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PREFACE TO THE SECOND EDITION

- In the preparation of the new edition of this volume, the
general character of the book has remained unchanged; the
only effort being to make it more complete and up-to-date by
including new theoretical and experimental material repre-
senting recent developments in the fields of stress analysis and
experimental investigation of mechanical properties of struc-

" tural materials.

The most important additions to the first edition include:

1. A more complete discussion of problems dealing with
bending, compression, and torsion of slender and thin-walled
structures. This kind of structure finds at present a wide
application in airplane constructions, and it was considered
desirable to include in the new edition more problems from
that field.

2. A chapter on plastic defor mations dealing with bending
and torsion of beams and shafts beyond the elastic limit and
also with plastic flow of material in thick-walled cylinders
subjected to high internal pressures.

3- A considerable amount of new material of an experi-
mental character pertaining to the behavior of structural
materials at high temperatures and to the fatigue of metals
under reversal of stresses, especially in those cases where
fatigue is combined with high stress concentration.

4. Important additions to be found in the portion of the
book dealing with beams on elastic foundations; in the chap-
ters on the theory of curved bars and theory of plates and
shells; and in the chapter on stress concentration, in which
some recent results of photoelastic tests have been included.

Since the appearance of the first edition of this book, the
author’s three volumes of a more advanced character, “ Theory
of Elasticity,” “Theory of Elastic Stability,” and “Theory of
Plates and Shells” have been published. Reference to these
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iv PREFACE TO THE SECOND EDITION

books are made in various places in this volume, especially
in those cases where only final results are given without a
complete mathematical derivation.

It is hoped that with the additions mentioned above the
book will give an up-to-date presentation of the subject of
strength of materials which may be useful both to graduate
students interested in engineering mechanics and to design
engineers dealing with complicated problems of stress analysis.

StepHEN P. TIMOSHENKO

Paro Avro, CaLirornia
June 12, 1941

PREFACE TO THE FIRST EDITION

The second volume of THE STRENGTH OF MATERIALS is
written principally for advanced students, research engineers,
and designers. The writer has endeavored to prepare a book
which contains the new developments that are of practical
importance in the fields of strength of materials and theory of
elasticity. Complete derivations of problems of practical
interest are given in most cases. Inonly a comparatively few
cases of the more complicated problems, for which solutions
cannot be derived without going beyond the limit of the usual
standard in engineering mathematics, the final results only are
given. In such cases, the practical applications of the results
are discussed, and, at the same time, references are given to
the literature in which the complete derivation of the solution
can be found.

In the first chapter, more complicated problems of bending
of prismatical bars are considered. The important problems
of bending of bars on an elastic foundation are discussed in
detail and applications of the theory in investigating stresses
in rails and stresses in tubes are given. The application of
trigonometric series in investigating problems of bending is
also discussed, and important approximate formulas for
combined direct and transverse loading are derived.

In the second chapter, the theory of curved bars is de-
veloped in detail. The application of this theory to machine
design is illustrated by an analysis of the stresses, for instance,
ir} hooks, fly wheels, links of chains, piston rings, and curved
pipes.

The third chapter contains the theory of bending of
Plates. The cases of deflection of plates to a cylindrical shape
and the symmetrical bending of circular plates are discussed
In detail and practical applications are given. Some data

regarding the bending of rectangular plates under uniform
load are also given.
v



vi PREFACE TO THE FIRST EDITION

In the fourth chapter are discussed problems of stress
distribution in parts having the form of a generated body
and symmetrically loaded. These problems are especially
important for designers of vessels submitted to internal
pressure and of rotating machinery. Tensile and bending
stresses in thin-walled vessels, stresses in thick-walled cylinders,
shrink-fit stresses, and also dynamic stresses produced in
rotors and rotating discs by inertia forces and the stresses
due to non-uniform heating are given attention.

The fifth chapter contains the theory of sidewise buckling
of compressed members and thin plates due to elastic in-
stability. These problems are of utmost importance in many
modern structures where the cross sectional dimensions are
being reduced to a minimum due to the use of stronger ma-
terials and the desire to decrease weight. In many cases,
failure of an engineering structure is to be attributed to elastic
instability and not to lack of strength on the part of the
material,

In the sixth chapter, the irregularities in stress distribution
produced by sharp variations in cross sections of bars caused
by holes and grooves are considered, and the practical sig-
nificance of stress concentration is discussed. The photo-
elastic method, which has proved very useful in investigating
stress concentration, is also described. The membrane anal-
ogy in torsional problems and its application in investigating
stress concentration at reentrant corners, as in rolled sections
and in tubular sections, is explained. Circular shafts of
variable diameter are also discussed, and an electrical analogy
is used in explaining local stresses at the fillets in such shafts.

In the last chapter, the mechanical properties of materials
are discussed. Attention is directed to the general principles
rather than to a description of established, standardized
methods of testing materials and manipulating apparatus.
The results of modern investigations of the mechanical
properties of single crystals and the practical significance of
this information are described. Such subjects as the fatigue
of metals and the strength of metals at high temperature are
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of decided practical interest in modern machine design.

These problems are treated more particularly with reference

" to new developments in these fields.

In concluding, various strength theories are C(?nsidered.
The important subject of the relation of the theox:les to the
method of establishing working stresses under various stress
conditions is developed.

It was mentioned that the book was written partially for
teaching purposes, and that it is intended also to be used for ad-
vanced courses. The writer has, in his experience, usually
divided the content of the book into three courses as follows:

~ (1) A course embodying chapters 1, 3, and 5 principally for ad-

vanced students interested in structural engineering. (2)
A course covering chapters 2, 3, 4, and 6 for students whose
chief interest is in machine design. (3) A course using chapter
7 as a basis and accompanied by demonstrations in the
material testing laboratory. The author feels that such a
course, which treats the fundamentals of mechanical proper-
ties of materials and which establishes the relation between
these properties and the working stresses used under various
conditions in design, is of practical importance, and more
attention should be given this sort of study in our engineering
curricula.

The author takes this opportunity of thanking his friends
who have assisted him by suggestions, reading of manuscript
and proofs, particularly Messrs. W. M. Coates and L. H.
Donnell, teachers of mathematics and mechanics in the
Engineering College of the University of Michigan, and Mr.
F. L. Everett of the Department of Engineering Research of
the University of Michigan. He is indebted also to Mr. F. C.
Wilharm for the preparation of drawings, to Mrs. E. D.
Webster for the typing of the manuscript, and to the D. Van
Nostrand Company for their care in the publication of the
book.

S. TiMOSHENKO

ANN ARrBor, MICHIGAN
May 1, 1930



NOTATIONS

Oz, Tys Tz ... Normal stresses on planes perpendicular to x, y

and 2 axes.

O veevnens Normal stress on plane perpendicular to direction
n.

GY.P.ivrvnn- Normal stress at yield point.

Cuweeeeennns Normal working stress

S Shearing stress

Tays Ty Taw. - Ohearing stresses parallel to x, y and z axes on the
planes perpendicular to y, z and x axes.

Twe o oeennns Working stress in shear

P Total elongation, total deflection

€t Unit elongation

€y €y €oe v Unit elongations in x, y and z directions

U Unit shear, weight per unit volume

E ......... Modulus of elasticity in tension and compression

G..o oL Modulus of elasticity in shear

Booeinnn. Poisson’s ratio

Ao Volume expansion

Ko........ Modulus of elasticity of volume

M, ....... Torque

M. ........ Bending moment in a beam

V......... Shearing force in a beam

Ao Cross sectional area

I,1I,...... Moments of inertia of a plane figure with respect
to y and 2 axes

kyy koo .. .. Radii of gyration corresponding to 7, I,

Iy ... ... Polar moment of inertia

Zoo...... .. Section modulus

C......... Torsional rigidity

Loooooo .. Length of a bar, span of a beam

P,O....... Concentrated forces

Lol Temperature, thickness
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X NOTATIONS

Uv......... Strain Energy
S Distance, arc length
Govenn Load per unit length
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CHAPTER 1
SPECIAL PROBLEMS IN BENDING OF BEAMS

1. Beams on Elastic Foundation.—Let us consider a pris-
‘matical beam supported along - ¢s entire length by a continuous
elastic foundation, such that when the beam is deflected, the
intensity of the continuously distributed reaction at every
~ section 18 proportional to the deflection at that section.!
Under such conditions the reaction per unit length of the bar
can be represented by the expression kY, in which y is the
deflection and k is a constant usually called the modulus of the
foundation. This constant denotes the reaction per unit
length, when the deflection is equal to unity. The simple as-
sumption that the continuous reaction of the foundation is
proportional to the deflection is a satisfactory approximation
in many practical cases. For instance, in the case of railway
tracks, the solution obtained on this assumption is in good
agreement with actual measurements.” In studying the de
flection curve of the beam we use the differential equation:?

4*
ELS%= o (a)

in which ¢ denotes the intensity of the load acting on the beam.

1 The beam is inbedded in a material capable of exerting downward
as well as upward forces on it.

2 See S. Timoshenko and B. F. Langer, Trans. A.S. M. E., Vol. 54,
p- 277, 1932. The theory of bending of a bar on elastic foundation has
been developed by E. Winkler, Die Lehre v. d. Flastizitat u. Festigkeit,
P{ag, 1867, p. 182. See also A. Zimmermann, Die Berechnung des
E}Senbahn-Oberbaues, Berlin, 1888. Further development of the theory
will be found in the following publications: Hayashi, Theorie des Tragers
auf elastischer Unterlage, Berlin, 19213 Wieghardt, Zeitschrift fiir ange-
wandte Math. u. Mech., Vol. 2 (1922); K. v. Sanden and Schleicher,
Beton und FEisen, 1926, Heft 53 Pasternak, Beton u. Eisen, 1926, Heft 9
and 10; W. Prager, Zeitschrift f. angewandte Math. u. Mech., Vol. 7,
1927, p. 354; M. A. Biot, Journal Appl. Mech., Vol. 4, p. 1A, 1937

3 See “Strength of Materials,” Part I, p. 137-

1



2 STRENGTH OF MATERIALS

For an unloaded portion the only force on the beam is the
continuously distributed reaction from the side of the founda-

tion of intensity ky., Hence g = — ky and equation (a)
becomes
d4
El, %{ = — by (1)

Using the notation
4/ k _
4ET B, (2)

the general solution of eq. (1) can be represented as follows:

Y = (4 cos Bx + B sin Bx)
+ ¢7%*(C cos Bx + D sin Bx). ()

This can easily be verified by substituting (4) in eq. (1).
In particular cases the arbitrary constants 4, B, C, and D of
the solution must be determined from the known conditions at
certain points.

Let us consider, as an example, the case of a single concen-
trated load acting on an infinitely long beam (Fig. 1), taking
the origin of coordinates at the point of application of the

force. From the condition of symmetry,
~—x only that part of the beam to the right of

/F, (@) " the load need be considered (Fig. 1, 4).

e In. applying thef general solution (4) to
’ 77 (o)! 7 this case, the arbitrary constants must first
f .
z be fopnd. It is reasonable to assume that
Fic. 1. at points infinitely distant from the force
P the deflection and the curvature are
equal to zero. This condition can be fulfilled only if the
constants ./ and B in eq. (4) are taken equal to zero. Hence

the deflection curve for the right portion of the beam be-
comes

‘P

Y = e#(C cos Bx + D sin Bx). (c)

The two remaining constants of integration C and D must be
found from the conditions at the origin,x = o. At this point,

PROBLEMS IN BENDING OF BEAMS 3

he deflection curve must have a horizontal tangent; therefore
the

dy _
(z;)x=0 - O,

. or substituting expression (¢) for y

¢#*(C cos Bx + Dsin gx + C sin Bx — D cos Bx)z—0 = O

" from which c_b.
: 4Equation (¢) therefore becomes
y = CeP*(cos Bx + sin Bx). @)
The consecutive derivatives of this equation are
g,z = — 28Ce** sin Bx,
x
ZI% = 282CeP*(sin Bx — cos Bx), (e)
% = 483°Ce™P* cos Bx. 3]
x

The constant C can now be determined from the fact that

_atx = o the shearing force for the right part of the beam (Fig.

1, b) is equal to — (P/2). The minus sign follows from our
c:)nvention for signs of shearing forces (see p. 72, Part I).

Then
am By oL
(V)z=0 = ( dx )zzo = - Elz(dx3 om0 2

or using eq. (f)

P
EL-48C =,
from which »
C =3gET.

Substituting this in egs. (4) and (¢), we obtain the following



4 STRENGTH OF MATERIALS

equations for the deflection and bending moment curves:

y = S—ﬁ%e‘ﬂ"(cos Bx + sin Bx)

= %@ ¢7%*(cos Bx + sin Bx), (3)
P . '
cTE= 4_66—4%(5111 Bx — cos Bx). (4)

Both expressions ( 3) and (4) have, when plotted, a wave
form with gradually diminishing amplitudes. The length 2 of
these waves is given by the period of the functions cos 8x and

sin Bx, i.e.,
2 oy (BT ©

To simplify the determination of the deflection, the bending
moment, and the shearing force the numerical table below is
given, in which the following notations are used:

¢ = e7%*(cos Bx + sin Bx);

¥ = — ¢ (sin Bx — cos Bx); (6)

0 = ¢7b cos Bx; § = e sin Bx

In Fig. 2 the functions ¢ and ¥ are shown graphically.

/¢
T

90 /I' 2/4> ”\#ﬂ—
AN

08 /

Lo

AN

Fic. 2.
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TaeLe 1. Funcrions ¢, ¥, 8 AND {
) | ¥ 6 ‘ e I Bx ¢ v ¢ ¢
0000 0000 0000 6 | —0.0366 | —o.0124 | —0.0245 | —0.0121
' . 1. o 3 - 2
y ’cl>.8100 0.9003 0.0903 | 3.7 | —0.0341 | —0.0079 O.Oilo _.Z Zg;
0'9203 0.6398 | o0.8024 0.1627 | 3.8 | —0.0314 | —0.0040 —0.0177 —o.ouo
:.3227 0.4888 | ©.7077 0.2189 | 3.9 —0.0282 —:x; :Z.lez) _020139
' .356 0.6174 0.2610 | 4.0 | —0.025 . o o013
o'gzs‘: 2 gil‘; 0.5323 0.2908 | 4.1 | —0.0231 | 0.0040 | —0.009§ _z Zigl
:‘ 628 0.1431 0.4530 0.309g | 4.2 | —o.0204 0.0057 :2.227: _020125
0:2997 0.0599 0.3798 0.3199 | 4.3 —o.or;? Z.zo;;c; _O:oogg oo
—0.00 0.3131 0.3223 | 4.4 | —o.01 . - —oon
zi;i: —0.062; 0.2527 0.3185 | 4.5 | —o.0132 o.oogs _2.233 _2‘2120
‘ - .1988 0.3096 | 4.6 | —o.o111 0.0089 .
o T o —0.0092 | ©0.0090 | 0.0001 | —0.c091
6 | —o.1 0.1510 0.2967 | 4.7 .009 oot
:4;79 —o. 1;52 0.1091 0.2807 | 4.8 | —0.0075 0.0089 o.zcln _c°> 2273
0.3395’5 —o0.1897 | 0.0729 0.2626 | 4.9 | —0.0059 | ©.0087 0.0014 —0.0065
0'2849 —0.2011 0.0419 0.2430 | 5.0 | —0.0046 0.0024 2.0029 - 0:0057
0'9.384 —0.2068 | 0.0158 0.2226 | 5.1 [ —0.0033| 0.0 ? o.oozg oot
: . —o. 0.007 . —o.
—0.20 —0.0059 0.2018 | 5.2 0.0023 o004
Zi?ég —o.zoZ —0.0235 0.1812 | 5.3 | —o.0014 o.oogg 2.228 __Z zz;s
0:1234 —0.1985 | —0.0376 0.1610 | 5.4 | —o.0006 | ©.00 ; o.ooag —0:0029
0.0932 | —0.18g9 | —0.0484 0.1415 | 5.5 0.0000 o.oo52 0.0029 g
0.0667 | —0.1794 | —0.0563 o.1230 | 5.6 0.000§ o.0056 0.0028 oo
0.0439 | —0.1675 | —0.0618 o.1057 | 5.7 0.00I0 |  ©0.004 0.0027 oo
0.0244 | —0.1548 | —0.0652 0.0895 | 5.8 0.0013 o.oo4é 0.0026 oo
0.0080 | —0.1416 | —0.0668 0.0748 | 5.9 0.0015§ 0.003 .002 ot
—0.0056 | —0.1282 | —0.0669 0.0613 | 6.0 0.0017 o.oogé o. 2‘; oo
—020166 —0.1149 [ —0.0658 0.0492 | 6.1 0.0018 o.ooz2 2.2220 —O:oooz
—0.02§4 | —o.1019 | —0.0636 | ©0.0383 | 6.2 0.0019 o.ooa.8 0.0018 g
—0.0320 | —0.089% | —0.0608 0.0287 | 6.3 0.0019 | ©0.001 0.0017 o
—0.0369 | —0.0777 | —0.0573 20204 | 6.4 0.0018 | o0.001§ O.OOI A o
—0.0403 | —0.0666 | —0.0534 | 0.0132 | 6.5 0.0018 | o©0.0012 0.0013 o000
—0.0423 | —0.0563 | —0.0493 o.0070 | 6.6 0.0017 o.ooog O.OOI : 0:0008
—0.0431 | —0.0469 | —0.0450 o.0019 | 6.7 0.0016 | ©0.000 O.OOIO o000
—0.0431 | —0.0383 | —0.0407 | —0.0024 | 6.8 0.001% o.ooo‘; 0.0008 20008
—0.0422 | —0.0306 | —0.0364 | —0.0058 | 6.9 0.0014 o.xl o:ooo7 0:0%08
—0.0408 | —0.0237 | —0.0323 | —0.0085 | 7.0 0.0013 o.
—0.0389 | —0.0177 | —0.0283 | —0.0106
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Using the notation (6) and equations (d)—(f) we obtain

Pg d Pg ]
y = g e(Bx), d—fc = - 75 ¢(8x),
2y P
M= = ELGS =50, )
Ve P
V= — Elzay3 = =0, |

By using these equations together with table I, the deflection,
the slope, the bending moment, and the shearing force for any
cross section of the beam can be readily calculated. The
maximum deflection and maximum bending moment occur
at the origin and are, respectively,

5= (Moo = 17, ®)
M=WM=§- )

Using the expressicn (3) for a single load and the principle of
superposition, the deflection produced in an infinitely long
beam on an elastic foundation by any other type of loading
can be readily obtained. *

x dx

As an example let us consider the case of
a uniform load distributed over a length / of

apga an infinitely long beam (Fig. 3). Consider
— any point A4, and let ¢ and 4 represent the dis-
Fro. 3 tances from this point to the ends of the

loaded part of the beam. The deflection at 4,
produced by an element gdx of the load, is obtained by substi-
tuting gdx for P in eq. (3), which gives

gdx
88EL.

¢ (cos Bx + sin Bx).

The deflection produced at A by the loading distributed over the

PROBLEMS IN BENDING OF BEAMS 7

- length / then becomes

. . . |
y= f 869;1;[ e‘ﬂr(cos Bx -+ sin Bx) +f 85351 b’_ﬂz(cos Bx + sin Bx)
0 £ 0 z

= :——/; (2 — e cos 86 — e cos Be).  (g)
If ¢ and 4 ére large, the values ¢ and ¢#° will be small and the
deflection (g) will be equal approximately to g/, i.e., at points remote
from the ends of the loaded part of the bar the bending of the bar

_can be neglected and it can be assumed that the uniform loading ¢

is directly transmitted to the elastic foundation. Taking the point
A at the end of the loaded part of the bar, we have ¢ = o, 4 =/,
¢ cos fc = 1. Assuming that /is large, we have also ¢=# cos g4

~ =o. Then y = g/2k; ie., the deflection now has only one half

of the value obtained above.

In a similar manner, by using equation (4), the expression for
bending moment at 4 can be derived. If the point 4 is taken
outside of the loaded portion of the beam and if the quantities
b and ¢ represent, respectively, the larger and the smaller distances
from this point to the ends of the loaded part of the beam, the
deflection at A is

I
Y= )y KL

eb= (cos Bx + sin Bx)

— fcggfg] e #= (cos Bx + sin fx)
0 z

- 2113 (¢7#° cos Bc — ¢~ cos B88). (k)

When ¢ =0 and 6=171is a
large quantity, we obtain for M, ‘
the deflection the value g/2%, // MW o)
which coincides with our prev-
ious conclusion. As the dis- P
tances 4 and ¢ increase, the s )
deflection (%) decreases, ap- (3
proaching zero as & and ¢ grow W/ ////47/4 ()
larger. e

The case of a couple acting Fie. 4.
on an infinitely long beam, Fig.
44, can also be analyzed by using the solution (3) for a single load.
The action of the couple is equivalent to that of the two forces P
shown in Fig. 44, if Pe approaches M, while ¢ approaches zero.
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Using the first of equations (7), we find the deflection at a distance
x from the origin:

pp
y =5z te(Bx) — o[Blx + o)1}

_ M8 o(Bx) — e[Bx+ )] Mde

Since, from equations (7),

we obtain for the deflection curve produced by the couple M, the
following equation:

y= M,:'SZ ¢(Bx)- (10)
By differentiating this equation, we obtain
DBy e,
M= — Elz% = —A?B(Bx), (10")
V= — Elz% == @ o(B8x).

Using these equations together with Table 1, one can readily calcu-
late the deflection, the slope, the bending moment, and the shearing
force for any cross section of the beam.

We shall now consider the case of several loads acting on a
beam. Asan example bending of a rail produced by wheel-pressures
of a locomotive will be discussed. The following method of ana-
lyzing stresses in rails is based upon ‘the assumption that there
is a continuous elastic support under the rail. This assumption is
a good approximation,* since the distance between the ties is small
in comparison to the wave length a of the deflection curve, given
by eq. (5). In order to obtain the magnitude £ of the modulus
of foundation, the load required to depress one tie unit distance
must be divided by the tie spacing. It is assumed that the tie is
symmetrically loaded by two loads corresponding to the rail pres-
sures. Suppose, for instance, that the tie is depressed 0.3 inch
under each of the two loads of 10,000 pounds and that the tie
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‘spacing s 22 inches; then

10,000

— m = 1,500 lbs. per square inch.

For the case of a single wheel load P, egs. (8) and (9) are used

for the maximum deflection and maximum bending moment. The
maximum stress due to the bending of the rail will be

Mmax P _P_ 4 4EIZ

Omax = 7 _46Z_4Z P (l)

where Z denotes the section modulus of the rail.’

In order to compare stresses in rails the cross sections of which
are geometrically similar, eq. () may be put in the following form:

P 4AVI, {/ZE )
Omax = 2' 4Z k > J
in which 4 is the area of the cross section of the rail. Since the
second factor on the right side of eq. (j) remains constant for
geometrically similar cross sections and since the third factor does
not depend on the dimensions of the rail, the maximum stress 1s
inversely proportional to the area of the cross section, i.e., inversely
proportional to the weight of the rail per unit length. o
An approximate value of the maximum pressure Rmax ON a ti€ 18
obtained by multiplying the maximum depression by the tie spacing
/ and by the modulus of the foundation. From eq. (8)

Pg Pgl P 4 ki

Ruwx =3tk = =~ =3 NGEL

*)

It may be seen from this that the pressure on the tie depends prin-
cipally on the tie spacing /. It should be noted also that & occurs
in both eqs. () and (k) as a fourth root. Hence an error in the
determination of % will introduce a much smaller error in the
magnitude of omax and Ruax.

1See author’s paper on “Strength of Rails,” Transactions of the
Institute of Way of Communications, St. Petersburg, Russia (1915),
and author’s paper in Proc. of the Second International Congress for
Applied Mechanics, Ziirich, 1926.  See also reference 2.

5 In writing eq. ({) it was assumed that the elementary beam formula
can be used at the cross section where the load P is applied. More
detailed investigations show that, due to local stresses, considerable
deviation from the elementary eq. (i) should be expected.
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When several loads are acting on the rail, the method of super-
position must be used. To illustrate the method of calculation we
shall discuss a numerical example. Consider a 100-lb. rail section
with I, = 44 in.* and with a tie spacing such that # = 1,500 lbs.
per sq. in.; then from eq. (2)

4 k 4 1,500 1.
B = = 5 = in."
4EI, 4 X 30 X 10° X 44 43-3

and from eq. (5)

a =— = 272 in,

2
B8
We take, as an example, a system of four equal wheel loads, 66
inches apart. If we fix the origin of coordinates at the point of
contact of the first wheel, the values of 8x for other wheels will be
those in the table 2 below. The corresponding values of functions
¢ and ¢ taken from the numerical table on p. g are also given.

TaBLE 2
Loads I 2 3 4
B o L52 3.05 4.57
Ve I —0.207 —0.031 0.008
P 1 0.230 —0.042 —o0.012

Now, after superposing the effects of all the four loads acting on the
rail, the bending moment under the first wheel is, from eq. (4),

P P
M, = T (1 — 0.207 — 0.0§1 + 0.008) = 75 5>

i.e., the bending moment is 25 per cent less than that produced by
a single load P.

