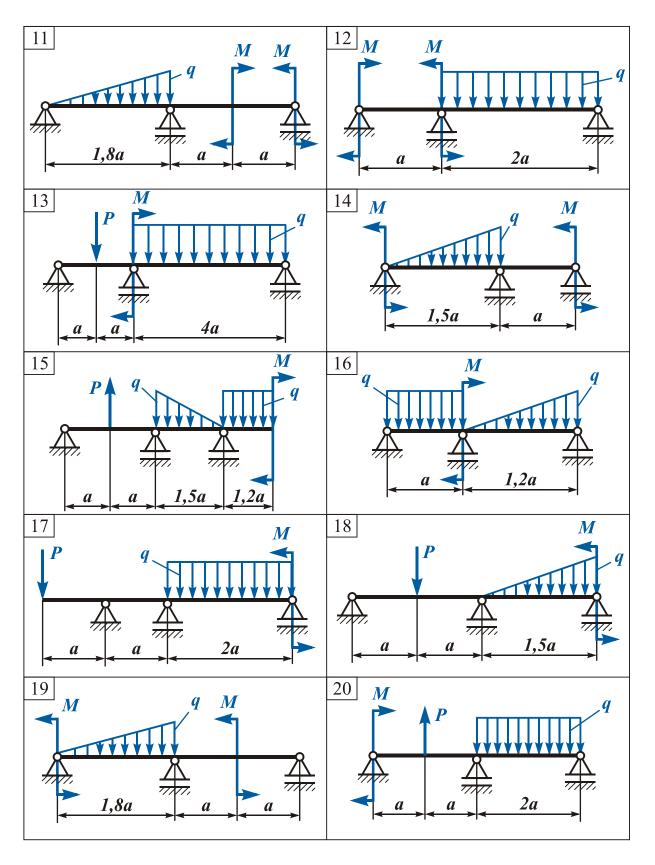
Таблица 1 – Варианты исходных данных

Пара-	Номер варианта															
метры	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Р, кН	10	12	14	8	6	4	2	4	2	6	4	2	8	10	4	
<i>q, кН/м</i>	4	6	8	10	8	6	4	2	4	6	8	10	8	6	4	
М, кН∙м	2	4	6	4	6	8	10	8	6	4	2	4	2	4	2	
а, м	2	1	1	2	2	1	2	1	2	2	1	2	2	1	2	
Пара-		Номер варианта														
метры	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Р, кН	6	12	14	18	20	4	12	14	12	16	8	2	18	6	4	
q, кH/м	2	4	6	8	10	8	6	4	2	4	6	8	10	8	6	
М, кН·м	2	6	6	4	6	8	10	8	6	4	2	4	2	4	8	
а, м	1	1	2	2	1	1	2	2	1	1	2	2	1	1	1	