Proceeding in the same manner for the point of contact of the
second wheel we obtain *

4

It may be seen that due to the action of adjacent wheels the bending
moment under the second wheel is much smaller than under the
first. This fact was proved by numerous experimental measure-

M, = %(1 -2 X o.zo*) — 0.051) = o.535§.

ments of track stresses. Using eq. (3) and the values in the last °
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- jine of the numerical table 2, we find the following deflection under

the first wneel:

P
8 = {)—2(1 + 0.230 — 0.042 — 0.012) = 1.18 —2{-

The deflections at other points can be obtained in a similar manner.
It will be seen that the method of superposition is easily applied
to determine the effect of a combination of loads having any arrange-
ment and any spacing.
The analysis is based on the assumption that the rail support

" is capable of developing negative reactions. Since there is play

between the rail and the spikes, there is little resistance to the
upward movement of the rail and this tends to increase the bending
moment in the rail under the first and the Jast wheels. Other
elements enter into the problem and these may affect the accuracy
of the analysis. Nevertheless, in general, the above theory for the
bending of the rail, caused by static loading, is in satisfactory
agreement with the experiments which have been made.

Problems

1. Using the information given in Table 2, construct the bending
moment diagram for the rail assuming that the wheel pressures are
equal to 40,000 Ibs.  Such a diagram should show that the moments
are negative in sections midway between the wheels, which indi-
cates that during locomotive motion the rail is submitted to the

-action of reversal of bending stresses which may finally result in

fatigue cracks.
2. Find the bending moment at the middle of the loaded portion

of the beam shown in Fig. 3 and

the slope of the deflection curve

at the left end of the same portion.
3. Find the deflection at any %

point 4 under the triangular load

acting on an infinitely long beam I

on elastic foundation, Fig. 3. i/ 7 A2 E /ﬁ

Answer. Proceeding as in the — ¢ b
derivation of equation (g), p. 7, i
we obtain Yia. 3.

y = f{i«%[‘//(ﬁc) — ¥(85) — 28/6(85) + a8¢].
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2. The Semi-infinite Beam on an Elastic Foundation.—If a
long beam on an elastic foundation is bent by a force P and a mo-
ment M, applied at the end as shown in Fig. 6, we again can use the

general solution (4) of the preceding article.
(\Ma‘ Since the deflection and the bending moment

7 7 ¥ approach zero as the distance x from the loaded
end increases, we must take 4 = B =0 in
4 that solution and we obtain
Fic. 6.
= ¢#2(C cos Bx + D sin Bx). a)
Y

For determining the constants of integration C and D we have the
conditions at the origin, i.e., under the load P:

d%y
EI, (dx2 >z=0 = — M,
dty
El“(dxi*)x:o_ — V=P

Substituting expression (2) in these equations, we obtain two linear
equations in C and D, from which

__1_ M
C=opEr, P — M) D= gpr-
Substituting in equation (), we obtain
—Bz
y = aéﬁ[l) cos Bx — BMy(cos Bx — sin Bx) ]

= 2 Paisr) — BMLL0(x) — £(8)]). (1)

To get the deflection under the load we must substitute in (11)
x = o. Then

5= (3)sm0 = ﬁ(l) — BMy). (11")

The expression for the slope is obtained by differentiating eq. (11).
At the end (¥ = o) this becomes

dy I

Using these equations in conjunction with the principle of super-
position, more complicated problems can be solved.
If a uniformly loaded long beam on an elastic foundation has a
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- moly supported end, Fig. 74, the reaction R is found from the
zgﬁgizon It)lll)a.t the deﬂectiogn at the support is zero. Observing that
at a large distance from  the
support bending of the beam
is negligible and that its de- o

ression into the foundation can @& AN

be taken equal to ¢/k, we cal- * /k\\\\\\\\\\\\\\\ﬁ
culate the value of R by sub- t
stituting Mo = o and & = g/k
into equation (11"). This yields
the result:

R

a
¥

R=29EL-1=2. (13

k28 |

|

" The deflection curve is now |v
obtained by subtracting de- Fc. 7.

flections given by equation (1i) '
f::ll;): %, M, —_)_’ oqfrom the uniform depression g/k of the beam,

which gives
_q1_
Y =k 2pEL

In the case of a built-in end, Fig. 74, the magnitudes of the

R cos Bx = % (1 — e cos Bx). (14)

- reaction R and of the moment M are obtained from the conditions

that at the support the deflection and the slope are zero. Observing
that at a large distance from the support the deflection is equal to
g/k and using equations (I1) and (12), we obtain the following
equations for calculating R and Mo: °®

I

q9_ _ 1 _
—5= 263EL(R + BMy)
and
I
o= W(R + 28Mo),
from which
M, = —oELL,  R= #°ELL = g- (15)

The minus sign of M, indicates that the moment has the direction
shown by the arrow in Fig. 74.

¢In equations (11") and (12), P = — R is substituted, since the
positive direction for the reaction is taken upwards.
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Problems

1. Find the deflection curve for a semi-infinite beam on an

elastic foundation hinged at the end and acted upon by a couple
Mo, Flg 8.

NN, Solution. The reaction at the

%\\\\\\\ } * hinge is obtained from equation
P

(11) substituting § = o, which gives

Fie. 8. P = gM,.
Substituting this value of 2 in equation (11) we obtain
M ) M
y = m—ZEO—]—ze‘ﬁ’ sin By = 262];]2{(&). (16)
By subsequent differentiation, we find
d 2331 I
ﬁ = P 0¢(Bx)’
dy
M= — EL %= My6Bx), ¢ @)
dy
V= - Elzd—;;g = — BMy- o(Bx).

J

2. Find the bending moment M, and the force P acting on the
end of a semi-infinite beam on an elastic foundation, Fig. g, if the
deflection & and the slope 7 at the end are given.

eI
p
ly

Fic. 9.

v
X

Solution. The values M, and P are obtained from equations
(11') and (12) by substituting the given quantities for & and
(dydx)eeo = i. .

3. Find the deflection curve for a semi-infinite beam on an
elastic foundation produced by a load P applied at a distance ¢
from the free end A of the beam, Fig. 10.
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Solution. Assume that the beam is extended to the left of the
end A as shown by the dotted line. In such a case equation (3)
gives the deflection curve for x > o

and at the cross section A of the e—+p
fictitious infinite beam we have, /a M o
from equations (7), using the —‘(\—r x
condition of symmetry: VI 4(") |

P P y

= — , =—0(Bc). (c)

FV6, V=" o)
To obtain the required deflection 6\ ) —x
curve for the semi-infinite beam, 1'/‘:_» ////4 .
free at the end 4, we evidently ()
must superpose the deflection of y
the semi-infinite beam produced Fic. 10.

by forces shown in Fig. 104 on .
the deflection of the fictitious infinite beam. By using equations
(3), (11) and (c) in this way we obtain for ¥ > o:

P 2

3 =2 o) + 2L {vaLaee + )]

k
+ BMO[B(x + )] — BM([B(x + )1} ()
=2 o0 + L osetees + 07
+ WENTB( + T ~ WERTBC + ).

This expression can also be used for — ¢ < » < 0; in this case we
have only to substitute the absolute value of x, instead of #, in ¢(8x).

3. Beams of Finite Length on Elastic Foundations.—Bending
of a beam of finite length on an elastic foundation can also be inves-
tigated by using solution (3) for an infinitely long beam together
with the method of superposition.” To illustrate the method let
us consider the case of a beam of finite length with free ends which
is loaded by two symmetrically applied forces P, Fig. 112. A simi-
lar condition exists in the case of a tie under the action of rail
pressures To each of the three portions of the beam the general

"This method of analysis was developed by M. Hetényi, Final
Report of the Second Congress of the International Assoc. f. Bridge and
Structural Engineering, Berlin, 1938.
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solution (%) of article 1 can be applied, and the constants of inte-
gration can be calculated from the conditions at the ends and at
the points of application of the loads. The required solution can,
however, be obtained much more easily by superposing the solutions

for the two kinds of loading of an infinitely long beam shown in
figs. 116 and 11c. In Fig. 114 the two forces P are acting on

e S S N
7 (// 7
) lP Pl lB

{// //I 4{& '

ol ot

W{L /z /j//4 3) ‘

ly

Fre. 11.

the infinitely long beam. In Fig. 11c the infinitely long beam is
loaded by forces Qo and moments M,, both applied outside of the
portion 4B of the beam and infinitely close to points 4 and B
corresponding to the free ends of the given beam, Fig. 114. It is
easy to see that by a proper selection of the forces Qo and the
moments Mo, the bending moment and the shearing force produced
by the forces P at the cross sections 4 and B of the infinite beam
(shown in Fig. 114) can be made to equal zero. Then the middle

portion of the infinite beam will be evidently in the same condition
- as the finite beam represented in Fig. 114, and all necessary infor-

mation regarding bending of the latter beam will be obtained by -

superposing the cases shown in Figs. 114 and 11c. To establish
the equations for determining the proper values of M, and Q,, let
us consider the cross section 4 of the infinitely long beam. Taking
the origin of the coordinates at this point and using equations (7),
the bending moment M’ and the shearing force 7’ produced at this
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point by the two forces P, Fig. 114, are

=L st - o1+ 98,
48 @

7 = L iotse - o + oLac).

The moment M"" and the shearing force /"’ produced at the same

point by the forces shown in Fig. 11c are pbtal.ned by using equa-

tions (7) together with equations (10'), which give

M,
=20 g+ 500+ 06D)
4B 2 y ®)
pr = = B0 a1 - S0 - w6
The proper values of Moand Qo are now obtained from the equations
M+ M=o, ”
v+ V" =o,

i readily solved in each particular case by using Table 1.
Whl(é})lni::::nlll)z) and }éo are known, ItJhe deflection and the bending
moment at any cross section of p ’
the actual beam, Fig. 114, can be 1
obtained by using equations (7), A4

(10) and (10’) together with the r/‘_x W);;

x

method of superposition. The
particular case shown in Fig. 12
is obtained from our previous Fic. 12.

discussion by taking ¢ =o. . )
Proceeding as previously explained we obtain for the deflections
at the ends and at the middle the following expressions:

2 PB cosh B/ + cos B/

=gy = T 2 )]
Ja = b k sinh g/ + sin B/
pr B

ﬁf_ﬁ_ cosh 5 €S . ©

Ye = "% sinh Bl + sin p/

The bending moment at the middle is

.. Bl . B

AP sinh S siny
M, = — ————5"""- w

¢ 8 sinh / + sin g/
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The case of a single load
%——13 at the middle, Fig. 13, can

x also be obtained from our
W /%’Z? previous case, shown in Fig.
| i1a. It is only necessary to
y take ¢ = //2 and to substitute
Fic. 13. P for 2P. In this way we
obtain for the deflections at
the middle and at the ends the following expressions:

1
|
0“0

™~

gl Bl
cosh = cos —
Yo =¥ = T} sinh p/ + sin pI° £
_ _]_’Ecosh Bl + cos Bl + 2 ®*)
Ye= 3% sinh g/ +sin g/
For the bending moment under the load we find
P cosh B/ — cos B/ )
#)

M. = Ginh gl + sin Bl
P

Afc4 Pkcﬂb
W/////l// 20

(@)
"
A 8 X

r////////"/ 7w

a e
Mo\l

W]y////// Z (%fi @

Fic. 14.

The method used for the symmetrical case shown in Fig. 112 can
be applied also in the anti-symmetrical case shown in Fig. 144.
Qo and M, in this case will also represent an anti-symmetrical
system as shown in Fig. 14c. For the determination of the proper
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values of Qy and Mo, the system of equations similar to equations
(), () and (¢) can be readily written. As soon as 0o and M, are
calculated, all necessary information regarding the bending of the
beam shown in Fig. 144 can be obtained by superposing the cases
shown in Figures 144 and 14¢.

Having the solutions for the symmetrical and for the anti-
symmetrical loading of a beam, we can readily obtain the solution
for any kind of loading by using the principle of superposition.
For example, the solution of the unsymmetrical case shown in
Fig. 154 is obtained by superposing the solutions of the symmetrical
and the anti-symmetrical cases shown in Figs. 156 and 15¢c. The

4 W

7 A v m L

(el 2% 7 v
| 2z
i LA e ki o

7/:’? // /‘ 77 h” A

/
| | %
+ A
| ‘E 2 . jrl T 7 ‘/
W 7 YA Y |17,
Y () 1
Fic. 13. Fic. 16.

problem shown in Fig. 16 can be treated in the same manner. In
each case the problem is reduced to the determination of the proper
values of the f.orces Qo and moments M, from the two equations ().

In discussing the bending of beams of finite length we note that
the action of forces applied at one end of the beam on the deflection
at the other end depends on the magnitude of the quantity B/

- This quantity increases with the increase of the length of the beam.

At the same time, as may be seen from Table 1, the functions ¢, ¥
and 6 are rapidly decreasing, and beyond a certain value of B/ we
can assume that the force acting at one end of the beam has only a
negligible effect at the other end. This justifies our considering the
beam as an infinitely long one. In such a case the quantities
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o8, ¥(8]) and 8(8/) can be neglected in comparison with unity in /

equations (8); by so doing equations (c) are considerably simplified.
In general, a discussion of the bending of beams of a finite
length falls naturally into the three groups:

1. Short beams, 8/ < 0.60.
II. Beams of medium length, o.60 < B/ < 3.
IT1. Long beams, g/ > §.

In discussing beams of the first group we can entirely neglect bend-
ing and consider these beams as absolutely rigid, since the deflection
due to bending is usually negligibly small in comparison with the
deflection of the foundation. Taking, for example, the case of a
load at the middle, Fig. 13, and assuming 8/ = o.60, we find from
the formulas given above for y, and y. that the difference between
the deflection at the middle and the deflection at the end is only
about one-half of one per cent of the total deflection.  This indicates
that the deflection of the foundation is obtained with a very good
accuracy by treating the beam as infinitely rigid and by using for
the deflection the formula
P

kl

The characteristic of beams of the second group is that a force

acting on one end of the beam produces a considerable effect at the .

other end. Thus such beams must be treated as beams of finite
length.

In the case of beams of the third group we can assume, in
investigating one end of the beam, that the other end is infinitely
far away. Hence the beam can be considered as infinitely long.

In our previous discussion it was always assumed that the beam
was supported by a continuous elastic foundation but the results
obtained can also be applied when the beam is supported by a large
number of equidistant elastic supports. As an example of this
kind, let us consider a horizontal beam 4B, Fig. 17, supporting a
system of equidistant vertical beams which are carrying a uniformly
distributed load ¢.8 All beams are simply supported at the ends.
Denoting by EI; and /i the flexural rigidity and the length of
vertical beams, we find the deflection at their middle to be

Y = [ EL T 8EL’ &)

8 Various problems of this kind are encountered in ship structures.
A very complete discussion of such problems is given by I. G. Boobnov
in his “Theory of Structure of Ships,” vol. 2, 1914, S. Petersburg.
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where R is the pressure on the horizontal beam 4B of the vertical
beam under consideration. Solving equation () for R we find that
the horizontal beam 4B is under the action of a concentrated force
Fig. 17¢, the magnitude of which is ’

_5 48ET,
R=ggh =5 (k)

Assuming that the distance ¢ between the vertical beams is small in
comparison with the length / of the horizontal beam and replacing
the concentrated forces by the equivalent uniform load, as shown
in Fig. 17¢, we also replace the stepwise load distribution, indicated

y o AL
1 ra—
-~ -
A g1, £ R
=
R PR e
T/ ]
i . @Y ()
N o
I e JJI l
T
AT s
” T ‘ 1 74
2 | z ©
y
Fre. 17.

in the figure by the dotted lines, by a continuous load distribution
of the intensity

— k
where n 4
qll 48E11
; ko= i )

'tll‘lhe c.iiﬁ*'erential equation of the deflection curve for the beam A8~
en is

7=

o0

a

Y
E]% = g1 — ky. (m)

. Itis seen that the horizontal beam is in the condition of a uniformly
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loaded beam on an elastic foundation. The intensity of the load
and the modulus of foundation are given by the expressions (/).
In discussing the deflection of the beam we can use the method of
superposition previously explained or we can directly integrate
equation (m). Using the latter method, we may write the general
integral of the equation () in the following form:

y = % + Cy sin Bx sinh Bx + C; sin Bx cosh Bx } ()
4+ C; cos Bx sinh Bx + C. cos Bx cosh Bx.

Taking the origin of the coordinates at the middle, Fig. 17¢, we
conclude from the condition of symmetry that

C2=C3=O.

Substituting this in the solution (#) and using the conditions at the
simply supported ends:

d%y
(P)e=t2 = 0, (ﬁ)mm = 0o,

we find
. Bl . 8!
2 sin — sinh —
R i
'™ kcos Bl + cosh g/’
B 8l
2 cos cosh B
C4 = 91

~ k cos B! + cosh B/°
The deflection curve then is
B/ B/

p |: 2 sin *2‘ sinh ;
1 . .
N B/ + cosh g/ sin fx sinh fx

B!

8/
2 cos cosh o
— m cos Bx cosh Bx | . (o)

The deflection at the middle is obtained by taking x = o which

gives )
g( - 2cos%lcosh€-l)
1
(e = F\' cos B/ + cosh g/ /)’ ?)
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Substituting this value in equation (k), we find the reaction at the
middle support of the vertical beam, which intersects the beam 4B
at its mid-point. It is interesting to note that this reaction may
become negative, which indicates that the horizontal beam actually
supports the vertical beams only if it is sufficiently rigid; otherwise
it may actually increase the bending of some of the vertical beams.

Problems

1. Find a general expression for the deflection curve for the
case illustrated in Fig. 12.
Answer.

_ ﬂ?cosh Bx cos B/ — x) + cosh B(/ — x) cos Bx
YTk sinh B + sin B/ '

2. Find the deflections at the ends and the bending moment at
the middle of the beam bent by two equal and opposite couples
Mo, Flg 18.

P
M,
A c BN °, A 8
77777777 7777\
; Nt ——
Fic. 18. Fic. 19.
Answer.

o 2MyB? sinh B/ — sin 8/
Ja = = k  sinh g/ + sin g/’

B! Bl . Bl

. Bl .
sinh — cos — + cosh—sin—
2 2 2 2

M. = 2My sinh 8/ 4+ sin 8/

3. Find the deflection and the bending moment at the middle of
the beam with hinged ends and on an elastic foundation, the load
being applied at the middle of the beam, Fig. 19.

Answer.

_ps sinh g/ — sin B8/
Yo = 0k cosh B/ + cos B!’
__ P sinh g/ 4 sin g/

© 7 48 cosh B/ + cos B/
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4. Find the deflection and the bending moment at the middle of ’

the uniformly loaded beam with hinged ends on an elastic founda-
tion, Fig. 20.
Answer.

2 cosh ﬁ—lcos @_l }
2 2

_9 L
yc_/e{l cosh 8/ + cos 8/ §°
smhésinﬁ—l
2

_ 9 0z 2z
M, = 2482 cosh B8/ + cos B/

5. Find the bending moments at the ends of the beam with

built-in ends and on an elastic foundation. The beam is carrying
a uniform load and a load at the middle, Fig. 21.

i P |

QLI 9 CIIIHIIHMHIHI Q

N ’ ", N,
3 N
Fic. 20. Fic. 21.
Answer.
inhésinﬂ—/
v P T2 s g sinh gl —singl

‘Bsinh 8/ + sin B~ 28sinh B/ + sin B

6. Find the deflection curve for the beam on an elastic founda-
tion with the load applied at one end, Fig. 22.

P
M
! L x
? : 44 A\ 7
y L y
Fic. 22. Fic. 23.
Answer.

_ 2PB
Y = k(sinhZ B — sin BI)

[sinh B/ cos Bx cosh B(/ — x)
— sin B8/ cosh Bx cos B(/ — x) .

7= k(cosh? B/ — cos
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7. A beam on an elastic foundation and with hinged ends is
bent by a couple M, applied at the end, Fig. 23.  Find the deflection
curve of the beam.

Answer.

Q.MQB?'

T80 [cosh 8/ sin Bx sinh B(/ — x)
— cos B/ sinh Bx sin (7 — x) .
4. Combined Direct Compression and Lateral Load.—
Let us begin with the simple problem of a strut with hinged

ends, loaded by a single force P, and centrally compressed by
two equal and opposite forces §, Fig. 24. Assuming that the

S A P B O

ey’

Fic. 24.

—_—X

force P acts in one of the principal planes of the strut, we
see that the bending proceeds in the same plane. The differ-
ential equations of the deflection curve for the two portions
of the strut are:

4 P
Eld{— —Sy—-l—cx, (a)
4 P(l —
Eldy2 — Sy — »-(—1—‘—)(1 — x). (%)
Using the notation
S
= = P (17)

we represent the solutions of the equations (4) and (&) in the
following form:

y = Cycos px + Co sinpx—é—);x, ()

y = Cgcospx+C4sinpx—%ﬂ(1—x). (d)
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Since the deflections vanish at the ends of the strut, we con-
clude that

Cl = 0O,

Cs = — Cytan pl.

The remaining two constants of integration we find from the
conditions of continuity at the point of application of the load
P, which require that equations (¢) and (d) give the same
deflection and the same slope for x = / — ¢; we obtain:

Cysin p(/ — ¢) = Cu[sin p(/ — ¢) — tan plcos p(/ — )],

Cp cos p(l — ¢)
= Cip[cos p(/ — ¢) + tan p/sin p(/ — ¢)] +§’

from which

P sin pc

B _Psinp(/—t)
P Spsin pl’ )

C Sp tan p/

C4 =
Substituting in equation (¢) we obtain for the left portion of
the strut:

_ Psinpc . Pc
y ——S—psi—npzslnpx —Wx. (18)

From this, by differentiation, we find:

dy _ Psinpc _Pc

dv = Ssin pl S P¥ T %70 o
I

d’y _ Ppsinpc . 9

dx*~ ~ Ssinpl sin p.

The corresponding expressions for the right portion of the
strut are obtained by substituting (/ — x) instead of x, and

(I — ¢) instead of ¢, and by changing the sign of dy/dx ir

equations (18) and (19). These substitutions give:

P{

2 Psinpl =0 oy — sy - 22D 1 -2, (20)

Sp sin p/
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dy _ _ Psinp(/ — o) _ P — o)

e~ T Ssnpl cos p(/ — x) + — > (21)
dy _ _ Ppsinpl—0) g

Ta= Tsin pl sin p(/ — x). (22)

In a particular case, when the load P is applied at the
middle, we have ¢ = //2, and, by introducing the notation

SZ2 P2Z2 _

=L 2
4EI T 4 u (23)
we obtain from equation (18)
= _ P pl _p!
(y)max = (y):c=l/2 = ES?)(ta.n E —i—)
_ PP tanu —u (2)
48E] P

The first factor in expression (24) represents the deflection
produced by the lateral load P acting alone. The second
factor indicates in what proportion the deflection produced
by P is magnified by the axial compressive force S. When §
is small in comparison with Euler load (S. = EIx?//?), the
quantity # is small and the second factor in equation (24)
approaches unity, which indicates that under this condition
the effect on the deflection of the axial compressive force is
negligible. When § approaches the Euler value, the quantity
u approaches the value 7/2 (see eq. 23) and the second factor
in expression (24) increases indefinitely, as should be expected
from our previous discussion of critical load (see p. 244,
Part I).

The maximum value of the bending moment is under the
load and its value is obtained from the second of equations

(19), and

& P / Pl tan
Mpoe = — a’y = FTEP (Pt _ £4 tana
EJ(M)M2 B K eank = 22 B2 (ag)

Again we see that the first factor in expression (25) represents
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the bending moment produced by the load P acting alone, \

while the second factor is the magnification factor representing
the action of the axial force § on the maximum bending
moment.

Having solved the problem for one lateral load P, Fig. 24,
we can readily obtain the solution for the case of a strut bend
by a couple applied at the end, Fig. 25. It is only necessary

FiG. 25.

to assume that in our previous discussion the distance ¢ 1s
indefinitely diminishing approaching zero, while Pc remains a
constant equal to M,. Substituting Pc = M, and sin kc = k¢
in equation (18), we obtain the deflection curve:

M, (sinpx «x
| sz(sinp/—7)’ (26)
from which
dy Mofpcospx 1
EZ_JE_T(W—7)'

The slopes of the beam at the ends are
(dy> _ %( . _ £)
dx )e—o S \sinp/ [
My 1 I
T 6EI’ 6(2u sin 21 (2u)2) > (27)
dy\ _ %( ? 1)
%)mz ~ S \tanpl/ !/

My I I ) (28]
_:;E['3 2u§an2u_(2u)2 28)

Again the first factors in expressions (27) and (28) taken
with proper signs represent the slopes produced by the couple
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M, acting alone (see p. 158, Part I), and the second factors
represent the effect of the axial force §.

Considering equations (18) and (26), we see that the lateral
force P and the couple M, occur in these expressions linearly,
while the axial force § occurs in the same expressions in a
more complicated manner, since p also contains § (see eq. 17).
From this we conclude that if at point C, Fig. 24, two forces
P and Q are applied, the deflection at any point may be
obtained by superposing the deflections produced by the load
0 and the axial forces § on the deflection produced by the
load P and the same axial forces. A similar conclusion can
be reached regarding couples applied to one end of the beam.

The conclusion regarding superposition can be readily
generalized and extended to cover the case of seve al loads,
Fig. 26. For each portion of the strut an equation similar to

R

<0
v

o ~— G, —|
S S

# 7

Cs

Fic. 26.

equations (2) and (4) can be written, and a solution similar
to those in (¢) and (d) can be obtained. The constants of
integration can be found from the conditions of continuity
at the points of load application and from the conditions at
the ends of the strut. In this way it can be shown that the
deflection at any point of the strut is a linear function of the
loads Py, P, - -+ and that the deflection at any point can be
obtained by superposing the deflections produced at that
point by each of the lateral loads acting together with the
axial force §. Let us consider a general case when 7 forces
are acting and m of these forces are applied to the right of
the cross section for which we are calculating the deflection.
The expression for this deflection is obtained by using equation
(18) for the forces Pi, Pg, -+ P and equation (20) for the
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forces Pmi1, Pmis, - -+ Pn.  In this way we obtain the required
deflection:
_osinpy T e 2 P
Y = Spsinpl E‘l Pysinpes = g E; P
sin p(/ — x) = .
t Spinpl 5, Drsinpl
_ == i; Pyl — ¢). (29)
S[ i=m+1 ' v 9

If, instead of concentrated forces, there is a uniform load
of intensity ¢ acting on the strut, each element gd¢ of this

load, taken at a distance ¢ from the right end, can be con-

sidered as a concentrated force. Substituting it, instead of
P, in equation (29) and replacing summation signs by integra-
tion, we obtain the following expression for the deflection
curve:

H I~z l—r
sinpx (G e de — glf gede

Y= Spsinpl),
sinp(/—x)f’ ) _Z—xf‘
+ ~Spsmpl Jis g sin p(/— c)dc 7). q(l — c)de.
Integrating the above gives
g cos(‘z — px) g
y =< 1| — Zsx(/ — %) (30)
Sp? cosﬂ 2§
2
and
1 1?
Ymax = (_}’)z=z/2 = :S’gp;’(cos u 1-= ?)
. 2
C gl Y
_ 5 gt cosu (31)

of struts can be readily solved. W S
Taking as an example the case M,
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By d'iﬁ'erentiating equation (30), we readily obtain the ex-
pressions for the slope and for the bending moment. The
slope at the left end of the strut is

[tanﬂ

(d_y) _ g 2 _ gf tanu —u

dx ) oo 25[ o TV T nE e (%
2

The maximum bending moment is at the middle where

d2
Mma.x = - E-[(__y‘)
dx? z=1/2
p/)
I — I
=Elq< oS’y _ g7 2(1 — cosu)
p! 8 u*cosu (33)

. By using solution (26) for the case of a couple together
with solu.tion (29) for lateral loads, and applying the method of
superposition, various statically
indeterminate cases of bending

of a uniformly loaded strut
built in at one end, Fig. 27,
we find the bending moment M, at the built-in end from the
c0f1dition that this end does not rotate during bending. By
using equations (28) and (32) this condition is found to be

_gP tanu—u_l_%/ ( 3 3
24El 4P 3EI "\ 2utan2u (2u)2) - °

Fic. 27.

‘from which

2 tan 2u(tan ¥ — u)
M, = - 22 .4 “) .
0 8 u(tan 2u — 2u) (34)

.In. the case of a uniformly loaded strut with both ends
b_ullt-ln the moments M, at the ends are obtained from the
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equation:
g5 tanu—u+1_\/I_o/[ 3 3
2El  uw 3EI| 2utan 2z (2u)?

M,/ 6 6
- 6E](2u sin2u (2u)2) =9
from which -
tanu — u
M= = TEmna (35)
It is seen from expressions (34) and (35) that the values of the
statically indeterminate moments in the case of struts are
obtained by multiplying the corresponding moments calcu-
lated from the beam formulas by certain magnification factors.
All necessary calculations can be greatly simplified by using
the prepared numerical tables for determining magnification
factors.®
When the maximum bending moment for a strut is found,
the numerical stress maximum is obtained by combining the
direct stress with the maximum bending stress, which gives

§ | Muux
lalmax = Z + VA (3)

where A4 and Z are, respectively, the cross-sectional area and
the section modulus for the strut. Taking, as an example,
the case of a uniformly loaded strut with hinged ends, we
obtain from equation (33):

g2 2(1 — cos u) ‘

S
l"l’"“=2+§2' u? cos u ()

In selecting the proper cross-sectional dimensions of the
strut it is necessary to consider that the right side of the
equation (f) is not linear in § since the quantity # also de-

pends on §, as may be seen from expression (23). Owing to

this fact the maximum stress increases at a greater rate than

® Various particular cases of laterally lodded struts have been dis-
cussed by A. P. Van der Fleet, Bull. Soc. of Engineers of Ways of Com-
munication, 1goo—1903, St. Petersburg. Numerous tables of magnifi-
cation factors are given in that work. ’
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the force §. Thus the usual method for determining the
proper dimensions by taking *°

(o] = 22, (@)
where 7 is the factor of safety, fails in this case.

If the strut must be designed so that it will begin to yield
when the forces § and ¢ increase z times, the cross section
must be selected so that |¢|mas will be somewhat smaller
than o,,/# in order to satisfy the equation:

S gl 2(1 — cos uy)
Z+8~Z—' u2cos #y (%)

in which #, = nu.

It is apparent that if we proceed in this manner we satisfy
the requirement regarding the beginning of yielding; by
multiplying both sides of the equation (%) by » we find

_n§ | ngl* 2(1 — cos uy)

Tup = g 8Z  wulcosu; °’ ()

which indicates that the maximum stress reaches the yield
point stress when § and ¢ have been increased » times.
Similar procedure in the design of struts can be applied in
other cases of loading. We can conclude from the above
discussion that to ascertain a factor of safety # in the design
of struts,! we must use instead of equation (g) a modified
equation similar to equation (%), in which the parameter
is replaced by u1 = nu.

Problems

1. Find the slope at the left end of a strut with hinged ends
which is loaded at the middle by the load P.

11t is assumed that material of the strut has a proiounced yield
point.
11 This method of design of struts was developed by K. S. Zavriev,
see Memoirs of the Institute of Engineers of Ways of Communication,
1913, S. Petersburg.
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Answer.
d_y =f_l—cosu= PZZI—-cosu-
dx J.—o 28 cosu 16E] 1u?cosu

2. Find the slopes at the ends of a strut carrying a triangular

load, Fig. 28.

9o
13 S

.
p— X

F1c. 28.

l

Solution. Substituting in equation (29) gecdc//, instead of P,
and replacing summation by integration we find:

H l—z -z 2
y = SmPE qcsum’f*S;f goc®

Sp sin pl .J,
sinp(/ — x) [ qoc /- qgc _
———Sp sinpl J, smp(l ¢)de — Sl - ({ — ¢)de.

Differentiating this with respect to x, we find that

Eil — Q.Q()l
(dx)x el

y\ __ o, _
(dx)__—6p2EI(a D,

where a and 8 are functions given by expressions (36) (see p. 36).

3. Find the slopes a the ends of a strut symmetrically loaded
by two loads P, as show1in Fig. 29.

Answer.

dy > (dy ) P cos pb
=) =—-(=) = 1)
dx )z ax Jz=t pl

4. A strut with built-in ends is loaded as shown in Fig. 29.
Find the bending moments, M,, at the ends.

and
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Solution. 'The moments M, are found from the conditions that
the ends of the strut do not rotate. By using the answer of the

P2 1p
S S
A )
<-,c~—] L ¢+
1
y
Fic. 29.

preceding problem and also equations (27) and (28), the following
equation for calculating M, is obtained:

M/ M/ P [ cospb
6Er® T3EIP T ( 2~ ‘)'“‘0’
cos

from which

M, = _2PEI u (cospb_l).

S/ tanu\ cosu

If = o, we obtain the case of a load 2P concentrated at the middle.

n ) nol
n':
h—l ey

lnl

(@ < 7;> (&)

F1c. 30.

5. Continuous Struts.—In the case of a continuous strut we
proceed as in the case of continuous beams (see p. 201, Part I)
and consider two adjacent spans, Fig. 3o.* Using equatlons (23),
(27), and (28) and introducing notations for the nth span:

Sals?
4EI,’

2 The theory is due to H. Zimmermann, Sitzungsb., Akad. Wiss.,
Betlin, 1907 and 1909.

Uy =
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6 1 I ]
On = 2w, sin 2un  (2un)? )’ (36)
I i
Bn =3 [ (2un)?  2u, tan zu,.] ’
o = (37

3lUn
We conclude that the slope at the right end of the #th span, Fig. 304,
produced by the end moments M, and M,, is
Mnln _ Mn—lln . (ﬂ)
= Ba3ELL T *6EL,
The slope produced at the left end of the # + 1 span by the mo-
ments M, and M1 is

Mn+lln+1+ 6 Mn[n+1 .
Ot L T 3ELL

If there is no lateral load acting on the two spans under considera-
tion, the expressions () and (4) must be equal, and we obtain:

@

n ln Z'n 1
%Mn—l + 2(.37'.]%4_ 5n+1ﬁ)Mn + an+1H1;1Mn+1 = o. (38)
This is the three moment equation for a continuous strut if there
is no lateral load on the two spans under consideration.

If there is lateral load acting, the corresponding slopes produced
by this load must be added to expressions (2) and (4). Taking,
for example, the case of uniform load g» and ga1 acting on the spans
n and 7 + 1 in a downward direction, we obtain the corresponding
slopes from equation (32) and, instead of expressions () and (4),
we obtain:

M./, Mo sln Gnln® ©
~ BRIl T “GEL,  T“24EL’

Mn+lln+1 Mnln+1 9n+11n—{-13 A
Aptl 6E In+1 + ﬁn+1 3 E In+1 + Ynil _24 E 17:1 (d)
Equating these two, expressions we obtain:
In
)Mn + an-l—'ll’—HMn-H :
N n+1

_ Gnln® _ Gntbnia® )
= Yn 4In Ynt1 41n+1

wln In ln
"‘TnMn_l +2 (B"Z + Ban E

I nt+l

(39)
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This is the three moment equation for a strut with a uniform load
in each span. It is similar to the three moment equation for a
continuous beam and coincides with it when § = o and all functions
a, B, v become equal to unity.

For any other kind of lateral load we have to change only the
right side of the equation (39), which depends on the rotation of
the adjacent ends of the two spans produced by lateral loading.
Taking, for example, the case of a

trapezoidal load shown in Fig. 31 T T

and dividing the load into two parts, q,, 7 [ 1
uniform loads and triangular loads, ) Tner
we use for the uniform loads the l I
terms which we already have on = 43 net
the right side of equation (39). Fic. 31.

To these terms we must add the
terms corresponding to the triangular loads. Using the expressions
for the slopes in problem 2 of the preceding article, we find that
the two terms which we have to add to the right side of equation
(39) in the case of the load shown in Fig. 31 are:

_ (qn—l - qn)[n (a __ I) . 2(?7; - qn+l)/n+1
P2-[n " p21n+1

in which a, and .41 are defined by expressions (36). If concen-
trated forces are acting on the spans under consideration the re-

(Bn+1 - I): (6’)

‘quired expressions for the rotations are readily obtainable from the

general expression for the deflection curve (29).

The calculation of moments from the three moment equations
(39) can be considerably simplified by using numerical tables of
functions a, 8 and v.13

In the derivation of equation (39) it was assumed that the
moment M, at the nth support had the same value for both adjacent
spans. There are cases, however, in which an external moment M,?
is applied at the support as shown in Fig. 30¢; in such cases we must
distinguish between the value of the bending moment to the left and
to the right of the support. The relation between these two mo-
ments is given by the equation of statics: ¢

Mn - Mno - Mnl = O,

3 Such tables can be found in the book by A. S. Niles and J. S.
Newell, “Airplane Structures,” Vol. 2, 1938, see also writer’s book,
“Theory of Elastic Stability,” 1936.

. " The direction of M, indicated in the Fig. 3oc is taken as positive
direction for an external moment.
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from which
Mn, = Mn - Mno- (f)

Equation (39) in such a case is replaced by the following equation:

nln L ln , I,
1M+ 2B T Mo+ 2Bn+1jn—i:Mn + an+1ﬁMn+1

. qnlns _ qn+1ln+13 X
- Yn 4In Ynt1 4-]n+1 (40)

If the supports of a continuous strut are not on a straight line,
the additional terms, depending on the differences in the levels of
the three consecutive supports, must be put on the right side of
equation (39) or (40). These terms are not affected by the presence
of the axial forces, and are the same as in the case of a beam (see
p. 204, Part I).

Problems

1. Write the right side of the three moment equation if there
is a concentrated force P in the span 7z + 1 at a distance ¢p41 from

the support # 4 1.

Answer.

_6PE ( Sin PapiCatr f"_“) ___¢6p (sin Prtibnir %) .
?

sin Pr+1 Jnt1 Zn+1 sin Prtr L1 ln+l

Snt1 o1l nyt

2. Write the right side of the three moment equation if the nth
span is loaded as shown in Fig. 29, p. 35, and if there is no load

on span # + I.
Answer. Using the solution of problem 3, p. 34, we obtain the

following expression:

__6PE [ cos pabn o - 6P [ cos pubn \.
S cos 2 7;[" pols cos 2 ';l"
s —
111101
(N S ¢

Fic. 32.
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3. Find the right side of the three moment equation if the load
is as shown in Fig. 32.

Answer.
_ 6¢» COS Prby 5
'nzjn . " )
? o Prln )
2

6. Tie-Rod with Lateral Loading.—If a tie-rod is sub-
mitted to the action of tensile forces § and a lateral load P,
Fig. 33, we can write the differential equation of the deflection

P
"—‘—5 ’\__/‘—-6 —_— X
¢ —
1 ————
y

Fia. 33.

curve for each portion of the rod in exactly the same manner
as we did for a strut, Art. 4. It is only necessary to change
the sign of §. In such a case instead of quantities p? and #2
defined by expressions (17) and (23), respectively, we shall
have — p? and — #?, and instead of p and « we shall have

PV—1 = piand uN— 1 = ui. Substituting — §, p7, and ui

1n the: place of §, p and # in the formulas obtained for the
strut in Fig. 24, we obtain necessary formulas for the tie-rod

in Flg 33. In making this substitution we use the known
relations:

sin i = isinh #, cosui = cosh u, tanui = i tanh x.

Ir_l this way we obtain for the left portion of the tie-rod in
Fig. 33, from equations (18) and (19):

Psinh pc . Pc
y = _‘—Sp sinh};/ sinh px +—§1-x, (41)

d_}’ _ P sinh pc Pc
dx = T Ssinh p7 COshpx + g7,
d’  Ppsinh pc . ,(42)
dx? = - S sinh_p—/ smh px.
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Similar formulas can also be obtained for the right-hand
portion of the tie-rod by using equations (20)—(22). Having

the deflection curve for the case of one load P acting on the -

tie-rod, we can readily obtain the deflection curve for any
other kind of loading by using the method of superposition.

Considering, for example, a uniformly loaded tie-rod and
using equations (30) and (31) for a strut, we obtain:

cosh (];—l— px)

cosh ];—/

Y =5y -1 —I—a%x(/—x),

and the maximum deflection is

ymax = (_y)x=ll2

1 B u_2
_ 5 gt coshu 2 5 gl
T 384 EI (Jag)ut 383 EI e1(u), (43)
where 4
I y?
()__coshu_l_*_?
o= (5/24)u*

The slope of the deflection curve at the left-hand end, from
equation (32), is

dy gl u—tanhu
(E),_O T EIT A (44)

The maximum bending moment, which in this case is at the
middle of the span, is obtained from expression (33):
2 — /2
Mue = % 202D 8200 (a9)
where
2(cosh # — 1)
#w?coshu

Ya(u) =

The deflection and the maximum bending moment are ob-
tained by multiplying the corresponding expressions for a
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simple beam by factors ¢i(#) and ¢,(x), depending on the
magnitude of the axial tensile force §. The numerical values
of these factors are given in Table 3.1

In the case of bending of a tie-rod by a couple applied at
the right-hand end, the deflection curve is obtained from
equation (26), from which

_ M, (x sinh px
y—‘s‘(rsmﬁ)' (46)
If there are two equal and opposite couples applied at

the ends of a tie-rod, the deflection curve is obtained by the
method of superposition:

Mo<x sinhpx) %[1 -5 sinh p(/ — x)]

Y= 7S \7 T sinhp/ § / sinh p/
MO/I coshp(i———x) )
o — — . 4
s cosh%z

From this equation we find the deflection at the middle and

the slope at the left-hand end of the tie-rod:

My coshu —1 My? coshu — 1

Btz = S " coshu T 8El Iulcoshu’ q
dy\ _ My My tanhu (48)
dx ),y S Ptanhu =g

The bending moment at the middle is

dy 1
(M)eye = — EI (WLM =Mook 49

Having the deflection curves for a tie-rod with hinged ends
bent by transerve loading and by couples at the ends, we
can readily obtain various statically indeterminate cases of

18 Various cases of bending of tie-rods are investigated in the papers
by A. P. Van der Fleet previously mentioned (see p. 32) and also in the
book by I. G. Boobnov, “Theory of Structure of Ships,” vol. 2, 1914,
S. Petersburg. From the later book the Table 3 is taken.
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bending of tie-rods by the method of superposition. Taking,
for example, the case of a uniformly loaded tie-rod with built-in
ends and using expressions (44) and (48), we obtain the
bending moments M, at the ends from the equation:

gl # — tanh u M/ . tanh 2
2El T L8 2Bl 4 9

from which

/2 u — tanh 2
Mo= =15 Trmamhu =~ 3%l (0

where
u — tanh
Vo(u) = 1 tanh o

The numerical values of the function y,(#) are given in Table
3. By using expressions (45) and (49) the bending moment
at the middle, M, is obtained:

M =ﬁ2_.2(coshu—1)__g_/_2.u——t.anhu
] u? cosh u 12 Lx?sinh«
/2 6(sinh # — u) /2
— N T wsnha T agh®- G

The deflection at the middle is obtained by using equations
(43) and (48) which give

1 u?
5§ gl coshu L+
Ymax = (y)z=z/2 = 3—8:;E7 . (5/24)u4
g/t (u — tanh #)(cosh # — 1) _ gt
T 16E] u* sinh u 384E oa(z)  (52)

where

oal20) =24(z¢2 ucoshu'—u).

W\ 2 sinh #
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Tasre 3. DEerLeEcTiONs AND MaxiMum BenDING MoOMENT CONSTANTS IN
Laterarry Loapep Tie-Rops

u o @2 %1 [ [Z) u @1 @2 21 12> 143

0 { 1.000 | 1.000 | 1.000 | 1,000 | L.ooo | 6.5 { 0.054 | 0.197 | 0.047 | 0.391 | ©.139
0.5 | 0.908 | 0.976 | 0.905 | 0.984 | 0.972 | 7.0 | 0.047 | 0.175 | 0.041 | 0.367 | 0.121
1.0 | 0711 | 0.909 | 0.704 | 0.939 | 0.894 | 7.5 | 0.041 | 0.156 | 0.036 | ©0.347 | 0.106
1.5 | 0.523 [ 0.817 | 0.511 | 0.876 | 0788 | 8.0 | 0.036 | 0.141 | 0.031 | 0.328 | 0.093
2.0 {0.380 | 0.715 | 0.367 | 0.806 | 0.673 | 8.5 | 0.032 | 0.127 | 0.028 | 0.311 | 0.083
2.5 [ 0.281 | 0.617 | 0.268 | 0736 | 0.563 | 9.0 | 0.029 | 0.11§ | 0.025 | 0.296 | 0.074
3.0 | 0.213 | 0.529 | 0.200 | 0.672 [ 0.467 | 9.5 | 0.026 | 0.105 | 0.022 | 0.283 | 0.066
3.5 | 0.166 | 0.453 | 0.153 | 0.614 | 0.386 | 10.0 | 0.024 | 0.096 | ©.020 | 0.270 | ©.060
4.0 | 0.132 | 0.388 | 0.120 | 0.563 | 0.320 | 10.5 | 0.021 | 0.088 | 0.018 | 0.259 | 0.054
4.5 | 0.107 | 0.335 | 0.097 | ©.519 | 0.267 | 11.0 | 0.020 | 0.081 | 0.017 | 0.248 | 0.050
5.0 | 0.088 | 0.291 | 0.079 | 0.480 | 0.224 | 11.§ | 0.018 | 0.075 | 0.015 | 0.238 | 0.045
5.5 | 0.074 | 0.254 | 0.066 | 0.446 | 0.189 | 12.0 | 0.016 | 0.069 | 0.014 | 0.229 | 0.042
6.0 | 0.063 | 0.223 | 0.055 | 0.417 | 0.162

All these functions are equal to unity at # = o, i.e., when only
a transverse load is acting. As the longitudinal tensile force in-
creases, each function decreases, i.e., the longitudinal tensile forces
diminish the deflections and the bending moments in laterally
loaded tie-rods. Some applications of the above table will be given
later in discussing the bending of thin plates (see p. 122).

Problems

1. Find the maximum deflection and the maximum bending
moment for a tie-rod loaded at the middle.
Answer.
PB y — tanhu
(.y)max = 48E[. 1,3 5

3
P! tanh «
4 u

2. Find the bending moments M, at the ends of a tie-rod with
built-in ends symmetrically loaded by two forces P as shown in
Fig. 29.

Solution. 'The bending moments at the ends are obtained from
the equation:

Mmax =

P [ cosh pb My tanh
cosh %é 2EL u

S

_3- Find the bending moments at the ends of a tie-rod with
built-in ends loaded by a triangular load as shown in Fig. 28.
_ Hint.  Use solution of problem 2 on p. 34 together with equa-
tion (46).



44 STRENGTH OF MATERIALS

7. Representation of the Deflection Curve by a Trigonomet-
rical Series.—In discussing the deflection of beams, it is sometimes
very useful to represent the deflection curve in the form of a trigo-
nometrical series.!® This has the advantage that a single mathe-
matical expression for the curve holds for the entire length of the
span. Taking the case of the beam with supported ends 17 shown

in Fig. 34, the deflection at any point

— ¢ —olP may be represented by the following
2 ;TI ;a) series:
ﬁQ-_%_’—al;—_—;—h %) y=alsin7r—lx+agsin-2%x:
e Ty G

+a3sin‘3§{+ s (a)

&1{74—_\_—?‘ “ Geometrically, this means that the

Fic. 34. deflection curve may be obtained by
superposing simple sinusoidal curves

such as shown in Fig. 34 (8), (¢), (d), etc. The first term in series
(a) represents the first curve, the second term, the second curve, etc.
The coefficients @i, as, a5 of the series give the maximum ordinates
of these sine curves and the numbers 1, 2, 3, -+ the number of
waves. By properly determining the coefficients i, @5, -+, the
series (4) can be made to represent any deflection curve 8 with a
degree of accuracy which depends upon the number of terms taken.
We will make this determination of the coefficients by a considera-
tion of the strain energy of the beam (eq. 188, p. 297, Part I) as

given by the equation
EI 11 dZ 2
0B [ (2o >

The second derivative of y, from (@), is

dy LA , T . amx .
=5 = — &15;8in 5 — 522 5 sin—— — 332 5 sin>— - -
dr? BT ¥

2 { !

Equation (%) involves the square of this derivative, which contains

6 See the author’s paper, “Application of General Coordinates in
Solution of Problems on Bending of Bars and Plates,” Bulletin of the
Polytechnical Institute in Kiev, 1909 (Russian); see also H, M. Wester-
gaard, Proc. Amer. Soc. Civ. Eng., Vol. 47, pp. 455-533.

1" For other cases analysis becomes too complicated for most prac-
tical purposes. ) »

18 See Byerly, “Fourier Series and Spherical Harmonics,” §§ 19—24.
See also Osgood, *“Advanced Calculus,” 1928, p. 391.
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terms of two kinds:

2n47r4 . nmwx wmintt | nwx . mwx
82 ——sin?—— and 2 nam sin ——sin —— -

& / n / /

By direct integration it may be shown that

; !

. JHTX ! . nmx ., mmwx

f sin?——dxy = — and f sin ——sin——dx = o,
o 7 2 o / /

where
n # m.