Таблица 2 – Варианты нагружения балки



Продолжение таблицы 2



Продолжение таблицы 2

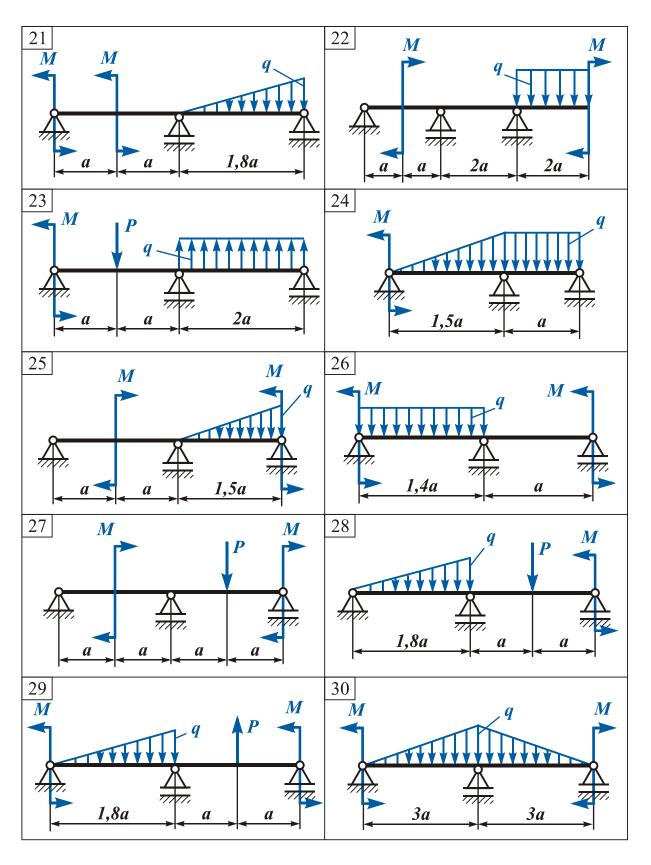
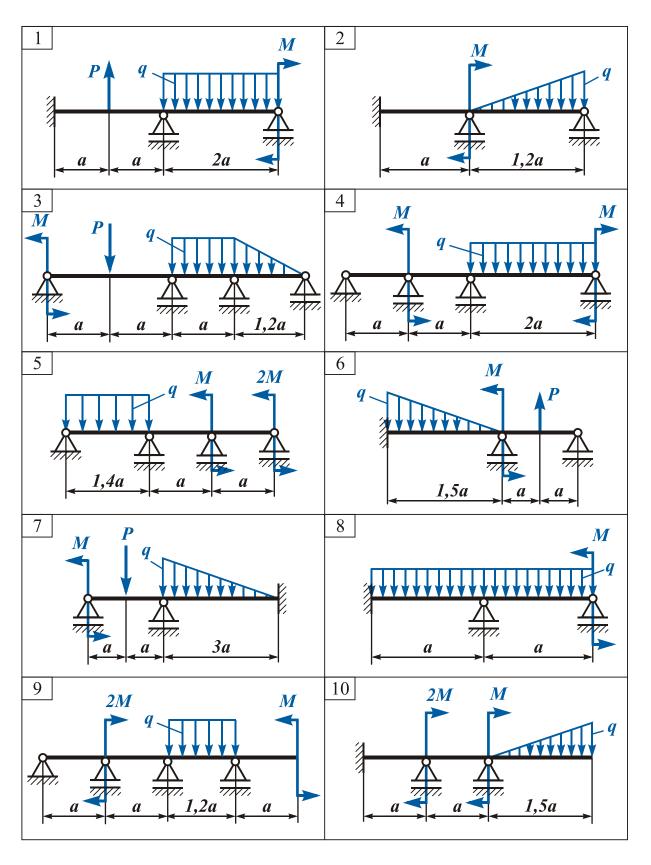
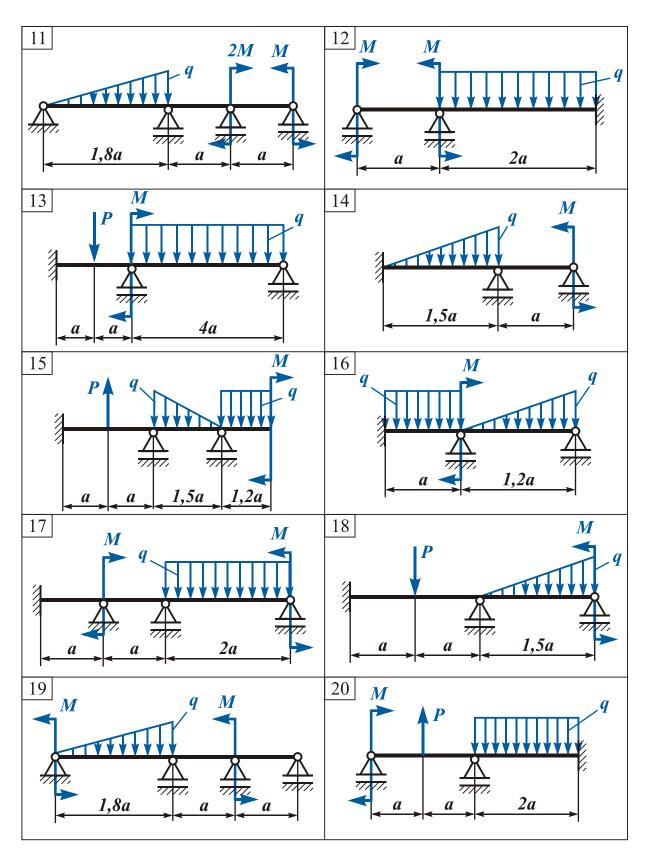
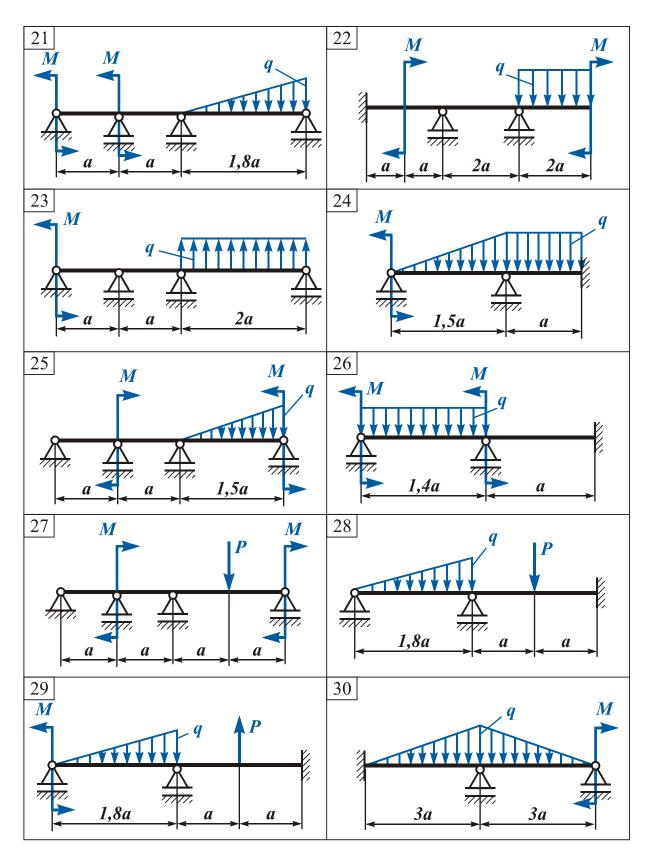