Hence, in integral (), all terms containing products of coeficients
such as @na, disappear and only the terms with squares of those
coefficients remain. Then

EIt* EIxqA n=o
U= 4[3 (1.412 4+ 2402 34~a32 + .- ) = 4[3 Zl nia.l. (53)

In a previous discussion (see eq. @, p. 339, Part I) it was shown
that if an elastic system undergoes a small displacement from its
position of equilibrium, the corresponding increase in the potential
energy of the system is equal to the work done by the external forces
during such a displacement. When the deflection curve is given
by series (), small displacements can be obtained by small varia-

“tions of the coefficients ai, as, a3, +++. If any coefficient 4, is given

an increase da., we have the term (a, 4+ da,) sin (nwx/l) in series
() instead of the term 4, sin (nwx/l), the other members remaining
unchanged. This increase da, in the coeflicient a, representsan
additional small deflection given by the sine curve da, sin (nrx/l),
superposed upon the original deflection curve. During this addi-
tional deflection the external loads do work. In the case of .a
single load P, applied at a distance ¢ from the left support, the
point of application of the load undergoes a vertical displacement
da, sin (nwc/l) and the load does the work:

da, ( sin ”-}'—‘ ) P. ©)

Let us consider now the increase in the strain energy, given by
eq. (53), due to the increase da, in a,,

19 Elxt
dU = E da, = DY n*andan. @)
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Equating this to the work done (¢),

ElI+ .
o nta, = Psmﬂ,

7

from which
2PP 1 . nwe
= G A

/

an

From this we can determine each of the coefficients in the series
(a) and the deflection curve becomes

2P T an ™ L L 2T 2T
'y_E]7T4 s1n151n1 2 smlsm 7 —+ .
2PB * 1 nwe nwx

SEwmett s (69

From this the deflection may be calculated for any value of x.
For example, the deflection at the middle when the load is at the
middle, ¢ = x = //2, will be

a2 PR 1 I
6=(y)x=z/2=—E77; 1—}—}4—?—;_... .
By taking only the first term of this series, we obtain
5 = o PP _ PpB '
Elv  i187E]

Comparison with eq. (go), p. 143, Part I, shows that we obtained
48.7 where the exact value was 48, so that the error made in using
only the first term instead of the whole series is about 1} per cent.
Such accuracy is sufficient in many practical cases and we shall
have other examples where a satisfactory accuracy is obtained by
using only one term in the series ().

From the solution for a single load (eq. 54), more complicated
problems can be studied by using the method of superposition.
For example, take a beam carrying a uniformly distributed load,
of intensity g. Each elemental load gdc at distance ¢ from the left
support produces a deflection obtained from eq. (54), with P = gdc,

. nmwc¢ . nwx
1n—sm~7—

agdels 25T
- Elrt n=1 C ot

dy

Integrating this with respect to ¢ between the limits ¢ = o and
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¢ = 1 gives the deflection produced by the entire load

4]

aqlt 1 . nux
Al R AL (s5)

Taking the first term only, the deflection at the middle of a uni-
formly loaded beam is

s Mt _ gt |
- EIm® 976.5El
Comparing this with the exact solution
5 g g

we find that the error in taking only the first term was less than
1 per cent in this case.

The trigonometric series (2) is especially useful when the beam
is submitted to the action of a longitudinal compressive or tensile
force in addition to lateral loading. In the problem shown in
Fig. 35, the hinge B approaches the fixed hinge A4 during deflection

Fre. 3s.

by an amount equal to the difference between the length of the
deflection curve and the length of the cord #B.”® For a flat curve
this difference is (see p. 177, Part I)

. ldl2
x_ffo (dx>dx. (56)

With y as given by series (4), the square of its derivative contains
terms of the two forms:

. niw? [, K nmm? nwx mwx
n’ €S E and 28 nlm COS ——COs —— *

2 ! !

By integration it can be shown that

l nwx mmx

. , T l
A cos —Z—dx=;; A cosTcosde=o, n #£ m.

'* Longidutinal contraction due to the axial force can be considered
as constant for small deflections,
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The equation for X then becomes
™2,
A= —41 n§=ln R (57)

To calculate the coefficients ai, a3, @3, + -+ in the series (2) we con-

sider the work done by the external forces during a small displace-

ment da, sin (nmx/l) from the position of equilibrium. In the case

represented in Fig. 35 both the force P and the longitudinal force

§ do work during such a displacement. The displacement \, due

to the increase da, in the coefficient 4,, increases by an amount
O\ 2

- = — 20 da..
aa —adnda" 2" 3,da,

Then the work done by the force § is

,n.2
S y na.da,.

This is added to the work (¢) done by the lateral force and the sum
is equated to the increase in the potential energy (eq. 4). This
gives us the following equation for determining any coeflicient a,:

2 4
P sinn—}r£ da, + § g—ln%ndan = % 1t andan,
from which
2P 1 . nwc
“TEIe (T SENTT
" ( " T Er 1r2)

If the ratio of the longitudinal force to the critical value of this
load (see p. 277) be denoted by a = S§/2/Elx? we obtain

2PPB 1 .nn_m‘
I = EIi (i — a) sty

Substituting in the series (), the deflection curve is

2P 1 . w . wX 1 . 2w . 2mX
——sin—sin 5 + -———sm—smT-t-. ..

Y= EIA\ 1= T T T =) ¥ 7Y
2PPB 2 1 nwe . nwx .
= in—— sin —— 8
EIA 270k —) S Sy (58)

Comparing this with eq. (54) for the case of a lateral force P only,
we see that the deflection of the bar increases due to the action of
the longitudinal compressive force §. We have seen that the first

at the middle becomes
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term in series (2) represents a good approximation for the deflection;
hence the increase of the deflection produced by the longitudinal
force will be approximately in the ratio 1 : (1 — a).

This conclusion holds also if there are several transverse loads
of the same direction or if there is a continuous load acting on the
beam. Denoting by & the maximum deflection produced by lateral
load acting alone we can assume with satisfactory accuracy that
under the combined action of compressive forces § and lateral load
the maximum deflection is

do
I—a (59)

& =

This expression for the maximum deflection can be used also for an
approximate calculation of bending moments in a strut. For ex-
ample, in the case of a uniformly loaded strut with hinged ends the
maximum bending moment can be calculated from the following
approximate formula:

_q~ Sdy
Mmax— 3 +I—a

(60)

If the longitudinal force is tensile instead of compressive, the
method discussed above still holds, with —« instead of « in the
expressions for the deflection curve (58). Taking only the first
term in this expression, the approximate formula for the deflection

)
et 1)

6=

“where & denotes the deflection produced by lateral loads only.

It must be noted that in the case of longitudinal tensile forces
« can be larger than unity, and the accuracy of the approximate
equation (61) decreases with increase of a. Taking, for instance, a
uniformly distributed lateral load, the error in eq. (61) at @ =1
is about 0.3 per cent. At a = 2 the error is 0.7 per cent and at
a = 10 the error is 1.7 per cent. .

In the case of a bar with built-in ends an approximate equation,
analogous to eq. (61), may be derived for calculating the deflec-
tion at the middle, which gives

5= ©62)
1+ 2
4

in which & is the deflection at the middle produced by lateral loads
acting alone and « has the same meaning as before.
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The applications of these approximate equations will be shown
later in considering the deflection of thin rectangular plates. The
method of trigonometric series can be extended also in analyzing
beams of variable cross section.?

8. Bending of Beams in a Principal Plane which is not a
Plane of Symmnietry. Center of Twist.—In the discussion of
pure bending (see p. 93, Part I) it was shown that the plane
of the deflection curve coincides with the plane of the bending
couples provided these couples act in one of the two principal
planes of bending. This does not hold however in the case

of bending of a beam by a coplanar system of transverse

forces. If the plane in which the forces are acting is not a
plane of symmetry of the beam, such bending is usually

accompanied by torsion of
Yy
0
c

e the beam. The following
ety []

i
LU, 5o

discussion will show how this

T F » torsion can be eliminated and

P a simple bending established

*M-—vy @ *Vy ®) Y@ by a proper displacement of

the plane of the acting forces
parallel to itself.

We begin with simple examples in which the cross section
of the beam has one axis of symmetry (z axis), and the forces
are acting in a plane perpendicular to this axis, Fig. 36. Let
us consider the case shown in Fig. 362 and determine the
position of the vertical plane in which the transverse loads
should act to produce simple bending of the beam in a vertical
plane. From our previous discussion of distribution of ver-
tical shearing stresses 7, see p. 109, Part I, we may conclude
that practically the whole of the shearing force 7 will be
taken by the flanges alone. If we consider the flanges as two
separate beams whose cross sections have moments of inertia

I/ and I.” respectively, then their curvatures and their
deflections in bending will be equal if the loads are distributed

A

F1c. 36.

20 See paper by M. Hetényi, Journal of Applied Mechanics, 1937,
vol. 42 A—49. »

PROBLEMS IN BENDING OF BEAMS 51

between them in the ratio I, :1,”.* The shearing forces
in these flanges also will be in the same ratio. This condition
will be satisfied if the transverse loads act in the vertical plane

through the point O (Fig. 36, 4), such that

b _ L
;12—']2/)

where 4; and 2, are the distances of O from the centroids of
the cross sections of the flanges. In this manner we find that
for the case of flanges of small thickness the point O is dis-
placed from the centroid C of the cross section towards the
flange whose cross section has the larger moment of inertia.
In the limiting case, shown in Fig. 36, 4, in which one of the
flanges disappears, it can be assumed with sufficient accuracy
that the point O coincides with the centroid of the flange and
that the transverse loads should act in the vertical plane
through this point in order to have simple bending. The
point O, through which the plane of loading must pass to
eliminate torsion, is called center of twist.

Let us now consider the channel section (Fig. 36, ¢) and
determine the position of the plane in which vertical loads
must act to produce simple bending with the z axis as the
neutral axis. For this purpose it is necessary to consider the
distribution of the shearing stresses over the cross section in
simple bending. To calculate the vertical shearing stresses
Tys for the cross section of the web, the same method is used as
in the case of an I beam (page 109, Part I) and it can be as-
sumed with sufficient accuracy that the vertical shearing force
V 1s taken by the web only. In the flanges there will be hori-
zontal shearing stresses which we shall denote by r,,. To find
the magnitude of these stresses let us consider an element cut
from the flange by two adjacent cross sections dx apart and
by a vertical plane mumn, parallel to the web (Fig. 37). If
the beam is bent convex downward, the upper flange will be

. ™ The effect of shearing force on deflection of flanges is neglected in
this consideration.
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in compression and the compressive forces N and N + dN
acting on the above element will be numerically equal to

M
N=—[yaa
(M—i—dgﬂgdx)
S f_yd/f,

where the integration must be extended over the shaded
portion of the cross section of the flange. The integral repre-
sents the moment of the shaded
area with respect to the z axis.
The difference of the compres-
sive forces N and N +4N must
be equal to the sum of the
shearing stresses 7., acting over
the side mnm 1y of the element,
Assuming that these stresses
are uniformly distributed over
this side and denoting by ¢ the

and N+ dN = —

Fic. 37.

thickness of the flange, we obtain the following equation for

calculating 7z.:

rostdn = AN = — ‘%4. ilj’fj ydd,
from which
14
re= =77 f ydA. @

The moment of the shaded area is proportional to the distance
u from the edge of the flange; hence .. is proportional to .
As we have shown before (see p. 111, Part I), shearing
Stresses 7., equal to 7.., must act horizontally at points along
the line ##, in the cross section of the flange. Hence the
stresses 7., are distributed non-uniformly over the cross section
of the flange but are proportional to the distance #. At the
junction of flange and web the distribution of shearing stresses
is complicated. In our approximate calculation we shall as-
sume that eq. (2) holds from # = otou = 4. Then denoting
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by 4 the distance between the centroids of the flanges and
observing that the moment of the cross section &¢ of the flange
with respect to the axis z numerically is 4#(%/2), we obtain,
from eq. (a),

Vbh
(Ta:z>ms.x = (Tzz)ma.x = E . (b)

The resultant R of the shearing stresses 7.. distributed over
the cross sectional area &¢ of the flange is

2
RV b _TE ©

The sum of the shearing stresses 7., over the cross section of
the lower flange will evidently be an equal and opposite force.
Thus the shearing stresses over a channel section reduce to
the forces shown in Fig. 38. This system of forces is statically
equivalent to a force 7 applied at a point O at a distance
from the center of the web:
h  bht
€ = "7 = 4._.[: .

From this it is seen that, in order to obtain simple bending
with z the neutral axis, the vertical plane in which the trans-
verse loads act should pass through
the point O, which is called the cen- ‘TET
ter of twist. At any other position of h
this plane, bending of the beam will 2 ¢ z
be accompanied by twist, and the  Fe7
stresses will no longer follow the simple Ll ]
law in which ¢, is proportional to y 5% R
and hence does not depend entirely w
upon the coordinate z. Fie. 38.

In the case of an angle section (Fig. 39) the shearing stress

7 at points along m#n will be in the direction shown, and will be
equal to 2

2 The same method of calculating these stresses as in the case of
channel sections is used.



54 STRENGTH OF MATERIALS

v
T=—t]—zfyd/1,

in which the integral represents the moment of the shaded
area with respect to the z axis. These shearing stresses yield
a resultant force in the direction shown in Fig. 39, 4 equal to
R = Vbst_.

312

A force of the same magnitude will also be obtained for the
lower flange. The resultant of these two forces is equal to 7
and passes through the point of intersection of the middle
lines of the flanges O, which is therefore the center of twist in
this case.

R
-]
¢ Z
B —
v
| Y
Fic. 39. Fic. 40.

In the case of a 7 section, Fig. 40, assuming simple
bending in a vertical plane and proceeding as in the case of
an |_| section, we find that the shearing forces R in both
flanges have the same direction. Their resultant goes through
the centroid C: By geometrically adding this resultant to the
vertical shearing force /, we obtained the direction of the
inclined plane in which the transverse forces must be applied
to produce simple bending of the beam in the vertical plane.
Point C is the center of twist in this case. .

Assuming that the cross sections which were discussed
above belong to cantilever beams fixed at one end and loaded
by a concentrated force P at the other end, we may conclude
that if the load P is applied at the center of twist, it produces
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only bending of the cantilever without any twist. By using
the reciprocal theorem (see p. 330, Part I) it can at once be
concluded that a torque applied at the same end in the plane
perpendicular to the axis of the cantilever and producing
torsion of the cantilever will not produce any deflection of the
center of twist. Hence during such torsion each cross section
of the cantilever is rotating with respect to the axis passing
through the center of twist and parallel to the axis of the beam.

The method of determining the position of the center of
twist shown above on several simple examples can be gener-
alized and extended to embrace cases of non-symmetrical
cross sections of thin-walled members, provided the thickness
of the material is so small that the distribution of shearing
stresses over the thickness can be taken with sufficient
accuracy to be uniform.®? A further discussion of this
problem is given in Art. 53 (p. 292).

When all the dimensions of a cross section are of the same
order, the problem of determining the center of twist becomes
more complicated; exact solutions of this problem exist in
only a few cases.

9. Effective Width of Thin Flanges.—The simple bend-

ing formula (see Eq. 55, p. 9o, Part I) shows that bending
* stresses in a beam are proportional to the distance from the

neutral axis. This conclusion is correct so long as we are
dealing with beams, the cross-sectional dimensions of which

% The problem of determining the center of twist has been discussed
by several authors. ~ See, for example, A. A. Griffith and G. L. Taylor,
Technical Reports of the Advisory Committee for Aeronautics, England,
Volume 3, p. 950, 1917, R. Maillart, Schweiz. Bauz., vol. 77, p. 197;
vol. 79, p. 254 and vol. 83, p. 111 and p. 176. C. Weber, Zeitschr. f.
angew. Math. u. Mech,, vol. 4, 1924, p. 334. A. Eggenschwyler, Proc.
of the Second Internat. Congress for Appl. Mech. Ziirich, 1926, p. 434.
In recent time the problem became of importance in airplane design.
The review of the corresponding literature is given in a paper by P. Kuhn,
Techn. Notes, Nat. Adv. Comm., no. 691.

% See paper by M. Seegar and K. Pearson, London, Roy. Soc. Proc.
(ser. A), vol. 96, 1920, p. 211, and the writer’s paper, London Math.
Soc. Proc. (ser. 2), vol. 20, 1922, p. 398. See also “Theory of Elas-

»

ticity,” 1934, p. 301.
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are small in comparison with their length and so long as we
are considering points at a considerable distance from the
ends. In practical applications we sometimes use beams with

b —>-dT— b
ym m _-I 4
g a4 T
(@ T _f;_
v AR
K 2
— - (b
TﬂThT Tﬁ‘mr Y | wide flanges, to which the ele-
mentary beam formula cannot
I*A.*: :*,\ - ; be applied with sufficient ac-
b |4 curacy. Take,asanexample,
: : the case of abeam consisting of
b | a rib and a wide flange shown
: : in Fig. 41. Assuming that the
) beam is simply supported at
;IG " the ends and loaded in the

middle plane xy, we observe
that there are shearing stresses acting between the flanges and
the rib at the surfaces of contingency mn, Fig. 414, and directed
as shown in Fig. 4156. It is seen that these stresses tend to
reduce the deflection of the rib, to make it stiffer. At the
same time they produce compression of the flanges. Con-
sidering a flange at one side of the rib as a rectangular plate
submitted to the action of shearing forces along one edge,
Fig. 41c, we see that the compressive stresses will not be
uniformly distributed along the width of the flange, and a
rigorous analysis shows % that the distribution will be such as
is indicated by the shaded area, the maximum stress in the
flange being the same as in the utmost fibers of the rib. From

% The discussion of the rigorous solution, obtained by Th. von
Karman, is given in the “Theory of Elasticity,” p. 156, 1934. See also
W. Metzer, Luftfahrtforschung, vol. 4, p. 1, 1929. K. Girkmann, der
Stahlbau, vol. 6, 1933, p. 98; H. Reissner, Z. angew. Math. Mech.,
vol. 14, 1934, p- 312; E. Reissner, Der Stahlbau, vol. 7, 1934, p. 206;
E. Chwalla, Der Stahlbau, vol. g, 1936, p. 73.
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this non-uniformity of stress distribution it can be concluded
that in applying to the beam in Fig. 414 the simple beam
formula for maximum bending stress we must use a somewhat
reduced width 2\, instead of the actual width 24 of the two
flanges, in order to obtain the correct value of the maximum
stress. This reduced width, usually called the effective width,
can be calculated if the compressive stress distribution, shown
by the shaded area in Fig. 41¢, is known. It is only necessary
to make the area of the rectangle, indicated in the figure by
the dotted lines, equal to the shaded area. Its magnitude,
2\,, usually varies along the span of the beam, for it depends
on the proportions of the beam and also on the shape of the
bending moment diagram.

In the particular case when the width of the flange is very
large, say 24 = /, and the bending moment diagram is given

by the sine curve:
T

M = Misin 7, (a)
the reduced width becomes constant and equal to
4l

2\

, T+ w@—w’
where p is Poisson ratio. For u = 0.3 we obtain

2\; = 0.363/. (63)
Hence, in this particular case the actual beam can be replaced
by an equivalent T beam of a constant cross section and with
the width of the two flanges equal to 0.363/. Applying to
this beam the simple beam formulas, we obtain the same
maximum stress and the same flexural rigidity as the actual
beam has.

In a general case of transverse loading, the bending moment
diagram can be represented by a sine series:

M, = =M, sin”—’;x- , | )

in which the coefficients M, can be calculated, in each particular
case, from the known formula: %

26 See Article 7.
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b3 [4
M, =~ fo M, sin @ dx. )
In the case of a uniform load, for example, we have
M. — gx(l — x)
i 2
and formula (c) gives
49”2
Mn = 71371'3 > (d)

where n =1, 3,5, ---.

Having the coefficients A, in the series (), we obtain the
effective width from the rigorous solution, which, in the case of a
large width of the flanges, gives

/ M,
z . nTx
M, sin ——
o
n=1,8,5, ... kb
4+ o nw

B8

in which 8 = #/dh is the ratio of the area # to the cross-sectional
area of the rib, and

_ GG
4

Taking, for example, the case of a uniformly distributed load and
substituting the expression (d) for M, in formula (64), we find that
for various values of the ratio 8 the variation of the effective width
along the length of the beam is as
shownin Fig. 42. Itisseen that
in the middle portion of the span
the effective width varies very
little and is approximately the
same as for a sinusoidal bending
v : moment diagram (see eq. 63):
l._ x — ] When the effective ‘width 1is
Fic. 42. found from formula (64), the
maximum stress and maximum
deflection are found by applying simple beam formulas to the equiv-
alent beam. '
We discussed the case in which the flanges of the beam have a
very large width. There are also rigorous solutions for the case in
which the flanges are not so very wide and for the case of a long

k = 0.878 for p = 0.3.
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rectangular slab, reinforced by a system of identical and equidistant

" ibs. In all these cases the problem is reduced to that of calculating

stresses and deflections in an equivalent beam.?”

ro. Limitations of the Method of Superposition.—In dis-
cussing the bending of beams (see p. 146, Part I) 1t was sh.own
that the calculation of the deflections can be greatly simplified
by using the method of superposition. This me:chod can
always be used if the bending of the beam does not 1ptroduce
changes in the action of the external forces. For instance,
small deflections of beams by lateral loads do not change the
bending moment diagrams for these loads, and superposi.tion
can be successfully used. But if we have bending combined
with axial tension or compression, the deflection produced by
the lateral loads changes the action of the axial forces, and the
Jatter produce not only axial tension or compression but also
some additional bending. In such cases, as we have seen (see
Art. 4), there are some limitations of the .method of super-
position; we can use this method only with regard to t;he
lateral loads, assuming that the axial force always remains
constant. There are other cases in which small deflections of
beams may introduce considerable changes in the action of
forces. In such cases the method of superposition fails.
Some examples of this kind will now be discussed.

As a first example let us consider the bending of the
cantilever 4B, Fig. 43, if during bending it comes gradually
into contact with a rigid cylindrical supporting surface 4AC
having a constant curvature 1/R and a horizontal tangent at
A. Tt is seen that as long as the curvature of the beam at
the end 4, as given by the formula

1M _ P (@)
r EI, EI.

27 These rigorous solutions found some application in specifications
for concrete slabs reinforced by ribs. In airplane design the fact of
non-uniform stress distribution in wide flanges is taken care of by using
an approximate theory, the discussion of which can be found in papers

by P. Kuhn, National Adyv. Committee for Aeronautics, Reports No.
608, 1937, No. 636, 1938. See also H. Ebner, Luftfahrt-Forschung,

vol. 14, 1937, p- 93 and vol. 15, 1938, p. 527-
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is less than the curvature of the support 1/R, the cantilever
will touch the surface 4C only at the point 4, and the de-
flection & at the end B will be given by the known formula:

Pp
5= o @
From the equation
I Pl 1
r " ELTR )

we can obtain the limiting value of the load P, for which the
beam begins to come into contact with the cylindrical sup-
porting surface beyond the point 4. Let Py = EI.[IR be this
limiting value of the load; then for P > P; a part 4D of the
beam will be supported as indi-
cated in Fig. 43 by the dotted
line. The length x of the un-
supported portion of the canti-
lever is obtained from the con-
dition that at D the curvature,
i/r, of the beam is equal to the curvature of the supporting
surface; hence

AN
o~
A

T ——

BANNRNNY

)
:§
Y

Px 1
EI, R’
and we obtain

El,
¥ =pg- ()

The total deflection at the end B of the cantilever consists
of three parts: (1) deflection of the portion DB of the beam
as a simple cantilever, which is

Px? (EI.)?

61-_—@:: 3P2R3) (e)

(2) deflection owing to the slope at D,

5 ___x(l—x) _ EI,(Z Elz)’ )

R -~ PrR\'" PR

PROBLEMS IN BENDING OF BEAMS 61

and (3) deflection representing the distance of the point D
from the horizontal tangent at /4, which is

(! — %)% EI\ 1
b~ TR —(Z_PR) R @
Summing up these three parts, we obtain the total deflection:
2 1 (EIL)?
8 =0+ 0+0=5—¢ pmps (%)

This expression for the deflection must be used instead of
equation (4), if P is larger than thelimiting value P, = EI./IR.
Note that the deflection is no longer proportional to P. If]
in addition to P, there is a load Q applied at the end B of the
cantilever, the total deflection will not be equal to the sum of
the deflections produced by P and produced by Q if both are
considered to be acting alone. Hence the method of super-
position does not hold in this case.

.
My 4 14 -
a o]

F1c. 44.

NS
S

\}‘\P
S

As a second example let us consider the case of a uniformly
loaded beam with built-in ends, as shown in Fig. 44. It is

-assumed that during bending the middle portion of the beam is

supported by a rigid horizontal foundation so that along this
portion the deflection is constant and equal to 8. It is seen
that if the deflection at the middle is less than §, we have
an ordinary case of bending of a beam with built-in ends.
The limiting value ¢; of the load is obtained from the known
equation:
I qll4 .
E EIz = §. (1)

For an intensity of the load larger than ¢y, a portion of the
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beam will be supported by the foundation as shown in the
figure. This part remains straight; there is no bending
moment acting in the portion CD of the beam, and the load
is balanced by the uniformly distributed reaction. At the
ends C and D, however, concentrated reactions X may act on
the unsupported portions of the beam. The length @ of the
unsupported portions of the beam and the magnitude X of
the concentrated reactions can be obtained by considering
the portion 4C of the beam as a cantilever with a uniform
load ¢ and with a concentrated load X at the end. Observing
that the cross section at C does not rotate during bending and
using equations (94) and (100) from Part I (see p. 147 and
p. 149), we obtain

g8  Xa
6EI, — 2EI,’
from which
a -
X=%' )

Another equation is obtained from the condition that the
deflection at C is equal to 8. Using the known formulas for
the deflection of the cantilever, we obtain

ga’ .
§EI, ~ 3EL~ % (k)

Solving equations (/) and (&) we find

a= ,“/@fj’ X = VB/93ET.4. o)

It is immediately apparent that the reaction X is not propor-
tional to the load. The numerical maximum of the bending
moment, which is at the built-in ends, is obtained from the
equation:

M) = M| = 2 _ xa,
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which gives
. -
M, = % = V20El 4. (m)

Again we see that the bending moment does not increase in
the same proportion as the load. Hence the method of
superposition cannot be used.