Таблица 3 – Варианты нагружения балки







Приложение

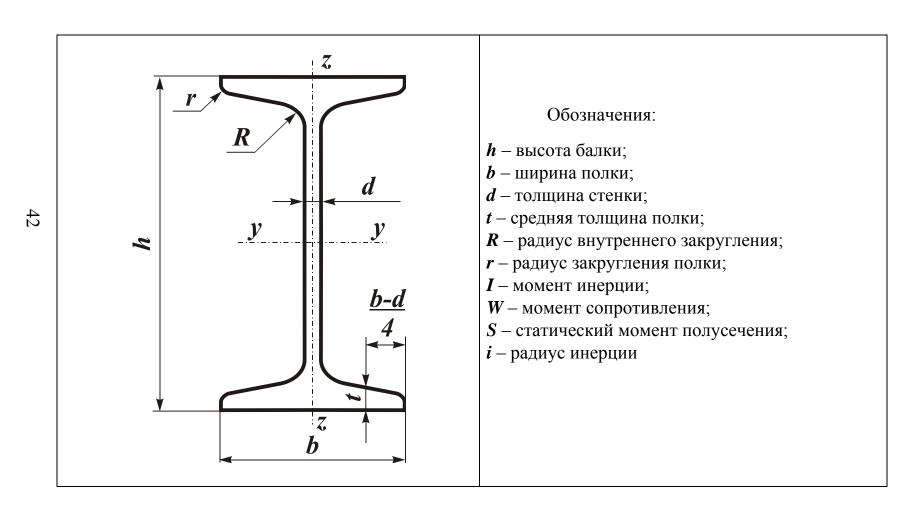
Таблица П. 1 – Углы поворотов опорных сечений при различных случаях нагружения балки

Схема балки и нагрузки	Углы поворота
P $I/2$ $I/2$ $I/2$	$lpha_A = rac{Pl^2}{16EI}$ $eta_B = rac{Pl^2}{16EI}$
A B B B C	$\alpha_{A} = \frac{Pab(l+b)}{6l EI}$ $\beta_{B} = \frac{Pab(l+a)}{6l EI}$
P P B C	$lpha_A = rac{Pa(l-a)}{2EI}$ $eta_B = rac{Pa(l-a)}{2EI}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\alpha_A = \frac{5Pl^2}{32EI}$ $\beta_B = \frac{5Pl^2}{32EI}$
B	$\alpha_A = \frac{Ml}{3EI}$ $\beta_B = \frac{Ml}{6EI}$

Схема балки и нагрузки	Углы поворота
A M M B	$lpha_A = rac{Ml}{2EI}$ $eta_B = rac{Ml}{2EI}$
M_1 M_2 B	$\alpha_A = \frac{(2M_1 + M_2)l}{6EI}$ $\beta_B = \frac{(M_1 + 2M_2)l}{6EI}$
A A A A A A A A A A	$\alpha_A = \frac{M(l^2 - 3b^2)}{6l EI}$ $\beta_B = \frac{M(3a^2 - l^2)}{6l EI}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$lpha_A = rac{Mb}{2EI}$ $eta_B = rac{Mb}{2EI}$
M M B $V/3$ $V/3$ $V/3$ $V/3$ $V/3$ $V/3$	$lpha_A = rac{Ml}{18EI}$ $eta_B = rac{Ml}{18EI}$
$\begin{array}{c} q \\ B \\ \end{array}$	$\alpha_A = \frac{ql^3}{24EI}$ $\beta_B = \frac{ql^3}{24EI}$

Схема балки и нагрузки	Углы поворота
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\alpha_A = \frac{13ql^3}{648EI}$ $\beta_B = \frac{13ql^3}{648EI}$
	$\alpha_A = \frac{qnb(l^2 - b^2 - n^2)}{3l EI}$ $\beta_B = \frac{qna(l^2 - b^2 - n^2)}{3l EI}$
P P P P P P P P P P	$lpha_A = rac{3ql^3}{128EI}$ $eta_B = rac{7ql^3}{384EI}$
A A A A A A A A A A	$lpha_A = rac{q l^3}{192 EI}$ $eta_B = -rac{q l^3}{192 EI}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$lpha_A = rac{7ql^3}{324EI}$ $eta_B = rac{7ql^3}{324EI}$
$\begin{array}{c} q \\ B \\ \end{array}$	$\alpha_A = \frac{7ql^3}{360EI}$ $\beta_B = \frac{ql^3}{45EI}$

Схема балки и нагрузки	Углы поворота
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\alpha_A = \frac{qa^2l}{360EI} \left(12\frac{a^2}{l^2} - 45\frac{a}{l} + 40 \right)$ $\beta_B = \frac{qa^2l}{90EI} \left(5 - 3\frac{a^2}{l^2} \right)$
A 1/2 1/2 77777.	$\alpha_A = \frac{5ql^3}{192EI}$ $\beta_B = \frac{5ql^3}{192EI}$
A V Q V	$lpha_A = rac{7ql^3}{2880EI}$ $eta_B = -rac{7ql^3}{2880EI}$
q A B B A B A	$\alpha_A = \frac{ql^3}{64EI}$ $\beta_B = \frac{ql^3}{64EI}$
А В Типп. Квадратная парабола	$lpha_A = rac{q l^3}{20 EI}$ $eta_B = rac{q l^3}{20 EI}$



Цомор	h	b	d	4	D		F ,	Macca 1	Справочные данные для осей						
Номер	n	D	а	t	R	r			у-у				Z-Z		
профи-			см ²	М, КГ	I_y ,	W_{y_2}	i_y ,	S_{y}	I_z ,	W_z ,	i_z ,				
ЛЯ	мм							CM ⁴	CM^3	СМ	CM^3	CM^4	CM^3	СМ	
10	100	55	4,5	7,2	7,0	2,5	12,0	9,46	198	39,7	4,06	23,0	17,9	6,49	1,22
12	120	64	4,8	7,3	7,5	3,0	14,7	11,5	350	58,4	4,88	33,7	27,9	8,72	1,38
14	140	73	4,9	7,5	8,0	3,0	17,4	13,7	572	81,7	5,73	46,8	41,9	11,5	1,55
16	160	81	5,0	7,8	8,5	3,5	20,2	15,9	873	109,0	6,57	62,3	58,6	14,5	1,7
18	180	90	5,1	8,1	9,0	3,5	23,4	18,4	1290	143,0	7,42	81,4	82,6	18,4	1,88
18a	180	100	5,1	8,3	9,0	3,5	25,4	19,9	1430	159,0	7,51	89,8	114,0	22,8	2,12
20	200	100	5,2	8,4	9,5	4,0	26,8	21,0	1840	184,0	8,28	104,0	115,0	23,1	2,07
20a	200	110	5,2	8,6	9,5	4,0	28,9	22,7	2030	203,0	8,37	114,0	155,0	28,2	2,32
22	220	110	5,4	8,7	10,0	4,0	30,6	24,0	2550	232,0	9,13	131,0	157,0	28,6	2,27
22a	220	120	5,4	8,9	10,0	4,0	32,8	25,8	2790	254,0	9,22	143,0	206,0	34,3	2,5
24	240	115	5,6	9,5	10,5	4,0	34,8	27,3	3460	289,0	9,97	163,0	198,0	34,5	2,37
24a	240	125	5,6	9,8	10,5	4,0	37,5	29,4	3800	317,0	10,10	178,0	260,0	41,6	2,63
27	270	125	6,0	9,8	11,0	4,5	40,2	31,5	5010	371,0	11,2	210,0	260,0	41,5	2,54
27a	270	135	6,0	10,2	11,0	4,5	43,2	33,9	5500	407,0	11,3	229,0	337,0	50,0	2,8
30	300	135	6,5	10,2	12,0	5,0	46,5	36,5	7080	472,0	12,3	268,0	337,0	49,9	2,69
30a	300	145	6,5	10,7	12,0	5,0	49,9	39,2	7780	518,0	12,5	292,0	436,	60,1	2,95
33	330	140	7,0	11,2	13,0	5,0	53,8	42,2	9840	597,0	13,5	339,0	419,0	59,9	2,79
36	360	145	7,5	12,3	14,0	6,0	61,9	48,6	13380	743,0	14,7	423,0	516,0	71,1	2,89
40	400	155	8,5	13,0	15,0	6,0	72,6	57,0	19062	953,0	16,2	545,0	667,0	86,1	3,03
45	450	160	9,0	14,2	16,0	7,0	84,7	66,5	27696	1231,0	18,1	708,0	808,0	101,0	3,09
50	500	170	10,0	15,2	17,0	7,0	100,0	78,5	39727	1589,0	19,9	919,0	1043,0	123,0	3,23
55	550	180	11,0	16,5	18,0	7,0	118,0	92,6	55962	2035,0	21,8	1181,0	1356,0	151,0	3,39
60	600	190	12,0	17,8	20,0	8,0	138,0	108,0	16806	2560,0	23,6	1491,0	1725,0	189,0	3,54