Problems

1. Find the deflection of the cantilever shown in Fig. 43 if,
instead of force P, there is a uniformly distributed load g.

2. Find an expression for the deflection at the middle qf a beam,
supported by two identical cylindrical surfaces of the radius R and

loaded at the middle, Fig. 45.

P

1
2

1
2
T T
o 1-2Rx ——~

N

Fic. 45.

Solution. As the load P increases, the points of contact of the
beam with the supporting surfaces move inwards and the span
diminishes; hence the deflection increases in a smaller proportion
than does the load P. The angle a, defining the positions of the
points of contact, is found from the condition that at these points
the deflection curve is tangent to the supporting surfaces; hence,
for small values of «,

P(l — 2Ra)?
T 16EL

Having «, we obtain the deflection at the middle from equation:
_ PU—12Ra)®  Re*
- 43E], 2

3. Solve the preceding problem assuming that the beam is
built-in at the points 4 and B.
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4. Solve problem 2 if the load is not at the middle of the

span 4B.
5. A long, uniformly loaded beam
HHHHIHHHHH A) is supported by a horizontal, rigid
l—x — #M.foundation, Fig. 46. Find the angle
\‘\"’“—\d—\ a of rotation of the end A4 and

Fic. 46. the length » which will be bent by
the moment M, applied at the end.
Solution. 'The length x is found from the equation:

g’ _ Mo
24E] ~ 6EL’
The angle of rotation at the end 4 is
_ M g0
T 3EI T 24E]

CHAPTER 1I
CURVED BARS

11. Bending Stresses in Curved Bars.—In the following
discussion itis assumed that the center line* of the bar is a plane
curve and that the cross sections have an axis of symmetry in
this plane. The bar is submitted to the action of forces lying
in this plane of symmetry. Let us consider first the case of a
bar of constant cross section in pure bending, produced by
couples applied at the ends (Fig. 47). The stress distribution

for this case is obtained by using the same assumption as in

the case of straight bars, namely, that transverse cross

sections of the bar originally plane and normal to the center
line of the bar remain so after bending.? Let 44 and cd

! The center line is the line joining the centroids of the cross sections
of the bar.

2 This approximate theory was developed by H. Résal, Annales des
Mines, 1862, p. 617, and by E. Winkler, Der Civilingenieur, Vol. 4, 1858,
p. 232; see also his book, “Die Lehre von der Elastizitit und Festig-
keit,”” Prag, 1867, Chapter 15. Further development of the theory was
made by F. Grashof, “Elastizitit und Festigkeit,” 1878, p. 251, and by
K. Pearson, “History of the Theory of Elasticity,” Vol. 2, part I, 1893,
P. 422. The exact solution of the same problem was given by H. Golo-
vin, Bulletin of the Institute of Technology at St. Petersburg, 188I.
See also C. Ribiere, C. R., Vol. 108, 1889, and Vol. 132, 1901, and L.

. Prandtl in the paper by A. Timpe, Zeitschr. f. Math. u. Phys., Vol. 52,

1908, p. 348. The above approximate theory is in good agreement with

. the exact solution. See “Theory of Elasticity,” p. 58, 1934.

65
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denote two neighboring cross sections of the bar and let do
denote the small angle between them before bending. As a
result of bending, the cross section ¢d rotates with respect to
ab. Let Adp denote the small angle of rotation. Due to this
rotation the longitudinal fibers on the convex side of the bar
are compressed and the fibers on the concave side are extended.
If #-n denotes the neutral surface, the extension of any
fiber a distance ® y from this surface is yAde and the corre-
sponding unit elongation is
__yAde

C(r—y)de’ (@)
where r Cenotes the radius of the neutral surface and the
denominator in eq. (a) is the length of the fiber between the
adjacent cross sections before bending. Assuming that there
is no lateral pressure between the longitudinal fibers,! the
bending stress at a distance y from the neutral axis is

EyAde
G e ®

It will be seen that the stress distribution is no longer linear as
in the case of straight bars, but that it follows a hyperbolic
law as shown in Fig. 47 (¢). From the condition that the sum
of the normal forces distributed over the cross section is zero,
it can be concluded that the neutral axis is displaced from the
centroid of the cross section towards the center of curvature of
the bar. In the case of a rectangular cross section, the shaded
area (Fig. 47, ¢) in tension must equal that in compression;
hence the greatest bending stress acts on the concave side. In
order to make the stresses in the most remote fibers in tension
and in compression equal, it is necessary to use sectional
shapes which have the centroid nearer the concave side of

the bar.

%y is taken positive in the direction towards the center of curvature
of the bar.

4 The exact theory shows that there is a certain radial pressure but
that it has no substantial effect on the stress ¢, and can be neglected.
The lateral pressures in direction perpendicular to the plane of curvature
may be of importance in the case of bending of thin shells (see art. 20).

e
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Equation () contains two unknowns, the radius 7 of the
neutral surface and the angle Ady which represents the
angular displacement due to bending. To determine them
we must use the two equations of statics. The first equation
is based on the condition that the sum of the normal forces
distributed over a cross section is equal to zero. The second
equation is based on the condition that the moment of these
normal forces is equal to the bending moment M. These
equations are:

[oaa - 2522 [ 224, ©
 EAdp (ydd
f oupdd == [0 — . )

The integration in both equations is extended over the total
area of the cross section. The integral in eq. (4) may be
simplified as follows:

o[-

=—fydd+rfyddy (@)

- The first integral on the right side of eq. (¢) represents the

moment of the cross sectional area with respect to the
neutral axis and the second, as is seen from eq. (¢), is equal to
zero. Hence
ydA
r—=y
in which ¢ denotes the distance of the neutral axis from the
centrold of the cross section. Equation (d) then becomes

= de, )

EAde M
“do = e (65)
and eq. (4) gives
- M
T, ©

The stresses in the most remote fibers, which are the largest
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stresses in the bar are

M~ M#?
(o'z)max = /fml and (o'a:)min = = T;’ (66)

in which 4; and 4, are the distances from the neutral axis to
the most remote fibers and @ and ¢ are the inner and outer
radii of the bar. The radius r is determined from eq. (¢).
Several examples of such calculations are shown in the next
article.

If the depth of the cross section is small in comparison
with the radius R of the center line of the bar, y may be
neglected in comparison with 7 in egs. (¢) and (4). Then,

from (c), we obtain
fydd = o,

l.e., the neutral axis passes through the centroid of the cross
section. From eq. (d)

= M. ()

Substituting this into eq. (4),
My

o'z=I .
z

Hence, in the case of a relatively small depth 2, the distribution
of the bending stresses o, approaches a linear one, and the same
equation as used for straight bars can be used to calculate
them.

From eq. (#) we obtain for a thin bar

MRde  Mds
EI, — EL’ (67)

in which ds denotes the element of the center line between two
adjacent cross sections. This equation is analogous to eq.
(a), p. 148, Part I, for the straight bars, and is often used in cal-
culating the deflections of thin curved bars.

In a more general case when a curved bar is submitted to
the action of any coplanar system of forces in the plane of

Ade =
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symmetry of the curved bar, the forces acting upon the
portion of the bar to one side of any cross section may be
reduced to a couple and a force applied at the centroid of the
cross section. The stresses produced by the couple are
obtained as explained above. The force is resolved into two
components, a longitudinal force N in the direction of the
tangent to the center line of the bar and a shearing force
in the plane of the cross section. The longitudinal force
produces tensile or compressive stresses uniformly distributed
over the cross section and equal to N/4. Due to these
stresses the center line of the bar undergoes extension or
contraction and the angle d¢ between the two adjacent cross
sections changes by the amount

Ade = — %= 5+ (68)

The transverse force 7 produces shearing stresses and the
distribution of these stresses over the cross section can be
taken the same as for a straight bar.®

12. Particular Cases of Curved Bars.—It was shown in
the previous article (eq. 66) that bending stresses in curved
bars are readily calculated provided the position of the
neutral axis is known. In the following examples the calcu-
lation of the distance ¢ of the neutral axis from the centroid
of the cross section is given for several particular cases.

Rectangular Cross Section.—The magnitude of the radius r
of the neutral surface is determined from eq. (¢) of the
previous article, from which

ydA
r—y

If we denote by v (Fig. 48) the radius of a shaded element 44,
then

= o. (@)

v=r—y or y=r—uo

8 This assumption is in a good agreement with the exact solution
for a narrow rectangular cross section; see “Theory of Elasticity,” p.
73, 1934.



70 STRENGTH OF MATERIALS

Substituting into eq. (a),

f (r —vv)dd o

R from which
: 4 -
I S
h C T
n E——J——— v ¢
[ f/ s In the case represented in Fig. 48,
A = bh,dd = bdvand integration is ex-
» ¢ tended fromv = atov = ¢, where z and
R v ¢ are the inner and the outer radii of the
N curved bar. Substituting in equation
(69), we obtain
0 3 Q9 _ - h
o 45 7= [ ot (70)
> gy
Using the known series
< _ R+ 2 I + 32/R
lognd—lognR_ logn TR
I 1( 2 \*
R[I+§(?R)+§(ER)+“']’ v
we obtain
e=R—r=R—

(zR) (&) +-

A first approximation for ¢ is obtained by taking only the two
first terms in the denominator on the right side. Then

S ey R
2

By using three terms of the series (4), a second approximation
is obtained:

A RETCY I

CURVED BARS 71

It can be seen that the distance ¢ of the neutral axis from the
centroid decreases as the ratio 2/R decreases. For small
values of this ratio the distance ¢ is small and a linear stress
distribution, instead of a hyperbolic one, may be assumed
with good accuracy. In the table below, the values of the
maximum stress obtained by assuming a linear stress distri-
bution are compared with those obtained on the basis of a
hyperbolic distribution (eq. 66).

TaBLE 4. ComparisoN oF HyperBoLic AND LiNgarR StrEss DisTrisutions

) . Error in omax
Hyp‘erb.OhC' Lx.neafr . due to assuming
stress distribution stress distribution linear law
Omax Omin Omax Omin
R
M wiar M/AR M/ AR M/ 4R %
1 9.2 ~ 44 6 -6 35
2 14.4 —10.3 12 —12 17
3 20.2 —16.1 18 —18 1o.9
4 26.2 —22.2 24 —24 9-2
10 62.0 —38.0 60 —6o 3.2

This indicates that for R/A > 10 a linear stress distribution
can be assumed and the straight beam formula for maximum
bending stress may be used with suffi-
cient accuracy.

Trapezoidal Cross Section. ‘The length
of an elemental strip at distance v from the
axis 0-0 (Fig. 49) is

b=bt (= b))

Substituting into eq. (69), we obtain Fic. 49.

A
f il . (73)

log,. — (b1 — &)
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When 4, = &, = 5, the above equation coincides with eq. (70) for
a rectangle. When 4, = o, the case of a triangular cross section is
obtained.

L Cross Section. In this case eq. (69) gives (Fig. 50)

hfi + bfs bfy + bofe _ (74)
¢ dv “dv d ¢ 74
b 7 + 20 A ; by logn; + 2 logn :{

r =

~f 0 =

.

P ]
K
O A

|
: o

Fic. co.

I Cross Section. From eq. (69) (Fig. 51)
bf + bufs + bsfs
d
bilogn + 1og,,§+ by 1ogn§

r =

(75)

It may be seen that a suitable choice of proportions in the cases
of 1 and I sections will so locate the centroid that eqs. (66) will
give the same numerical values for omax and omim. Such propor-
tions are desirable if the material is equally strong in tension and
compression, as, for instance, structural steel.

In the previous discussion the distance e from the neutral axis
to the centroid of the cross section was determined as the difference
R — 7. As &/R decreases, this difference becomes small. To de-
termine it with sufficient accuracy, » must be calculated very
accurately. In order to avoid this difficulty and to obtain ¢ directly,
the following method may be used. If we let y; denote the distance
of any point in the cross section from the axis through the centroid
parallel to the neutral axis, then y1 = y 4 ¢ and eq. (@) for deter-
mining the position of the neutral axes becomes

(y1 — e)dd ndA d4d
"Ry " R_yl—e R_yl——o. (¢)
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The first integral on the right side represents a modified area of
the cross section and can be represented as follows:

yld/{ _
R I md, @

where 7 denotes a number to be determined in each particular case.
The second integral on the right side of eq. (¢) can be transformed
as follows:

d/{ I )’1 _ é
res=x (z ) R LR
Substituting (4) and (e) in eq. (c), we obtain

e(1 + md
R =%

mAd —

from which
m

=R1+m- (76)

In calculating m from eq. () the factor 1/(R — yl) can be expanded
in the series :

1 _1 nooy Y.
R—yl_R(I+R+R2+ )
ndd _if no, )
R—yl_R (I+R+R2+ _}’16111{

_ L oot
m_ARf(I+R+R2+ )ylm. G7)

As an example, for a rectangular cross sec-
tion A4 = &k, d4 = bdy,, and substituting in
77

I 12 9
m=35 -, (I -I-%-i-'%-i- -~-)y1dy1

._l(iz AL (2
T3\ 2R +5 2R +7 2R) T

This series converges very quickly and 7 can i
be calculated very accurately. Substituting
m in eq. (76), the distance ¢ is obtained.

For a circular cross section (Fig. 52),

dd = 2 Vihz - y12d_y1. (f)

4

Then

and

l

%

Fie. s52.
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Substituting into eq. (¢),

A f+h/2 Vig = yitdy \/ }12)
- (1 =2 — — e 2
R ( + m) s R — ” 27T(R R 4 ) (g)

from which, using the series

A 1 A2 1f A2 \2
2 o — = — —_—
R 4 R[I 2 4R? 8(4R2

1 y 3] 3 5 2 4 1
~e(ie) i (e) - )
we obtain

1f AN 1f BN 5 f h\ -
=i GR) i GR) A (R) - o

This is a rapidly converging series, from which m may easily be
calculated. Substitution of m into eq. (76) gives the position of
the neutral axis.

It can be seen that in calculating 7 from equation (¢) the mag-
nitude of 7 does not change if all elements 4.4 are multiplied by
some constant, since in this way the integral on the left side of
equation (¢) and the area £ on the right side of the same equation
will be increased in the same proportion. From this it follows that
the value (78) of 7 obtained for a circular cross section can be used
also for an ellipse with the axes 4 and %, since in this case each
elemental area (f) obtained for a circle is to be multiplied by the
constant ratio A/A.

The calculation of the integral on the left side of equation (¢)
can sometimes be simplified by dividing the cross section into several
parts, integrating for each part, and adding the results of these
integrations. Taking, for example, a circular ring cross section
with outer diameter % and inner diameter 4y, and using equation (g)
for the outer and inner circles, we find for the ring cross section:

e e ATy R
S D) o

In a similar manner we can develop formulas for the cross sections

shown in Figs. 5o and g1.
When m is calculated, we find ¢ from equation (76) and the
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maximum stress from equation (66). But we can also proceed in
a somewhat different way and continue to use distance y; from the
centroidal axis instead of distance y from the neutral axis. Sub-
stituting y1 — e instead of y into equation (g) (p. 67), we obtain

Myi—e My
""=A¢,=(R——y1)_AR(mv"I)’ (8)

where v is the distance of the point from the axis through the center
of curvature of the axis of the bar, Fig. 48.

Equation (d) is the basis of a graphical determination of
the quantity m for cases in which the shape of the cross
section cannot be simply expressed analytically. It is seen
that in calculating the modified area from eq. (d) every
elemental area must be diminished in the ratio y;/(R — y1).
This can be done by retaining the width of the elemental
strips but diminishing their lengths in the above ratio (Fig.
53). In this manner the shaded area in the figure is obtained.

Fic. 3.

The difference between the areas CDF and ABC gives the
modified area m4. Knowing this, the quantities m and ¢ can
readily be calculated.

The theory of curved bars developed above is applied in
designing crane hooks.® In Fig. 54 is represented the working
portion of a hook of a constant circular cross section. It is

& A theoretical and experimental investigation of crane hooks was
recently made by the National Physical Laboratory in England. See
the paper by H. J. Gough, H. L. Cox and D. G. Sopwith, Proc. Inst.
Mech. Engrs., December 1934. The comparison of the theoretical
stresses in hooks of a rectangular cross section with experimental results
is given in the paper by K. Béttcher, Forschungsarbeiten, Heft 337,
Berlin, 1931.
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assumed that the vertical force P is passing through the
center of curvature O of the axis of the hook. The maximum
bending stress occurs in the cross sec-
tion perpendicular to the load P.
Then, proceeding as explained in the
preceding article, we find that on the
horizontal cross section of the hook
the tensile force P, applied at the cen-
ter C of the cross section, and the bend-
ing moment M = PR are acting. Com-
bining direct and bending stresses and
using equation (80) for the latter, we
obtain

o,z=_}3+_‘n£(:y_1._1): Py .
Fie. 4. 4" AR\ mv Amy

Applying this formula to the most remote points, for which

Yy = :i:{;-, we find that

P p
(0o)mex = 7 B = 472) 5

(02)min = — 4 wmERFAD (81)

It is seen that the numerically largest stress is the tensile
stress at the intrados, which is obtained by multiplying the
stress P/A by the stress factor:

A
C R = (82

the magnitude of which depends on the ratio 4/2R. Using
expression (78) for m, we find that % varies from 13.5 to 15.4
as the ratio 4/2R changes from 0.6 to 0.4.7

7 At 2/2R = 0.6 the factor £ has its minimum value.
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Problems
1. Determine the ratio of the numerical values of omax and
omin for a curved bar of rectangular cross section in pure bending if
R = gin.and 4 = 4 in.
Solution. From eq. (66) the ratio is Aic/ha. The distance of
the neutral axis from the centroid, from eq. (72), is

Lt EN R . ;
e—412><5[1+15(10> ]—0.2781n.

Then A = 2 — 0.278 = 1.722 in; A = 2 4 0.278 = 2.278. The
above ratio is

1722 X 7

= 1.75.
2.278 X 3 75
2. Solve the previous problem, assuming a circular cross section.
Answer.
. 4 1.792
e=o0.208in; — = L7921 - 1.89.

3. Determine the dimensions &, and 43 of an I cross section
(Fig. 51) to make omex and omin numerically equal, in pure bending.
Givenfi = 1in,fy = 2in,fs = 1in,a = 3in, b = 1in, b1 + &3
= §in.

Solution. From egs. (66),

h ke r—a c¢—r

or = ’
a < a ¢

from which
_2ac 2X3X7
Tadc 3+7

Substituting into eq. (75),

r = 4.20 in,

_ 7 ,
420 = 7 Togn 4/3 + 1-log 6/4 + (5 — &1) log. 7/6

from which

7

ZQ—O — I -logn 6/4,

bilogn 4/3 + (5 — &1) logn7/6 =

0.2884; + 0.154(5 — &) = 1.667 — 0.406 = 1.261 in.,
b = 3.67 in; by = 5§ — 3.67 = 1.33 in.
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4. Determine the dimension &, of the 1 section (Fig. 50) to
make omax and omin numerically equal in pure bending. Given
Ji=1in,fp=3in, b = 1in,a = 3in.

Answer. & = 3.09 in.

5. Determine opax and oy, for the trape-
zoidal cross section m# of the hook repre-
sented in Fig. 55 if P = 4,500 lbs., 4 = 1
in, bp=%in,a=11in., ¢ = 5 in.

Solution. From eq. (73),

m Q 3750
P r=T3 3 1
2 >< _— 8 ps
E ‘ 1g 558X14logns/1%_(1%_%
| 31
b —al | __ 3759 .
bz, | —kd ~ T80 = 2.373 in.
p—c ——}_f
Fie. 33, The radius of the center line
bl + 2&2 A
R = .- =2, in,
a+é1+bz 3 2.734 1n

Therefore, ¢ = R —r = 0.361 in.; by =r — g = 2.373 — 1.250 =
LI23ing e = ¢ — 7= 5§ — 2.373 = 2.627 in.; Ae = 375 X 0.361
= 1.35; M = PR = 12,300 lbs. ins. The bending stresses, from
eqs. (66), are

12,300 X 1.123

(02)mex = 135 X 125 = 8,200 lbs. per sq. in.
12, X 2.62
@Jmin = — B2 4,800 lbs. per sq. in.

1.35 X 3

On these bending stresses, a uniformly distributed tensile stress

P/d = 4,500/3.75 = 1,200 lbs. per sq. in. must be superposed.
The total stresses are

Imax = 8,200 + 1,200 = 9,400 lbs. per sq. in.,
Tmin = — 4,800 + 1,200 = ~ 3,600 lbs. per sq. in.

6. Find the maximum stress in a hook of circular cross section
if the diameter of the cross section is 2 = 1 in., radius of the central
axis R = 1 in., and P = 1,000 lbs.
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1000
0.785

7. Find omax and omin for the curved bar of a circular cross
section, loaded as shown in Fig. 56,if 2 = 4in., R = 4in.,e = 4 in.,,
and P = 5,000 lbs.

Answer.  omax = 10,650 lbs. per sq. in.,

: P
Omin = — 4,080 lbs. per sq. in.

8. Solve the preceding problem assuming ]
that the cross section mn has the form shown h‘fn
in Fig. 50 with the following dimensions e
a=2in,d =3in,c=9in, b =4in, by=1

Answer. k = 13.9, Omax = 13.9 = 17,700 lbs. per sq. in.

in.,, ¢ = 4in., and P = 4,000 lbs. e—& —n
Answer.  omex = 3,510 lbs. per sq. in.; L[4
omin = — 1,800 lbs. per sq. in. Fig. s6.

9. Solve problem 7 assuming that the cross
section 7 is trapezoidal, as in Fig. 49, with the dimensions ¢ = 2
in., ¢ = 4-1/4in., by = 2in,, b, = 1in,, ¢ = o, and P = 1.25 tons.
Answer.  omax = 3.97 tons per sq. in.; omin = — 2.33 tons per
sq. in.

13. Deflection of Curved Bars.—The deflections of curved
bars are usually calculated by the Castigliano theorem.® The
simplest case is when the cross-sectional dimensions of the bar
are small in comparison with the radius of curvature of its
center line. Then the change in the angle between two
adjacent cross sections is given by eq. (67), analogous to

eq. (a), p. 150, Part I, for straight bars,
-=@ and the strain energy of bending is
P given by the equation

s M?ds
U = A EE——L’ (83)
V# _—R—T_ ~ in which the integration is extended

along the total length 5 of the bar.
Equation (83) is analogous to that (187)

8 See p. 308, Part 1.
® The case in which the cross-sectional dimensions are not small is
discussed in problem 6, p. 87.
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(see Part I) for straight beams,® and the deflection of the

point of application of any load P acting on the bar in the
direction of the load is

1%
=35

As an example, take a curved bar of uniform cross section
‘whose center line is a quarter of a circle (Fig. 57), built in
at the lower end A4 with a vertical tangent and loaded at
the other end by a vertical load P. The bending moment
at any cross section mn is M = PR cos . Substituting in
eq. (83), the vertical deflection of the end B is

d (" M?Rde 1 (" dM

)

°=2P), 2EL ~EL) MzpRde
_ 1 i 7 PR3
TELJ, PRcostede = L

If the horizontal displacement of the end B is needed, a

horizontal imaginary load Q must be added as shown in the
figure by the dotted line. Then

M = PR cos ¢ + QR(1 — sin ¢)
and

oM
@ = R(I — sin (0).

The horizontal deflection is

(U 8 (™MRde 1 (™ M
61‘(aQ H*ano “oFI, T EILJ, MT?ER‘{‘D'

Q = o must be substituted in the expression for M, giving

I % (2 . 'PR3
o =T?T.,{O‘ PR? cos (1 — sin ¢)de = 2ET,

Thin Ring.—As a second example consider the case of a
thin circular ring submitted to the action of two equal and

0 The strain energy due to longitudinal and shearing forces can be
neglected in the case of thin curved bars. See p. 84.

N
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opposite forces P acting along the vertical diameter (Fig. 58).
Due to symmetry only one quadrant of the ring (Fig. 58, )
need be considered, and we
can also conclude that there
are no shearing stresses over
the cross section mn, and that
the tensile force on this cross
section is equal to P/2. The
magnitude of the bending mo-
ment M, acting on this cross
section is statically indeter-
minate, and we shall use the
Castigliano theorem to find it. It may be seen from the con-
dition of symmetry that the cross section m# does not rotate
during the bending of the ring. Hence the displacement cor-
responding to M, is zero and

dU
m = 0O, (ﬂ)

in which U is the strain energy of the quadrant of the ring
which we are considering. For any cross section mn; at an
angle ¢ with the horizontal the bending moment is 1!

Fie. s8.

M=Mo—§R(I—cos¢>) (%)

and
aM

dM,

Substituting this into expression (83) for the potential energy
and using eq. (a), we find :
d (MRdp 1 ([ dM
o=anl, sEre=wr) MagRie
-1
=ELJ,

x/2 P )
[ M, -—?R(I — cos qp)] Rdo,

1 Moments which tend to decrease the initial curvature of the bar
are taken as positive.
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from which

M, = Blj( 1 — ::r) = 0.182PR. 84)

Substituting into eq. (£},

M=£§(c03¢—%)- (c).

The bending moment at any cross section of the ring may be
calculated from this expression. The greatest bending
moment is at the points of application of the forces P.
Substituting ¢ = /2 in eq. (¢), we find

PR
M= —— = —0318PR. (85)

The minus sign indicates that the bending moments at the
points of application of the forces P tend to increase the
curvature while the moment M, at the cross section m#n tends
to decrease the curvature of the ring, and the shape of the
ring after bending is that indicated in the figure by the dotted
line.

The increase in the vertical diameter of the ring may be
calculated by the Castigliano theorem. The total strain
energy stored in the ring is

_ =12 M?Rd o
U= 4f0 2EI, °

in which M is given by eq. (¢). Then the increase in the
vertical diameter is

_dU 4 (™, dM
=7Pp~EL), Mzp Rde

PR3 7[2 2 2
=E_Izj(: (c05¢—7—r) de

x 2\ PR? PR?
=(z—; EIL =o49Fr (36

)
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For calculating the decrease of the horizontal diameter of the
ring in Fig. §8, two oppositely directed imaginary forces Q are

~applied at the ends of the horizontal diameter. Then by

calculating (3U/0Q) e—0 we find that the decrease in the
horizontal diameter is

2 i\ PR? PR3 ‘
51:(;'5)?1::0-13@7:' (87)

Thick Ring.—When the cross sectional dimensions of a curved
bar are not small in comparison with the
radius of the center line, not only the strain
energy due to bending moment but also
that due to longitudinal and shearing forces
must be taken into account. The change
in the angle between two adjacent cross sec- \‘1/

\
\/

. ~d
tions (Fig. 59) in this case, from eq. (65), 1s 7

_ Mde _ Mds
¢ = 4Ee¢ ~ AEeR

and the energy due to bending for the element between the two
adjacent cross sections is

Ad Fic. 9.

M?ds
2AEeR’ @)

The longitudinal force N produces an elongation of the element
between the twc adjacent cross sections in the direction of the
center line of the bar equal to Nds/AE and increases the angle do
by Nds/AER (:q. 68). The work done by the forces N during
their applicatioa is N2ds/24E. During the application of the forces
N the couples M do the negative work — MNds/4ER. Hence
the total energy stored in an element of the bar during the appli-
cation of the forces N is

dU, =

ﬂ’Ul = %MAd(p =

N2ds MNds ) ©
2AE =~ AER

The shearing force ¥ produces sliding of one cross section with
respect to another, of the amount a?ds/AG, where « is a numerical
factor depending upon the shape of the cross section (see p. 170,
Part I). The corresponding amount of strain energy 1s

al?ds

dU3= 2/{6 (f)
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Adding /), (¢) and (f) and integrating along the length of the bar,
the total energy of strain of a curved bar becomes

(M N MN are
U= fo (2dEeR todE " ZER T 2/1(;) s (88)

Let us use this equation to solve the problem represented in Fig.
57. Taking as positive the directions shown in Fig. 59, we have

M = — PR cos ¢;

[ = — Pcos ¢; V = Psin o,

where R is the radius of the center line. Substituting in equation

(88) and using the Castigliano theorem, we find the vertical de.
flection of the point B to be

dU PR (2 [ R cos? E
= = —— (—g—cosqu-{-%sin?qa)dga

" dP  AE J,
_PR(R ok
THME\: TG 1)
If the cross section of the bar is a rectangle of the width 4 and
depth 4, using for ¢ the approximate value (71) and taking & = 1.2,

E/G = 2.6,
5= mPR ( 12R? )
= 4_[E Tﬂ + 2.12 )

When % is small in comparison with R, the second term in the
parenthesis representing the influence on the deflection of Nand V

can be neglected and we arrive at the equation obtained before
(see p. 80).

The above theory of curved bars is often applied in
calculating stresses in such machine
elements as links and eye-shaped
ends of bars (Fig. 60). In such cases
a difficulty arises in determining the
load distribution over the surface of
the curved bar. This distribution
depends on the amount of clearance
between the bolt and the curved
bar. A satisfactory solution of the
problem may be expected only by

@)

Fic. 6o.
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combining analytical and experimental methods of investi-
1 12

gatlIO;1 .a recent paper  the particul.ar case of an eye-§haped
end of rectangular cross section, Fig. 60f, was investigated.
In this discussion it was assumed tha.t ‘there are no 'clear-
ances and that the bolt is absolutely I‘.lgld. The maximum
tensile stress occurs at the intrados in Fhe cross sections
perpendicular to the axis of the bar, and its magnitude can
be represented by the formula:

Omax = & ° -8_})— (g)

ot ’

in which P is the total tensile force transmitt'ed by the bar,
a is the numerical factor depending on the ratio ralrs b-etween
the outer and the inner radii of the eye, and # is the thickness
of the eye perpendicular to the plane of t}.le figure. Fzr alTi
equal to 2 and 4 the values of a are respectlvely. 4.30 and 4.39.
The values obtained from formula (g) are in satisfactory
agreement with experiments.'*

Problems

1. Determine the vertical deflection of thq f:nd B of the tll}m
curved bar of uniform cross section and semicircular center line

(Fig. 61).

2 For a theoretical investigation of the prﬁ)blem, see H. Rel.ssner,
]ahrbfcoh der wissenschaftlichen Gesﬁf‘ellsl;}lla.fth fl’gh;t{zfi};gt,l?,::f};nilzz
J. Beke, Der Eisenbau, 1921, p. 233; Fr. Bleich, chnung

i i . 256; Blumenfeld, V. D. 1., 1907, an
(Ir:nils'Vl.grlgc.k(I:.r:, 1199028“:,;5 3957. Experiments have been .r'nade .by Dr.
Math;r, Forschungsarbeiten nr. 306, 1928; see also D. RuMlll,VDlsse;;;-
tion, Danzig, 1920; Preuss, V. D. 1., Vo.l. 55, 1911, p. '1(;73(;: k.r ?‘rgﬁotoi
Bulletin of Polytechnical IFI‘]Stltilll'te’IKlfw’I 129510; E. G. Coker,

icity,” of the Franklin Inst., 1925.
elasi}"cg?’,l{e‘i]:s:rer;atllnd Fr. Strauch, Ingenieur Archiv, vol. 4, 1933, p- 381.

14 See G. Bierett, Mitt. d. deutsch. _Mat.-Prﬁf.-Amtes, 1931, sgn e;-
heft 15. The photo-elastic investigation of the eye-shape% l(zn ::Ols
made by K. Takemura and Y. Hosokawa, Rep. Aero. InSt"l’] o yo,a11 o‘f
18, 1926, p. 128. See also M. M. Frocht and H. N. Hill, %oilrn  of
Applied Mechanics, vol. 7, p. 5. In the_latter paper the effect of cleara
between the bolt and the hole is investigated.
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Solution. The strain energy of bending is

U - f” M?Rd o _ f" P’R}(1 — cos ¢)?Rdy
o 2EI, o 2E], ’

The deflection at the end is

dU PR3 f” < 3w PR?
= 2= 2t 3

= I — 227 —_ 2 .

dP EL J, ( cos ¢)*de 2 EJ,

P
C
: T
2R
: 1
P 2]
17 —

Fic. 61. Fic. 6a.

2. Determine the horizontal displacement of the end B in the
previous problem,
Answer.
5 PR
T EI
3. Determine the increase in the distance between the ends .7

and B of a thin bar of uniform cross section consisting of a semi-

gir)cular portion CD and two straight portions 4C and BD (Fig
2).

Answer.

_2P ﬁ T T
5_E12[3+R(;12+1R2+21R)]-

(<)
(a) A

Fie. 63.

CURVED BARS 87

4. A link consisting of two semicircles and of two straight
portions is submitted to the action of two equal and opposite forces
acting along the vertical axis of symmetry (Fig. 63). Determine
the maximum bending moment, assuming that the cross sectional
dimensions of the link are small in comparison with the radius R.

Solution. Considering only one quarter of the link (Fig. 63, &),
we find the statically indeterminate moment M, from the condition
that the cross section, on which this moment acts, does not rotate.
Then

daU
L=
Noting that for the straight portion M = M, and that for a curved
portion M = M, — (P/2)R(1 — cos ¢) and taking into considera-
tion the strain energy of bending only, we find

w41 (.,
I =AM, 2L ), Mo
L PR r ]
{from which
PR # — 2
MOzTQl—{-rR‘

For / = o, this coincides with eq. (84) obtained before for a circular
ring. The largest moment is at the points of application of forces
P and is equal to

PR
My=Mo— 5

5. Solve the previous problem, assuming that forces P are
applied as shown in Fig. 63 (¢).
Answer. The bending moment at points 4 is
_ £R2(7r —2)+ 2RI+ 2
YT mR + 2/

For / = o, the equation coincides with that for a circular ring.
For R = o, M, = Pl/4 as for a bar with built-in ends.

6. Determine the bending moment M, and the increase in the
vertical diameter of the circular ring shown in Fig. 58, assuming
that the cross section of the ring is a rectangle of width 4 and
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depth 4, which dimensions are not small in comparison with the
radius R of the center line.

Solution. If we use eq. (88) for the potential energy and eq. (4)
for the bending moment, the equation for determining M, is

ﬂ_f’“ M NY
e~ ), \AE: " FE )¢ =S

PR 2 2
Mo = 2 - ™ + TR ’
Comparing this with eq. (84) we see that the third term in the
parenthesis represents the effect of the longitudinal force and of
the non-linear stress distribution. The magnitudes of the errors in
using the approximate eq. (84) instead of the above accurate
equation are given in the table below.

from which

Rk = 1 .5 2 3
¢/R = o.090 0.038 0.021 0.009
Error in 9, = 15.8 6.7 37 1.6

It can be seen that in the majority of cases the approximate eq.
(84) can be used for calculating M, and that the error is substantial
only when % approaches R or becomes larger than R.
The increase in the vertical diameter of the ring is obtained
from equation
au
6= ——=.
dpP
Using eq. (88) for U and substituting in this equation

PR P P
M= M, —— (1 — cos ¢); = —Cos ¢; V = ——sin o,
2 2 2
we find

5'_PR21_3( il ey _r] mEe
T4 5 <\ TR)TR|Z\UTR) st GR|
Comparison with eq. (86) shows that the effect of the longitu-

dinal and of the shearing forces on the magnitude of 8 is usually very
small.!s

18 A more accurate solution of the problem shown in Fig. 58 is given
by the author; see Bulletin of the Polytechnical Institute in- Kiew, 1910;
see also Phil. Mag., Vol. 44, 1922, p. 1014, and “Theory of Elasticity,”
p- 119, 1934. This solution shows that the above theory, based on the
assumption that cross sections remain plane during bending, gives very
satisfactory results.
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7. Determine the bending moments in a thin ring with two
axes of symmetry submitted to the action of a uniform internal

ressure p.
P Solut‘zz')on. Consider one quadrant of y
the ring (Fig. 64), with semi-axes 4 and
4. If M, represents the statically indeter- o/ ]
minate moment at 4, the bending moment
at any cross section C with coordinates x J b
and y is i

(s 2" Al |

M= Mo—])a(a—x)-i‘p S T x AN PP

Pﬂ2 sz M () pa
=MO~—2—+T+ 2 ' & Fic. 64.

Substituting into equation dU/dM, = o, we find
2
(Mo —*’i:—).c +2a+1) =0,

in which s denotes the length of the quadrant of the ring,
[ I, = f %ds.
I, = j; yds and v | wds

Mo =22 - 21,4 1,). (")

Then

If the ring has the shape of the link shown in Fig. 63, with 2 = R
and b = / + R, we obtain

Ta
s=b—a+3

I T2 — g2 L (6 — a);
I,=§(b—a)3—|—2(b a)+4a+2a( a)
3
L= (-as+"

Substituting into eq (),

_p? P |l T 2(p— _|_I b—a){l'
M°~—_2—_2é+(7r—2)a[3(b a)—l—za—i—ga( a) 2a(

The bending moment at any other cross section may now be ob-
 tained from eq. ().
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_For an elllp.tical ring the calculations are more complicated.®
Usmg the notations 7, + I, = aa®, M, = — Bpa®, the moment :at
B (Fig. 64) = M, = ypa?, and the values of the numerical factors
a, f and v, for different values of the ratio /4, are as given in the

table 5 below:

TasLE 5. Constants ror Carcurating ELvipricar Rings

alb = 1 0.9 0.8 0.7 0.6 0.5 0.4 o.3
a. L Lg71 | 1663 | 1.795 | 1.g82 | 2.273 | 2735 | 3.559 | 5.327
B.......... o 0057 | 0133 | 0.237 | 0.391 | 0.629 | 1049 | 1.927
L P o 0.060 | 0.148 | 0.283 | 0.498 | 0870 | 1.576 | 3.128

8. A flat spiral spring (Fig. 65) is attached at the center to a
splr_ldle C. A couple M, is applied to this spindle to wind up the
spring. It is balanced by a horizontal force P at the outer end
of the' spring 4 and by the reaction at the axis of the spindle
Establish the relation between M, and the angle of rotation of the-
spindle if all the dimensions of the spring are given. It is assumed
that the angle of twist is not large
enough to cause adjacent coils to touch
each other.

Solution. Taking the origin of co-
ordinates at 4, the bending moment at
any point of the spring at distance y
from the force P is M = Py. The
change in the angle between two adja-
cent cross sections at the point taken,

from eq. (67), is

El, - EI, Fic. 65.

The total angle of rotation of one end of th i i
to the other during winding is © Spring wih respect

_ (TPyds P (¥
$= ) EL “Efz.oyd" (%)

¢ See J. A. C. H. Bresse, Cours de Méchanique appliqué

Paris, 1880, p. 493. See, also, H. Résal, Journal deqMatlE).p(I?il;i%iﬁS) ((325’
Vol. 3, 1877; M. Marbec, Bulletin de |’Association Technique Maritime,
Vol. 19, 1908; M. Goupil, Annales des Ponts et Chaussées, Vol. 2 1912,
p- 386, and Mayer Mita, V. D. 1., Vol. 58, 1914, p. 649. ’W. F i?»urke,
Nat. Adv. Com. Aeron., Techn. Notes, 444, 1933. ) ’
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The integral on the right side of this equation represents the mo-
ment of the center line of the spring with respect to the axis.
This moment is obtained by multiplying the total length s of the
spiral by the distance of its center of gravity from the » axis. In
the usual case, it is sufficiently accurate to take this distance equal
to r, the distance from the center of the spindle to the force P.

Then, from eq. (&),
Prs Mys (/)

If the end A is pin-connected, the turning moment Mo applied at ¢
produces a reactive force P at fixed end A of the spring. As long
as the thickness of the spring is very small and the number of
windings of the spiral is large and the coils do not touch, the above
assumption that the force P remains horizontal can be considered
as sufficiently accurate; hence eq. (/) holds.”

9. Assuming that the spring represented in Fig. 65 is in an
unstressed condition and pin-connected at 4, determine the maxi-
mum stress produced and the amount of energy stored in the spring
by three complete turns of the spindle. Take the spring to be of
steel,  inch wide, # inch thick and 120 inches long.

Solution. Substituting the above figures into eq. 0,

30 X 108 X %

b

6w = Mo,

from which M, = 3.07 lbs. ins.
The amount of energy stored is

s P P o
— - 2 [ — 2 i
v fo 2E] aElfo s = 5K (” * )

= 36.1 lbs. in.

The maximum bending stress is at point B, where the bending
moment can be taken equal to 2Pr = 2My, then

Omax = 3:07 X 2 X 402 X 6 X 2 = 118,000 lbs. per sq. in.

17 A more complete discussion of the problem is given in the book
by A. Castigliano, “Theorie d. Biegungs-u. Torsions Federn,” Wien,
1888. See also E. C. Wadlow, “Engineer,” Vol. 150, p. 474, 1930, and
J. A. Van den Broek, Trans. A. 8. M. E., Vol. 53, p. 247, 1931.
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10. A piston ring of a circular outer boundary has a rectangular
cross section of constant width 4 and of a variable depth % (Fig.
" 66). Determine the law of variation of the

depth % to obtain a ring which, when as-
\ sembled wgth the piston in the cylinder, pro-
2 duces a uniformly distributed pressure on the

cylinder wall.

_Solution. Let r denote the radius of the
c.ylmc!.er, and r 4 & the outer radius of the
ring in the unstrained state. An approxi-

Fic. 6€6. mate solution of the problem is obtained by

' ) using the outer radius of the ring instead of
the variable radius of curvature of its center line. Then by usin
eq. (67), the change in curvature due to bending is ’ s

Adp 1 _ 1 M
ds —r r+s  EI (@)
The bending moment 37 produced at any cross section m# of the

ring by the pressure p uniformly distributed over the outer surface
of the ring is

—- — 10 ?
= — 2pbr? sin? 5 (%)
If we substitute this into (2) and take br3/12 for I and use §/72

instead of (1/7) — 1/(r + 8) (for a small §), th .
tion for calculating % is obtained: small &), then the following equa-

8 _p2urt . o
P TE W Sy ©)
from which
D 247 o
3 — £ T —_
A= 75 sin? , (@)
Letting ¢ = 7, the maximum value of 4%, denoted by A, is
e
C=F"s - (e)

The maximum bending stress at any cross section m# is
G = M 12pr%sin? (¢/2)
z - A2 ) )

From (f) and (d) it may be seen that the maximum bending stress
occurs at ¢ = T, i.e., at the cross section opposite to the slot of the
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ring. Substituting & = Ao and ¢ = 7in eq. (f),

12p7°
Omax = }l]o; > (g)

from which %, can be calculated if the working stress for the ring
and the pressure p are given. The value of 8 is found by substi-
tuting Ao into eq. (e).

It may be noted that if two equal and opposite tensile forces
P be applied tangentially to the ends of the ring at the slot they
produce at any cross section 77, the bending moment

— Pr(1 — cos ¢) = — 2Prsin? ¢/2,

i.e., the bending moment varies with ¢ exactly in the same manner
as that given by eq. (6). Therefore, if the ends of the open ring
be pulled together, and in this condition it be machined to the
outer radius 7, such a ring will, when assembled, produce a uniform
pressure against the wall of the cylinder.'®

Determine, for example, 8 and 4, for a cast iron piston ring if
r = 10 in., o, = 4,200 lbs. per sq. in., p = 1.4 lbs. per sq. in., and
E = 12 X 10° lbs. per sq. in. Substituting in eq. (g), we find
ho = 0.632 in. From eq. (¢), 8 = o.I111 in.

11. Derive formula (87), given on p. 83.

12. Experience shows that the insertion of a stud in a chain
link considerably increases its strength. Find the bending moment
M at the points of application of the loads P and the axial com-
pressive force 2H in the stud for the link shown in Fig. 63.

Solution. Since in the case of a stud the horizontal cross section,
Fig. 634, does not move horizontally and does not rotate, the
statically indeterminate quantities Mo and H are found from the
equations:

U g U_
M. o an aH — o,
from which
PR
M, = ~ 1 —a) and H= 5;'13,

18 This theory was developed by H. Résal, Annales des mines, Vol.
5, p. 38, 1874; Comptes Rendus, Vol. 73, p. 542, 1871. See also E.
Reinhardt, V. D. I, Vol. 45, p. 232, 1901; H. Friedmann, Zeitschr. d.
Osterreich. Ing. u. Arch. Verein, Vol. 6o, p. 632, 1908, and V. D. L,
Vol. 68, p. 254, 1924.
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where 12
_ (m 4 2)[m® + 6m® + 12(4 — m)m + 48(r — 3)]
m* 4+ qrm® + 48m? + 247wm + 24(x? — 8) ’
12(m + 2)[(m — 2)m + 2(4 — 7)]
mt 4+ g4mm® + 48m® + 247m + 24(x? — 8)°

B:

P m =

=) ~

13. Find bending moment M, and
tensile force H in the cross section A4 of
the symmetrically loaded circular ring
shown in Fig. 67.

Answer.
H=PpP= atana,
PR
My, = —-2*7;_‘[1 + sec o

Fic. 67.
7 — (r — a) tan a].

14. Arch Hinged at the Ends.—Figure 68 shows an arch
with hinged ends at the same level carrying a vertical load.
The vertical components of the reactions at 4 and B may be
determined from equations of equilibrium in the same manner
as for a simply supported beam, and the horizontal com-

FiG. 68.

ponents must be equal ahd opposite in direction. The
magnitude H of these components is called the thrust of the
arch. It cannot be obtained statically, but may be de-

19 See paper by H. J. Gough, H. L. Cox and D. G. Sopwith, loc.
cit. p. 735.
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termined by use of the theorem of Castigliano. In the case of
a flat arch, the two last terms in the general expression (88) for
the strain energy can be neglected and for usual proportions
of arches the product #¢R can be replaced by the moment of
inertia I, of the cross section. The equation for calculating

H is then

dH dH (zEI + QAE) ds = o (@)

The bending moment at any cross section m# of the arch can
be represented by

M = MO—H_)’, (b)

in which M, is the bending moment calculated for the corre-
sponding section of a simply supported beam having the same
load and the same span as the arch. The second term under
the 1ntegral sxgn of eq. (a) represents the strain energy due to
compression in the tangential direction and is of secondary
importance. A satisfactory approx1mat10n for flat arches is
obtained by assumlng this compression equal to the thrust H.
Substituting expression (4) and N = H in'eq. (a) we obtain

_ f (M, — Hy)_yds N f Hds _

sZ‘fo_’}’d.f
El
—_— 0 z .
H="typss (" d 39
| EL Y ), 4E

from which

Wor an arch of constant cross section, using the notation
k2 = I./A, eq. (89) becomes

f Mode
f yids + k2 f ds

The second term in the denominator represents the effect of

(90)
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the shortening of the center line of the arch due to the longi-

tudinal compression. In many cases it is small and can be
neglected. Then

fMo_yds
/0
=T (91)
fy%
0

Takfa, for example, the case of a parabolic arch carrying a
continuous load uniformly distributed along the length of the
span with a center line given by the equation:

H

x(] — x
y = "% . (c)
Then
Substituting (¢) and () into eq. (91), we obtain
_ 4~
H = s ()

The actual thrust, H, will be less than that obtained from
eq. (¢). To give some idea of the possible error AH, the ratios
(AH)/H for various proportions of arches are given in the
Table 6 below.? In calculating this table the whole expres-

TaBLE 6
_f_ _ 1 I 1
/ 12 8 ;
é‘= I I 1 T I 1 I 1 I
/ 10 20 30 1o 20 30 0 20 ;
AH
T = O.1771 | 0.0§13 10,0235 | 0.0837 | 0.0224 | 0.0101 | 0.0175 | 0.00444 | 0.00198

2 See author’s paper, “Calcul des Arcs Elasti » Pari
Béranger, Ed. ques, aris, 1922.
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sion (88) for strain énergy was used and it was assumed that
for any cross section of the arch
A EI
A = o . E[z — 0

cos ¢’ cos ¢’

where 4, and EI, are respectively the cross sectional area and
the flexural rigidity of the arch at the top, ¢ is the angle
between the cross section and the y axis and 4 is the depth of
the cross section at the top. Equation (¢) was used in calcu-
lating the value of H in the ratio AH/H.

This shows that the error of equation (¢) has perceptible mag-
nitude only for flat arches of considerable thickness.

As the supports of the arch are a fixed distance apart, a
change in the temperature may produce appreciable stresses in
the structure. To calculate the thrust due to an increase in
temperature of # degrees, we assume that one of the supports is
movable. Then, thermal expansion would increase the span
of the arch by Jaf, where « is the coefficient of thermal ex-
pansion of the material of the arch. The thrust is then
found from the condition that it prevents such an expansion by
producing a decrease in the span equal to a/i Using the
Castigliano theorem, we obtain

AU d (=( M* N?

dH = Zﬁfo (QEIZ + QAE) ds = al. (f)
Taking only the thermal effect and putting M, = oand N = H,
we obtain from (f)

alt
Y& (A
EL T ), 4E

H =

(92)

A more detailed study of stresses in arches may be found in
books on the theory of structure.”

% Johnson, Bryan and Turneare, “Modern Framed Structures,”’
Part II. See also Weyrauch, “Theorie d. Elastischen Bogentrager™;
E. Mérsch, “Schweizerische Bauzeitung,” Vol. 47.
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15. Stresses in a Flywheel.—Due to the effect of the spokes,
the rim of a rotating flywheel undergoes not only extension but
also bending. We take as the free body a portion of the rim (Fig.

m
X /% B 4 Mo
x A | B
Ny / // uz
2a \ R /'?‘/
\ /
|
\f'a,‘q‘\‘// /b)
\ [/
\ // //
@) \\ 7
\/4

Fia. 69.

69, &) between two cross sections which bisect the angles between
the spokes. Let

R = the radius of the center line of the rim
A = the cross sectional area of the rim

A, = the cross sectional area of a spoke

I = moment of inertia of the cross section of the rim
20 = the angle between two consecutive spokes

g = the weight of the rim per unit length of the center line
¢1 = the weight of a spoke per unit length

w = the angular velocity of the wheel.