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Тимошенко С. П. Сопротивление материалов: в 2 т. / С. П. Тимошенко М.: Физматгиз, 1960. Т.1: Элементарная теория и задачи. 379 с.
- 2. Сопротивление материалов / Г. С. Писаренко, В. А. Агарев, А. Л. Квитка и др. К.: Вища шк., 1986. 775 с.
- 3. Феодосьев В. И. Сопротивление материалов / В. И. Феодосьев. М.: Наука, 1986. 512 с.
- 4. Работнов Ю. Н. Сопротивление материалов /Ю. Н. Работнов. М.: Физматгиз, 1962. 455 с.
- 5. Беляев Н. М. Сопротивление материалов / Н. М. Беляев. М.: Гостех-издат, 1953. 856 с.
- 6. Сборник задач по сопротивлению материалов / Н. М. Беляев, Л. А. Белявский, Я. И. Кипнис и др.; под ред. В. К. Качурина. М.: Наука, 1970. 432 с.
- 7. Пособие к решению задач по сопротивлению материалов / И. Н. Миролюбов, С. А. Енгалычев, Н.Д. Сергиевский и др. М.: Высш. шк., 1967. 484 с.
- 8. Справочник по сопротивлению материалов / Е. Ф. Винокуров, М. К. Балыкин, И. А. Голубев и др. Мн.: Наука и техника, 1988. 464 с.

Содержание

1. Многопролетная неразрезная балка	3
2. Вывод уравнения трех моментов	4
3. Особые случаи при решении задач с помощью уравнения трех мо-	
ментов	10
4. Примеры решения задач	12
Пример 1	12
Пример 2	18
Пример 3	22
Пример 4	26
Порядок выполнения задания	31
Приложение	38
Библиографический список	44

Гребенников Михаил Николаевич Дибир Александр Геннадиевич Пекельный Николай Иванович

РАСЧЕТ МНОГОПРОЛЕТНЫХ НЕРАЗРЕЗНЫХ БАЛОК. УРАВНЕНИЕ ТРЕХ МОМЕНТОВ

Редактор В. М. Коваль

Св. план, 2010 Подписано в печать 19.02.2010 Формат 60×84 1/16. Бум. офс. № 2. Офс. печ. Усл. печ. л. 2,6. Уч.-изд. л. 2,88. Т. 200 экз. Заказ 52. Цена свободная

Национальный аэрокосмический университет им. Н. Е. Жуковского "Харьковский авиационный институт" 61070, Харьков-70, ул. Чкалова, 17 http://www.khai.edu
Издательский центр "ХАИ" 61070, Харьков-70, ул. Чкалова, 17 izdat@khai.edu