From the condition of symmetry there can be no shearing stresses
over the cross sections 4 and B and the forces acting on these
cross sections are reducible to the longitudinal force Ny and the
bending moment A4,. If X denotes the force exerted by the spoke
on the rim, the equation of equilibrium of the portion 4B of the
rim is

. aNysina + X — 2Rﬂsina§w2 = 0,

from which

x

_ 7 apr .
o gw R 2 sin o (a)
The longitudinal force N at any cross section mn is
2R . 2R2 X
NZN()COS(p—{—ZB——QRSanE:fE____ C.OSga. [ﬁ)
£ 2 £ 2 sin @
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The bending moment for the same cross section is
2 3

R XR
M = Mo—NoR(1 —cos ¢)+ qwg

.. P ., P
2 sin?— = M, ; sin?= . (¢
2 0+slna 2 ()

The force X and the moment M, cannot be determined from the
equations of statics but are calculated by use of the theorem of
least work. The strain energy of the portion 4B of the rim is 2

« M2Rd ¢ * N2Rd o
(]1=2‘f0V oE] +2£ 2 EA : (d)

The tensile force N; at any cross section of the spoke at distance r
from the center of the wheel is 2*

_ 91 o o,
Ni= X+ 2 (R — %),

hence the strain energy of the spoke is

B N2dr
Us = fo 2 AE ©
The equations for calculating M, and X are
d
-_— = (
oM, (Ui + Us) = o, f
a
5)_{((]1 + Uy) =o. (g
Substituting (4) and (¢), we obtain, from eqs. (f) and (g),
XR I I
M"z—T(si—n; ;), (93)
2 qu’R? . I
X = 3 g AR? ) (94)

A
A+ h@+ G

I sin 2a  «
fl(a)zzsin%c( 4 +3)’
1 sin 2a  « 1
f2(a)=23in2a( 4 +E)—2_a;

2 Tt is assumed that the thickness of the rim is small in comparison
with R and only the energy of the bending and tension is taken into
account.

2 The length of the spoke is taken equal to R. In practice it will
be somewhat less than R.

in which
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several values of the functions fi and f,, for various numbers of
spokes, are given in the table 7 below.

TasLE 7
n= 4 6 8
Sile) 0.643 0.957 1.274
Jela) 0.00608 0.00169 0.00076

From this table the force X in the spoke is determined from
eq. (94) and the bending moment M, from eq. (93). Then the
longitudinal force and bending moment for any cross section mn
of the rim may be found from eqs. (2), (4) and (¢).

Take, as an example, a steel flywheel making 600 r.p.m., with
radius R = 60 in., cross section of the rim a square 12 X 12 sq.
in., and with six spokes of cross sectional area 41 = 24 sq. in.
The rim is considered as a rotating ring which can expand freely;
then the tensile stress due to centrifugal force is, from eq. (15), Part1,

o0 = 0.106 X w? X R? = 0.106 X 62.8%2 X 5% = 10,450 lbs. per sq. in.

In the case of six spokes, @ = 30° fi(a) = 0.957, fa{a) = 0.00169.
Then the force in each spoke is, from eq. (94),

_ 2gqu’R? I — o008 gquwrR?
T3 g 300 X 0.00169 + 0.957 + 6 00893 T

The longitudinal force for the cross section bisecting the angle
between the spokes is, from eq. (4),

2R2 2R2 2R2
Ny = qwg — 0.0893 qwg = 0.911 r=.
The bending moment for the same cross section, from eq. (93), is
) 2 2
My = — 0.242 A

2 The above theory was developed by R. Bredt, V. D. L., Vol. 45
(1901), p. 267, and H. Brauer, Dinglers Polytechn. Journ., 1908, p. 353,
see also J. G. Longbottom, Inst. Mech. Eng. Proc., London, 1924, p. 43;
and K. Reinhardt, Forschungsarbeiten, nr. 226, 1920. A similar problem
arises when calculating stresses in retaining rings of large turbo-generators,
see E. Schwerin, Electrotechn. Ztschr. 1931, p. 40.
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The maximum stress at this cross section is
A )
Omax = — — —, = 10,780 lbs. per sq. in.

For the cross section of the rim at the axis of the spoke, eqs. (5)
and (¢) give
qu*R? w?R?

(N)p—a = 0.923 s (M) g=a = 0.476 ;

The maximum stress at this cross section is
Omax = 12,100 lbs. per sq. in.

In this case the effect of the bending of the rim on the maximum
stress is small and the calculation of the stresses in the rim, as in a
free rotating ring, gives a satisfactory result.

16. Deflection Curve for a Bar with a Circular Center
Line.—In the case of a thin curved bar with a circular center
line the differential equation for the deflection curve is analo-
gous to that for a straight bar (eq. 141, p. 182, Part I). Let
ABCD (Fig. 70) represent the center line of a circular ring
after deformation and let # denote the small radial displace-
ments during this deformation. The variation in the curva-
ture of the center line during bending can be studied by
considering one element m# of the ring and the corresponding
element my; of the deformed ring included between the same
radii (Fig. 70, #). The initial length of the element m# and
its initial curvature are

ds = Rde; S =5 =75" (a)

For small deflections the curvature of the same element after
deformation can be taken equal to the curvature of the element
miny. This latter is given by equation:

1 do + Adp
R, ds ¥+ Ads’ ()
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in which dy + Ady denotes the angle between the normal
cross sections #z2; and 7, of the deformed bar and 4s 4 Ads the

Fic. 0.

length of the element m,7:.  The displacement # is considered
positive if towards the center of the ring and is assumed to be
very small in comparison with the radius of the ring. Then
the angle between the tangent at m; to the center line and the
normal to the radius m;o0 is du/ds. The corresponding angle
at the cross section 7, is

du d*u

+ds ds.
Then
d*u
Adp = d—sgds. ©

In comparing the length of the element mn, with that of the
element mn, the small angle du/ds 1s neglected and the length
min; is taken equal to (R — #)de. Then

uds

Ads = — udp = - (@)
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Substituting (¢) and (d) into eq. (4), we obtain

d2
. dso+d2

Ry dJ(I _]_Lé)

or neglecting the small quantities of higher order,

I de u
E=E(I+Te)+ds ( +R)+d52’

from which
I I d*u \
R R™ B g (e)

The relationship between the change in curvature and the
magnitude of bending moment, from eq. (67), for thin bars is

1 1 M
r_r__M (
R TR TE )

The minus sign on the right side of the equation follows from the
sign of the bending moment which is taken to be positive
when it produces a decrease in the initial curvature of the bar
(Fig. 47). From (¢) and () it follows that

d*u u M
W+—E5= ~ % (95)

This is the differential equation for the deflection curve of
a thin bar with circular center line. For an infinitely large R
this equation coincides with eq. (79), Part I, for straight bars.
As an example of the application of eq. (95) let us
consider the problem represented in Fig. §8. The bending
moment at any cross section m7, is, from eq. (¢), p. 82,

PR 2
M=—- COW—;)’

and eq. (95) becomes

du u PR (2 )
2 TR aEI\ 7 T o8
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or

d*u PR3 (2

d_g02+u=;E—[ ;'—COS@ .

The general solution of this equation is

. PR® PR .
u—dcos¢+331nqa+m—mgp51n¢.

The constants of integration 4 and B here are determined
from the condition of symmetry

du T
o= 9 for ¢ =0 and for =73

which are satisfied by taking

PR3
B = 0; /f = - Ej— .
Then
_ PR PR’ PR’

_El7r_4IE—I¢Sln¢_4_E_ICOS‘p'

For ¢ = 0 and ¢ = /2, we obtain

(x) _P_@E<l 1). _PR(1 w
Do = gr(z=3)s  @emn= 5 (1-5):

These results are in complete agreement with eqs. (86) and
(87) obtained before by using the Castigliano theorem.?

17. Deflection of Bars with a Small Initial Curvature.—If a
bar with a small initial curvature is bent by transverse forces only,
the deflections may be calculated by the method used for a straight
bar. The conditions are quite different, however, if there are longi-
tudinal forces in addition to the transverse forces. A small initial
curvature makes a great change in the effect of these longitudinal
forces on the deflection. The solution of this involved problem
may be greatly simplified by using trigonometric series for repre-
senting the initial shape of the curve and the deflection due to

% Differential eq. (95) for the deflection of a circular ring was
established by J. Boussinesq; see Comptes Rendus, Vol. 97, p. 843,
1883. See also H. Lamb, London Math. Soc. Proc., Vol. 19, p. 365,
1888. Various examples of applications of this equation are given in
a paper by R. Mayer in Zeitschr. f. Math, u. Phys., Vol. 61, p. 246, 1913.

CURVED BARS 105

bending.2® Itis assumed, as before, that the curved bar has a plane
of symmetry in which the external forces act and the bar is taken
as simply supported at the ends. Let y, denote the initial ordinates
of the center line of the bar, measured from the chord joining the
centroids of the ends, and y; the deflections produced by the exter-
nal forces, so that the total ordinates after bending are

Y= Yoty (a)
Let the initial deflection curve be represented by the series
y0=blsin”—7+5gsin—2l;—’f+--. )
and the deflection produced by the load be
y1=alsin‘£;+a2sin2[ﬂ—l-~--. (c)

In this case the same expression (53) for strain energy can be
used as for straight bars. Taking the loading shown in Fig. 35,
it is necessary in calculating the work done by the longitudinal
forces § to replace the quantity A (see eq. §6) by

Tdyi+ 50 T NI
whe=d [—7— =y | () &
2 o b
= T (2 Z 1% anbn + Z nzaﬂz)' (96)
4 n=1

This represents the longitudinal displacement of one end of the
curved bar with respect to the other during deflection.

We proceed as in the case of straight bars (p. 48) and give
to the bar an infinitely small additional deflection da, sin (nmx/l).
The work done by the longitudinal forces § during this deflection is

N\ — No)
§ da,

The work done by the load P is

P sin ?;—C da,

and the increase in strain energy, from eq. (53), is

4
E—zl[:— niandan.

nin?
da, = § >y (an + b.)da,.

26 See author’s paper, Festschrift zum siebzigsten Geburtstage A.
Foppl, p. 74.
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The equation for calculating &, is

Elxmt . Hwc nix?
RS § p— - [
Y anda, = P sin 7 da, + § Y, (@n + br)dan,

from which
2PB sin ”—}r‘ + Smentlh,
Elrtnt — Snin2l?

an, =

Substituting into expression (¢) and using the notation,

Se_
Elrr~— %
L TE G TE 2T o
| _2P/3 smlsm l+sm [sm i
')I_EIW“ I —a 2t — 2%
blsinz; égsing%x
+a 1—a+ 22—a+”. ) (97)

The first member of the right side of eq. (97) represents the deflec-
tion of a straight bar (see eq. §8), while the second gives the addi-
tional deflection due to the initial curvature.

Take, for example, a bar which has an initial deflection -

3o = & sin (wx/l). The maximum deflection is at the middle of the
span and is equal to 4. If only the longitudinal forces § act on
the bar (P = o), the deflection at the middle produced by these
forces is obtained from eq. (97) by substituting P = o; 4, = &;
bg=bs="'=0. Then

ozbsi‘nlrlf
=T oa @)

The total ordinates of the center line after bending are

. WX
ab sin —
™ b ™

)’=y1+y0=1—_—;—+ésin7= I—aSinT”" (98)

Due to longitudinal compressive forces § the ordinates of the center
line increase in the ratio 1/(1 — &), i.e., the increase of ordinates
depends upon the quantity o, which is the ratio of the longitudinal
force to the critical force. If, instead of compressive forces, longi-
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tudinal tensile forces act on the bar, it is only necessary to sub-
stitute —a instead of @ in the previous equations. In the particular
case in which yo = 4 sin (wx//) the ordinates of the center line after
deformation become

b N
Y= T xS T (99)

It is seen that the longitudinal tensile force diminishes the initial
ordinates. Taking, for instance, @ = I, i.e., taking the longitudinal
force equal to its critical value, we find

y = %ésinzr—;,

i.e., such a longitudinal force reduces the initial ordinates of the

bar by half.

18. Bending of Curved Tubes.—In discussing the dis-
tribution of bending stresses in curved bars (art. 11) it was
assumed that the shape of the cross section remains un-
changed. Such an assumption is justifiable as long as we have
a solid bar, because the very small displacements in the
plane of the cross section due to lateral contraction and ex-
pansion have no substantial effect on the stress distribution.
The condition is very different, however, in the case of a thin
curved tube in bending. It is well known that curved tubes
with comparatively thin walls prove to be more flexible during
bending than would be expected from the usual theory of
curved bars.?” A consideration of the distortion of the cross
section during bending is necessary in such cases.?®

Consider an element between two adjacent cross sections
of a curved round pipe (Fig. 71) which is bent by couples in
the direction indicated. Since both the tensile forces at the

*7 Extensive experimental work on the flexibility of pipe bends was
done by A. Bantlin, V. D. L, Vol. 54, 1910, p. 45, and Forschungs-
arbeiten, nr. g6. See also W. Hovgaard, Journal of Math. and Phys.,
Mass. Institute of Technology, Vol. 7, 1928, and A. M. Wahl, Trans.
Amer. Soc. Mech. Eng., Vol. 49, 1927.

28 This problem for the pipe of circular section was discussed by
Th. v. Karman, V. D. I, Vol. 55, p. 1889, 1911. The case of curved
pipes of rectangular cross section was considered by the author; see
Amer. Soc. Mech. Eng., Vol. 45, p. 135, 1923.
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convex side of the tube and the compressive forces at the
concave side have resultants towards the neutral axis, the
previously circular cross sections are flattened and become
elliptical. This flattening of the cross section affects the
strain of longitudinal fibers of the tube. The outer fiber aé
takes some position 2,4, after bending; denote its displace-

ment towards the neutral axis by §. The total elongation of
the fiber is

abr — ab = arhy — a1e, — (ab — ae). (a)

The angle between the adjacent cross sections ac and &d is
denoted by d¢, its variation during bending by Ade, the
radius of the center line by R, and the radius of the middle

surface of the tube by 4. It is assumed that the ratio 4/R is.

small enough that the neutral axis can be taken through the
centroid of the cross section. Then, from the figure we obtain

aiby — aer = (@ — 8)Ade = alAde.?®
The total elongation of the fiber @ as given by eq. (4) is
alAdp — ddo
and the unit elongation is

aAdga-—ﬁdgo_ a Ado ] 5
R+ade R+¥tade REa )

€ =

The first term on the right side of this equation represents the
strain in the fiber due to the rotation of the cross section &4
with respect to the cross section ac. This is the elongation
which is considered in the bending of solid bars. The second
term on the right side of eq. () represents the effect of the
flattening of the cross section. It is evident that this effect
may be of considerable inportance. Take, for instance, R + «
= 6oin.and § = o.02in. Then §/(R 4+ a) = 1/3,000 and the
corresponding stress for a steel tube is 10,000 lbs. per sq.in.

29 The displacement 8 is considered as very small in comparison with
the radius 4.
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Hence a very small flattening of the cross section produces a
substantial decrease in the stress at the outermost fiber a4, A
similar conclusion may be drawn for the fiber ¢4 on the concave
side of the bend. A change in the direction of the bending

moment causes a change of sign of the normal stresses and as a
result, instead of a flattening of the tube in the radial direction,
there is a flattening in the direction perpendicular to the plane
of Fig. 71 and the fiber 44, due to this flattening, is dis-
placed outward. From the same reasoning as above it may
be shown that here again the flattening of the cross section
produces a decrease in the stress at the most remote fibers.
It may therefore be concluded that the fibers of the tube
farthest from the neutral axis do not take the share in the
stresses which the ordinary theory of bending indicates.
This affects the bending of the tube in the same way as a
decrease in its moment of inertia. Instead of eq. (67)
which was derived for solid curved bars, the following equation
must be used in calculating the deflections of thin tubes:

MRd4
kEI:D’ (100)

in which % is a numerical factor, less than unity, which takes
care of the flattening. This factor depends upon the pro-
portions of the bend and can be calculated from the following

Ade =
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approximate formula-®

k=1 — 9 RN (101)
io + 12(;5)

in which #is the thickness of the tube. This indicates that the
effect of the flattening depends only upon the magnitude of the.
ratio tR/a.

As for the effect of the flattening on the stress distribution,
Karman showed that, instead of the simple equation for
normal bending stresses ® ¢ = My/I, in which y denotes the
distance from the neutral axis, the following more complicated
equation must be used:

M 2
”:kff(l_ﬁf?i ’ ©)

in which

g = 6

T T (R
s+6(%)

The maximum stress, obtained from (¢), is

Md
Omax — kl EI—, (102)

in which 4 is the outer diameter of the tube and
2

k= 38

is a numerical factor which depends upon the proportions of
the bend. Several values of %, are given below:

TABLE 8
tR
i 0.3 o.§ 1.0
k= 1.98 1.30 .88

% See paper by Th. Karman, loc. cit., p. 107. )
3 It is assumed that R is large in comparison w1th.a and that a
linear stress distribution is a sufficiently accurate assumption.
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It is seen that when #R/a? is small, the actual maximum stress
is considerably greater than that given by the usual theory
which neglects the flattening of the cross section.

A theory analogous to the above may also be developed
in the case of a tube of rectangular cross section.?? For
example, in the case of a thin tube of square cross section, the
coefficient & in eq. (100) is found to depend upon the magni-
tude of the ratio

b
n = W’
in which ¢ is the thickness of the wall, R the radius of the
center line of the bend and 4 the length of the side of the cross

section. Then
I 4 o.0270n

T T+ 0.0656m (103)
For instance, if 4/R = o.1 and 4/t = 50, we obtain # = 25
and, from (103), £ = 0.63. The maximum stress in tubes of
rectangular section increases in the
same proportion as the flexibility, i.e.,
in the above example the distortion
of the crosssection increases the
maximum stress approximately, by 6o
per cent.

If a cross section of a curved bar
has flanges of a considerable width, (b)
again the question of distortion of M~
the cross section becomes of practi- Fic. 72.
cal importance. Such a problem we
have, for example, when investigating bending stresses at a
corner of a rigid frame of an I section, Fig. 724. Considering
an element of the frame between the two consecutive cross
sections mn and min;, we see that the longitudinal bending
stresses o in the flanges give the components in a radial
direction which tend to produce bending of the flanges, Fig.
726.  This bending results in some diminishing of longitudinal

# Such a problem occurs, for instance, in the design of a Fairbairn
crane. See reference 28.
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bending stress ¢ in portions of the flanges at a considerable
distance from the web. To take into account this fact, an
effective width ab of a flange must be used in using formula
(75) for an I section. Naturally the magnitude of the factor
a, defining the effective width of the flange, depends on the
flexibility of the flanges, which is expressed by the quantity:

b
g = 1.32 :.ft_;" (d)

in which # is the thickness of the flange and r its radius of
curvature. For the flange at the intrados r = 4, and for the
outer flange » = ¢. The calculations show that if 8 < 0.65,
the bending of the flanges can be neglected and we can directly
apply the theory developed in Art. 11.  For larger values of

8 the formula
o= (3ot

can be used ® for calculating the effective width of a flange.
Assume, for example, that we have the width of the flange
b = 6 in., the corresponding radius = 8 in., and the thick-
ness £ = 1 in. Then, from formula (d), we obtain 8 = 2.80
and the effective width of the flange is 0.35 X 6 = 2.1 in.

19. Bending of a Curved Bar out of its Plane of Initial
Curvature.—In our previous discussion we have dealt with the
bending of curved bars in the plane of their initial curvature.
There are cases, however, in which the forces acting on a
curved bar do not lie in the plane of the center line of the bar.3*

3 For derivation of this formula see Dr. Dissertation by Otto Stein-
hardt, Darmstadt, 1938. The experiments made by Steinhardt are in
satisfactory agreement with the formula.

3 Several problems of this kind have been discussed by I. Stutz,
Zeitschr. d. Osterr. Arch.- u. Ing.-Ver., 1904, p. 682; H. Miiller-Breslau,
Die neueren Methoden der Festigkeitslehre, 2 ed., 1913, p. 258, and
4th ed., p. 265; and B. G. Kannenberg, Der Eisenbau, 1913, p. 329.

The case of a circular ring supported at several points and loaded by

forces perpendicular to the plane of the ring was discussed by F. Diister-
behn, Der Eisenbau, 1920, p. 73, and by G. Unold, Forschungsarbeiten,
nr. 255, Berlin, 1922. The same problem was discussed by C. B. Biezeno
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Then it is necessary to consi-
der the deflection of the bar in
two perpendicular planes and
the twist of the bar. A simple
problem of this kind is shown
in Fig. 73a in which a portion
of a horizontal circular ring,
built in at A, is loaded by a
vertical load P applied at the
end B.*® Considering a cross
section D of the bar and taking
the coordinate axes as shown
in Figures 736 and 73¢3% we
find that the moments of the
external load P with respect to
these axes are

Fic. 73.

M, = — PRsin (a — ¢), M, = o,
M, = PR[1 — cos (a — ¢)). (a)

By using these expressions the bending and torsion stresses
can be calculated in any cross section of the bar. In calcu-
lating deflection at the end B the Castigliano theorem will be
used, for which purpose we need the expression for the strain
energy of the bar. Assuming that the cross sectional di-
mensions of the bar are small in comparison with radius R,

>

by using the principle of least work, ““De Ingenieur,” 1927, and Zeitschr.
f. angew. Math. u. Mech., Vol. 8, 1928, p. 237. The application of
trigonometric series in the same problem is shown by C. B. Biezeno and
J. J. Koch, Zeitschr. f. angew. Math. Mech., vol. 16, 1936, p. 321. The
problem is of a practical importance in design of steam piping. The
corresponding bibliography is given in the paper by H. E. Mayrose,
Journal of Applied Mechanics, Trans. A. S. M. E., vol. 4, 1937, p. 89.
See also the book by A. H. Gibson and E. G. Ritchie, “A Study of the
Circular-Arc Bow-Girder,” London, 1914.

3 This problem has been discussed by Saint Venant; see his papers in
Comptes Rendus, vol. 17, 1843, Paris.

36 It is assumed that the horizontal axis x and the vertical axis y are
the axes of symmetry of the cross section and that the z axis is tangent to
the center line of the ring at D.
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we apply the same formulas as we already had for a straight

bar (see pp. 294 and 297, part I). Thus the expression for the
strain energy of our bar is

v- (G +5% 6 ) Rée, ®)

where C denotes the torsional rigidity of the bar.” The
required deflection § is then obtained from the equation:

oU
b= 35
Substituting for U expression (4), and observing that
oM, . aM,
P = Rsin (@ — ¢) and 9P = R[1 — cos (@« — ¢)],
we obtain
PR e .
6 = 'E‘I*;']O' {Sln2 (a — QO)
EI
quo (104)

In the particular case, when « = =/2,

PR w | El.{3w
=g i e (F-0)] @
If the cross section of the ring is circular, C = G I, = 2 G I
taking £ = 2.6G, we obtain

PR3 PR3
6=FE[§+I'3(%_2>]21248E1 (10%)

As an example of statically indeterminate problems, let us
consider a horizontal semi-circular bar with built-in ends,
loaded at the middle, Fig. 744. Considering only small

vertical deflections of the bar, we can entirely neglect any -

displacements in the horizontal plane as small quantities of a

37 The calculation of C for various shapes of the cross section is
discussed in Chapter VI.
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higher order. Hence there will be no bending of the ring in
its plane and no forces or moments in that plane at the ends
A and B. Considering the built-

in end B, we conclude from the £ R /7 N
equilibrium conditions that there %Q%_ﬂ_n 2
will act a vertical reaction P/2 Py * ::z;
and the moment M,, = PR/2. @ 28 7
The moment M, will also act, 02 B
; , BINNP

preventing the end section B from N M
rotation with respect to 2z, axis. ' p/v*
The magnitude of this moment z
cannot be determined from sta- Fro
tics; we shall find it by using T
the principle of least work, which requires that

63‘41720 = o. (d)

In deriving the strain energy of the bar we represent the
moments applied at the end B by the vectors PR/2 and M.,
as shown in Fig. 746. Then the moments M, and M, at any
cross section D are

. R .
M, = PTRCOSgo — M., sin ¢ ——}-)o——sm @, (e)

MZ=PTRsin¢—I—Mzocos¢—P—2R(I—cos¢), (H

and the expression for strain energy is

U= 2f0 (zEI + zc)Rd*D )

Substituting this in equation (d) and observing that

oM, . oM,
oM, — —sine oM. = COS o,
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we obtain

=2 ( PR . .
-EII— (—2— sin? ¢ + M,, sin? ¢
z V0

PR . 1 ([ PR .
— —, singcose dgo—l—z,o —, Sin g cos ¢
PR
+ M., cos’ ¢ — —— (1 — cos @) cos go] de = a,
from which
PR
M, = ~—(2 — 1) = — 0.182PR. (106)
2 T
The minus sign indicates that the direction of M., is opposite
to that shown in Fig. 744a. Knowing M., we obtain the bend-
ing and the twisting moments at any cross section from the
expressions (¢) and (f).
The maximum deflection is evidently under the load and
we readily obtain it from Castigliano’s equation:

aU
8=3p- (&)
Substituting expression (g) for U and observing that
oM. R .
9P = 2 (cos ¢ — sin @),
631‘;2 = I; (sin @ + cos ¢ — 1), (9)
we obtain
PR3 I
o = dar| @ =039 (] - 3)
EI, I
+ [(2 — 0.363) (z—: +5) + % — 4+ 0.363]}

PR?
= 0.514 JFT, " (107)

In the calculation of the partial derivatives (i) we disregarded
the fact that the twisting moment M, is not an independent
quantity but the function of P as defined by expression (106).
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If we should take this into consideration, the right-hand side
of the equation (%) should be written in the following form:

U  oU dM., .
P T aM, 4P - ©)

But the second term in this expression vanishes, by virtue of
equation (4). Hence our previous procedure of calculating
deflection 8 is justified.

Problems

1. A curved bar with circular axis and with @ = =/2 (Fig. 73)
is loaded at end B by a twisting couple M, = T. Find the deflec-
tion of the end B in a vertical direction.

Answer. Assuming EI,: C = 1.3,

TR?
EI

8 = 0.506

2. Solve the preceding problem assuming that at end B a
bending couple, M. = M, is applied in the vertical plane tangent
to the center line at B.

Answer.

M,R?
El,

§ = 1.150

3. A semicircular bar with the center
line in a horizontal plane is built in at A4
and B and loaded symmetrically by two
vertical loads P at C and D, Fig. 75.
Find the twisting moments M., at the
built-in ends.

Answer.

M., = —-Z—PR (I—cosﬁ—ﬁsinﬁ)-
T 2

4- Solve the preceding problem for the case of a uniform vertical
load of intensity ¢ distributed along the entire length of the bar.
Answer.

M., = —qu(E - ﬁ) = — 0.32 ¢R*-

™
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. The horizontal semicircular bar, shown in Fig. 75 and uni-
formly loaded as in the preceding problem, is supported at the

middle cross section . Find the vertical reaction IV at the sup- CHAPTER III
port F.
Answer. N = 2¢R. THIN PLATES AND SHELLS

20. Bending of a Plate to a Cylindrical Surface.—Assume
¢that a rectangular plate of uniform thickness % is bent to a
cylindrical surface! (Fig. 76). In such a case it is sufficient
to consider only one strip of unit width,

such as 4B, as a beam of rectangular Il
cross section and of the length /. From 4 fr B

! the condition of continuity it may be “J. ! J_m

I concluded that there will be no distor- U

1 tion in the cross section of the strip e 2 x
during bending, such as shown in Fig. ﬁ
776, p. 89, Part I. Hence a fiber length- Y Fro. 76.

wise of the strip such as ss (Fig. 77)

suffers not only the longitudinal tensile stress o, but also
‘ tensile stress ¢, in the lateral direction, which must be such

as to prevent lateral contraction of the fiber. We assume, as
\ before (see p. 88, Part I), that cross sections of the strip
i remain plane during bending. Hence the unit elongations in
"‘ the x and 2z directions are

3> —ol

!]
Ny

1 We have such bending in the case of long rectangular plates if the
acting forces do not vary along the length of the plate and if only the
portion at a sufficient distance from the ends is considered.

119
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The corresponding stresses in x and z directions are then
obtained as in the case of tension in two perpendicular direc-
tions. By use of egs. (38) (p. 52, Part D,

.E Ey weE  uhEy
1— w2 (1= ui)r 1 —ut (1= W

[

We proceed as in the case of bending of a bar and calculate
the bending moment at any cross section of the strip. Then

+h2 E f+h/2 gy EJ
M = J_n2 oydy = (1 — uh)rdone Y= 12(1 — p)r’
from which
;=%, (108)
where .
D=rn=&" (109)

This quantity is called the fexural rigidity of a plate and
takes the place of EI, in discussing bending of beams. Com-
parison of eq. (108) for the strip
" w h— & — with eq. (56), Part I, for a bgr
( ' 'a a: | shows that the rigidity of the strip
@ ) y in the plate is larger than that of
Fic. 78. an isolated bar of the same cross
section in the ratio 1 : (1 — u?).
The experiments show that, in the case of bending of an
isolated thin strip of considerable width &, distortion of the
cross section takes place only near the edges (Fig. 78, b) a.md
the middle portion aa of the strip is bent into a cylindt:lcal
form; ? hence eq. (108) is applicable in calculating deflections
and the strip will prove more rigid than will be expected from
the simple beam formula.
For small deflections of the strip 4B (Fig. 77) the curva-
2 Explanation of this phenomenon is given by G. F. C. Searle, ‘Experi-

mental Elasticity, Cambridge, 1908. See also H. L?mb, Lond.on Mat}}.
Soc. Proc., Vol. 21, 1891, p. 75, and author’s paper in Mechanical Engi-

neering, 1923, P. 259.

y
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ture 1/ can be replaced by its approximate value d%y/dx* and
the differential equation for the deflection curve of the strip is

2
D%= — M. (110)

The discussion of bending of a plate to a cylindrical surface
involves the integration of this equation. A particular case
in which the bending to a cylindrical surface is done by a
uniformly distributed load is discussed in the next article.

21. Bending of a Long Uniformly Loaded Rectangular Plate.—
If a rectangular plate whose length is large in comparison with the
width is uniformly loaded, then it may be assumed that near the
center, where the maximum deflection and stresses occur, the de-
flection surface is nearly a cylindrical one and eq. (i10) may be
used to calculate these.3 Let us consider this important problem *
for two extreme conditions: (1) the edges of the plate are simply
supported and can rotate freely during bending and (2) the edges are
built-in. In both cases it is assumed that there are no displacements
at the edges in the plane of the plate. Then an elemental strip such
as AB in Fig. 76 is in the same condition as a tie-rod with uniform
lateral loading (see article 6) and the tensile forces §. The mag-
nitude of the forces S is found from the condition that the extension
of the strip is equal to the difference between the length of the
deflection curve and the length / of the chord 4B (Fig. 76).

Simply Supported Edges. In the case of simply supported edges,
a good approximation for § is obtained by assuming that the de-
flection curve is a sine curve

y=6sin-7r—;, (a)

where 8 denotes the deflection at the middle. Then by using eq.
(56), p- 47, the extension of the center line of the strip is

1 1 dy 2 7'-262
- afo (z)d = ®)

3If the length is three times the width for a supported plate and
twice the width for a clamped plate, the solution derived on this as-
sumption is sufficiently accurate.

4 A solution of the problem was given by J. Boobnov. See his
“Theory of Structure of Ships,” Vol. 2, p. 545, St. Petersburg, 1914.
The discussion of this problem, together with calculation of stresses in
the hull of a ship, is given in “ Theory of Plates and Shells,” 1940.
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Taking for the deflection at the middle the approximate equation
(59), we have

o
é = m s (c)
in which
/M Sz

50:53—4% and a=S:Sc,=D-—7r2- (111)

Substituting in equation (%), we obtain

w? 8o®

MU @

The lateral contraction of the strip in the plane of the plate during
bending is assumed to be zero; hence from egs. (109) and (111) the
elongation of the center line of the strip produced by forces § is

SI(1 — w?) _ ok’
NETE T Tl (©)

Equating (4) and (e), the equation for determining a, i.e., for
determining the longitudinal force §, is obtained in the form:

2
a(l + a)? = 37?;— (112)

If the load ¢ and the dimensions of the plate are given, the right
side of eq. (112) can easily be calculated. The solution of eq. (112)
can be simplified by letting

14+ a=ux §2)

Then this equation becomes

i.e., the quantity x is such that the difference between its cube and

its square has a known value. It can be determined from a slide

rule or a suitable table and & found from eq. (f). The deflection

and stresses in the strip 4B are then calculated by using the table

given for tie-rods (see p. 43). In using this table it is necessary
to remember that, from eqgs. (23) and (111),

/A .

u = 22‘ =7 Vo (113)

Take, for example, a steel plate of dimensions / = 45in.and 2 = 3/8

in. loaded by a uniformly distributed load ¢ = 10 lbs. per sq. in.
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Then eq. (112) becomes
a(1 + a)? = 290, (€9)
from which

a = 5.97 and  u = —+va= 383

S|

The tensile stress produced by the longitudinal force S is

,_§_g&__~a12D_II 1b i
of = =~ = "p = 11,300 Ibs. per sq. 1n.
and the maximum bending moment at the middle of the strip, from

eq. (45), is
_ g~
Maex = 5 1n(w). %)

By using the table 3, mentioned above, we find by interpolation, for
# = 3.83, ¥1(#) = 0.131. This shows that, due to the action of the
Jongitudinal force S, the bending moment is greatly diminished and
is only about 13 per cent of that which is produced by the action of
transverse loading alone. Using eq. (4),

10 X 44

Muax = 3 X 0.131 = 332 lbs. ins.

The corresponding maximum bending stress is

6Mux 62X 332 X 82
2 2

and, superposing the tensile and bending stresses, the maximum

stress 18

”
Gy =

= 14,200 lbs. per sq. in.

Omax = 02 + o7 = 11,300 + 14,200 = 25,500 lbs. per sq. in.

It may be seen that, due to the action of the longitudinal force,
the maximum stress does not increase in the same proportion as the
intensity of the load. For instance, in the above numerical example
with ¢ = 20 Ibs. per sq. in., from (g)

a1 + «)? = 290 X 4 = 1,160,
from which
a = 9.85; U = 4.93.

The tensile stress produced by the longitudinal force § is

’

§
o) =5 = 18,600 lbs. per sq. in,
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v1(u), for u = 4.93, is equal to 0.082; then

6Mmax 6 X 20 X 45 X 8°
[ 8 X 3?

144
0O =

X 0.082 = 17,900 lbs. per sq. in.

The maximum total stress is
Gmax = 04 + 627" = 18,600 + 17,900 = 36,500 lbs. per sq. in.

In other words, due to the action of the longitudinal forces §, the
stresses increase less rapidly than the load. When the load is
doubled, the maximum stress is in our case increased only 43 per cent.

Clamped Edges. In the case of clamped edges eq. (a) is replaced
by ® equation

0
y=;(1—c032—7f > (k)

which satisfies conditions at the clamped edges because the deflection
y and the slope dy/dx both become zero at x = o and at x = /.
Substituting (£) into eq. (4), the extension of the center line of the

strip is
1 (" fdy\? 2§
)‘“Ef (dx) de="T" @)

For the deflection at the middle we use the approximate equation
(62)
do

I
1+ -«
4

6:

and find, from (/) and (e), the following equation for a:

a\? 38
a(I +Z) =—h;0‘ (114)

or, by letting 1 + (a/4) = ¥,

0

w— = (m)

o
=24
o

In the previous numerical example with ¢ = 10 Ibs. per sq. in.,
eq. (m) becomes
: X% — x? = 2.90,

from which x = 1.849 and @ = 3.40. Hence the tensile force is less
than in the case of supported edges considered above in the ratio

5 See the author’s paper mentioned above, loc. cit., p. 44.
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3.40/5.97 and we obtain

r o 3:4°
597

In calculating the bending stresses the table 3 of page 43 is used.
Noting that in our case # = (w/2)Wa = 2.89, we find from the table,
by interpolation, ¥» = 0.686, ¥5 = 0.488. The bending moment at
each clamped edge is

Oz

X 11,300 = 6,430 lbs. per sq. in.

q/? .
M = — 0686 ~ = — I.150 Ibs. ins.

The corresponding maximum bending stress is
o,/ = 49,300 lbs. per sq. in.
The maximum total stress is ¢
Omax = 05 -+ o' = 6,430 + 49,300 = 55,700 lbs. per sq. in.

Comparison of this stress with that obtained above for the same
plate with simply supported edges shows that clamping the edges
increases the maximum stress. This result can be explained as
follows: Due to clamping the edges, the deflection of the plate
is diminished, and as a result the longitudinal force § and its effect
on the bending moment are also diminished. In the case of simply
supported edges, the maximum bending moment was only 0.131
of that produced by the transverse load alone. But in the case
of clamped edges the bending moment at these edges is 0.686 of
that produced by the transverse load alone, i.e., the effect of the
longitudinal force is more pronounced in the case of simply supported
edges.

This approximate method can be used in the calculation of
stresses in the plates of a ship’s hull submitted to hydrostatic
pressure.

The maximum stress evidently depends on the intensity of the
load ¢ and on the ratio //2. The magnitudes of this stress for the
case of simply supported edges and for various values of the ratio
Ik are represented by curves? in Fig. 79. It is seen that because
of the presence of tensile forces §, which increase with the load,

6 It is assumed that the steel has a proportional limit above the stress
calculated.

7 These curves are taken from the paper by S. Way presented at the
meeting of Applied Mechanics, A. S. M. E., New Haven, June, 1932.

-
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the maximum stress is not proportional to the load ¢; for large values
of ¢ this stress does not vary much with the thickness of the plate.

In Fig. 80 the curves for maximum stress in the case of plates
with built-in edges are given. It is seen that for small values of
the intensity of the load ¢, when the effect of the axial force on the
deflections of the strip is small, the maximum stress increases ap-
proximately in the same ratio as ¢ increases. But for larger values
of ¢ the relation between the load and the maximum stress becomes
non-linear.

Stresses in Steel Plates with
Simply Supported Edges V
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Fia. 79.

22. Deflection of Long Rectangular Plates Having a Small
Initial Cylindrical Curvature.>—In this problem, we may use the
results already obtained for the bending of bars with small initial
curvature (p. 104). The edges of the plate are assumed to be simply
supported and the coordinate axes and an elemental strip are taken
as in Fig. 76. Let

Yo = &sin _1rl_x (a)
represent the small initial deflection of the plate, with the maximum
deflection at the middle equal to 4. If a uniform load ¢ is applied,

.
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an additional deflection is produced, accompanied by an extension
of the middle surface® of the plate. As before, let § denote the
tensile force on the strip 4B of unit width and a the ratio of this
force to the critical force S = #2D/2.  Then the additional deflec-
tion produced by the load ¢ is

60 . X ab . X

NE TR T TRy ()]
The first term on the right side represents the approximate ex-
pression for the deflection of a straight line strip, which was used

60,000

SO [ I |
FEY &N | 9
50,000 T a4 4 \
’ / 0
40000 /1 ]
£ oy
g vd //
gso,ooo // yd %
O
P / / /| v
£ 20000 / A
5 o e A
/ Ratio of Width to Thickness=1/h
10000111/ >
0
0 | 2 3 4 0 0 12 B K4 55 6

5 6 7 8 9
Load in Lbs.per-Sq. In.
Fic. 8o.

before for flat plates; the second member represents the effect of
the initial curvature (see eq. (d), p. 106). By adding (4) and (%)
we obtain the total deflection

™ do . X

y=y+yn=2tsin 7 +———I+asm—l
ab . wx b+ &

- sin— =
14« / 14+«

The magnitude of a is determined from the consideration of
extension of the strip #B. Using the same reasoning as in the .

sin’r—lx e (o)
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preceding article we obtain the following ‘expression for this ex-
tension
_I((2Y 1fl @ Y
)\—Qfo (ﬂ,x)a’x—2 A (dx)dx.
Substituting () and (¢) for y; and y and integrating, we have

_ (“‘50 :
)‘_41[\1+a) _52]'

Setting this equal to the extension produced by the longitudinal
force § (eq. e, p. 122), we obtain

f[(ﬁ -+ 50)2 52] _ T2oh?
di\1+a/) — 12l

b+ 8 \2 b
a(I+a)2=3( —; 0) —3E(I—|—a)2. (115)

or

If 4 = o, this reduces to eq. (112) for a flat plate.
Take as an example a steel plate of the same dimensions as in
the previous article:

[ = 4% in,, kA = 3/8 in., g = 10 lbs. per sq. in.,

and assume 4 = 3/8 in. Then

=S s
& = 82D 3.686 in.,
and eq. (115) becomes
a(1 + @)? = 351.6 — 3(1 + o) @
As before, let
14 a=x;

then
% 4- 24 = 351.6,
from which
x = 6.45, a = §.45.

The tensile stress produced by the longitudinal force § is

8 See author’s article in the book, Festschrift zum Siebzigsten
Geburtstage August Foppl, p. 74, 1923, Berlin.

® The middle surface is the surface midway between the faces of the
plate.
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This stress is somewhat less than the corresponding stress for the
flat plate (see p. 123). In calculating bending stresses it should be
noted that the deflection given by eq. (4) consists of two parts.
The first is the same as that for a flat plate and the second,

ab . TX
— ——— sin —
1+« 1’

represents the effect of the initial curvature. The maximum
bending stress corresponding to the first part of the deflection for

a=5.45;u= 7—;\/& = 3.67 and Y1 = 0.142, from table 3 on p. 43,

is 13,300 Ibs. per sq. in.  The bending moment corresponding to the
second part of the deflection is

—-Diz‘( ab . rx) am?bD . wx

T — T siny =———-—(I+a)lzsm7- (e)

1+ a

This moment has a negative sign and the corresponding maximum
compressive stress, which is to be subtracted from the stress
calculated as for a flat plate, is

= — 9,500 lbs. per sq. in.

The combination of this with the stress ¢.’ calculated above and the
bending stress 1¢,300 lbs. per sq. in. obtained as for a flat plate
gives the complete stress

o, = 10,200 + 15,300 — 9,500 = 16,000 Ibs. per sq. in.

A comparison of these results with those for flat plates shows
that here the tensile forces § are somewhat reduced and that the
bending stress at the middle is much less, due to the negative sign of
the bending moment (¢). The effect of the initial curvature is to
reduce the resultant stress from 25,500 bs. per sq. in. to 16,000 lbs.
per sq. in. This result is obtained with the initial deflection equal
to the thickness of the plate. By increasing the initial deflection,
the maximum stress can be reduced still further.

23. Combination of Pure Bending in Two Perpendicular
Directions.—Let us consider first a rectangular plate bent by
moments uniformly distributed along the edges (Fig. 81).
M, denotes the bending moment per unit length of the edges
parallel to the y axis and M. the moment per unit length
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of the edges parallel to the x» axis. The plane midway be-
tween the faces of the plate, the so-called middle plane of the
plate, is taken as the xy plane and the z axis is perpendicular
to this plane and downward. An element is cut out of the

M

Fia. 81.

plate by two pairs of planes parallel to the xz and yz planes
(Fig. 82). The theory of pure bending of the plate is based
on the assumption that during bending the lateral sides of
this element remain plane and rotate about the neutral axes
n-n. For moments as indicated in Fig. 81 the upper part
of the element is under compression and the lower part under
tension. The middle plane nn does not undergo any defor-

mation during this bending of the

; ' plate and is therefore a neutral sur-
» % , face. Let 1/r; and 1/r: denote the
P “——* “curvatures of this neutral surface

nl -~ /l,___ < __Je &
' 24 z in sections parallel to the zx and

a.-- ) . .
n ; th

S the zy planes respectively; then

the unit elongations in the x and
Fic. 82 y directions of an elemental sheet

abcd, a distance z from the neutral
. surface, are found as in the case of a beam (p. 9o, Part I)
and are equal to

&= &= (a)

Using egs. (38) (p. 52, Part I), the corresponding stresses are

2 =+ ur—z , ®)

I—‘[J. T

Ez

T + (c)

Oy =
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These stresses are proportional to the distance z from neutral
surface. The moments of the internal forces acting on the
sides of the element are equaled to the moments of external
couples, giving the following equations:

+1/2
f o.2dydz = Mydy, (d)

—h/2

L h/2
f o zdxdz = Madx. (e)

—h/2
Substituting (4) and (¢) for ¢, and o, and noting that

E v ER
2 dz = Talt — oy
I = i J e 12(1 - l~‘«)

D,
where D denotes the flexural rigidity of the plate (eq. 109), we
find
I I
D(r-l-f‘u;_;):Ml, (116)

1 1
D(r—2+”;;) = M,, (117)

which correspond to eq. (56), p. 91, Part I, for the pure
bending of a straight bar. Denoting by w small deflections
of the plate, the approximate formulas for curvatures are

1 *w I d*w

nT e o=

In terms of w, eqs. (116) and (117) become
ow *w
—D(ax2+u6y)=M1, (118)
otw 92
_D( 2+ua;2)=M2. (119)
These correspond to eq. (79) (p. 135, Part I) for the deflec-
tion curve of a straight bar. In the particular case in which

M, = M, = M, the curvatures of the deflection surface in
two perpendicular directions are equal and the surface is



132 STRENGTH OF MATERIALS

spherical. The curvature of the sphere, from eq. (116), is

1 M
P DO (120)

Such a spherical deflection surface is obtained for a plate of
any shape if the bending moments M are uniformly dis-
tributed along its edge.

In the above, it was assumed that there is no change in
the length of the fibers of the middle surface, i.e., that this
surface is the neutral surface in the bent plate. This condi-
tion can be rigorously satisfied only if the surface of the bent
plate is a developable surface, such for instance as a cylindrical
surface discussed in the previous article. For non-develop-
able surfaces the above assumption is sufficiently accurate
only if the deflection w of the plate is small in comparison
to its thickness 4. To show this, consider the bending of a
circular plate produced by couples M uniformly distributed
along the edge. It follows from the previous theory that the
deflection surface is a sphere with the radius given by eq.

(120). Let AOB (Fig. 83) represent the
Q 2 <g-5--# diametral section of the bent circular
________ m ¥ plate, a its outer radius, and § the deflec-
tion at the middle. We assume first that
there is no stretching of the middle plane
of the plate in its meridional direction;
then arc OB = a, ¢ = afr, and CB = a,
"= rsin ¢. In such a case the deflection
of the plate is obviously accompanied by a compressive strain
in the circumferential direction. The magnitude of this strain
for the edge of the plate is

Fic. 83.

a—a re —rsine
e: = .
a re

For a small deflection 8, the angle ¢ is small and sin ¢ = ¢
— ¢%/6 approximately, giving

€=%’ (f)

THIN PLATES AND SHELLS 133

or, noting that

ro? .
d =r(1 —cosp) = e approximately,

= —
;7 )

¢ (%)
This represents the upper limit of circumferential strain at
the edge. It was obtained by assuming that the meridional
strain is zero. Under actual conditions there will be a certain
amount of strain in the meridional direction and the true
circumferential compression will be smaller than that given
by eq. (k).

The approximate theory of the bending of plates neglects
entirely the strain in the middle plane and considers only
strains such as given by egs. (), the maximum value of which
in the above example is /2. Hence a strain such as that
given by (k) can be neglected and the middle surface can be
considered as unstrained if 8/37 is small in comparison with
hj2r, i.e., if the deflection & is small in comparison with the
thickness of the plate 4. Only in this assumption can the
results given later for some special cases of bending of plates
be used with sufficient accuracy.

24. Thermal Stresses in Plates.—Equation (120) of the
previous article, for deflection to a spherical shape, 1s very
useful in calculating thermal stresses produced in a plate by
non-uniform heating. Let # denote the difference in tempera-
ture of the upper and lower faces of the plate and « the
coefficient of linear expansion of the material. Assuming that
the variation of the temperature through the thickness of the

10 Tf the deflections are not small and the strain in the middle surface is
taken into consideration, it has been shown that in the case of pure
bending of a circular plate, of radius @ = 234, the circumferential com-
pressive stress in the middle surface at the edge is about 18 per cent of the
maximum bending stress when the deflection at the middle is equal to six
tenths the thickness of the plate. See author’s paper in Memoirs of the
Institute of Ways of Communication, St. Petersburg, 1915. See also
“Theory of Plates and Shells,” 1940.
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plate follows a linear law, the corresponding expansions follow
the same law, and if the edge of the plate is free, the deflection
produced by these expansions will be a spherical one.*  The
difference between the maximum expansion and the expansion
at the middle surface is «#/2, and the curvature resulting
from this non-uniform expansion is given by the equation

at h
Pt
from which
I at Y
= (121)

This bending of the plate does not produce any stresses,
provided the edges are free and the deflection is small as
compared with the thickness.

If, however, the edge of the plate be clamped, heating
will produce bending moments along the edge. The magni-
tude of these moments is such as to eliminate the curvature
produced by the non-uniform heating and given by eq. (121),
as only in this manner can the condition at the clamped edge
be satisfied. From egs. (121) and (120) we obtain the follow-
ing equation for the bending moment per unit length of the
clamped edge:

at(1 + w)D )

M = %

Noting that M is acting on a rectangular area of unit width

and of depth % the corresponding maximum bending stress is
_é%__&xt(l +ﬂ)D__C_\f E

Tmax = T2 = P2 To21 — (122)

This stress is proportional to the coefficient of thermal expan-
sion a, to the difference in temperature 72 at the two faces

uJt is assumed that deflections are small in comparison with the
thickness 4 of the plate.

12 Tt must be noted that £ denotes the difference in temperature
between the two faces of the plate and not that between liquids or gases
in contact with the plate. The latter, due to abrupt change in tempera-
ture at the plate surface, may be much greater than #
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of the plate, and to the modulus of elasticity. The difference
in temperature ¢ is likely to increase with the thickness of
the plate; therefore greater thermal stress can be expected in
thick plates than in thin ones. It is interesting to note that
eq. (122), developed for flat plates, can also be used with
sufficient accuracy in cases of spherical and cylindrical shells
(see p. 262).

25. Bending of Circular Plates Loaded Symmetrically
with Respect to the Center.>—The deflection surface in this
case is symmetrical about the axis perpendicular to the plate
through its center and the consideration of a diametral section
through this axis is sufficient for calculating deflections and
stresses. [Figure 84 represents such a diametral section, with
the axis of symmetry oz. Let w denote the deflection of the
plate at any point 4 a distance x

from the axis, and restrict it to small 18
values. Let 7,’,]':-99
dw /,’ ||
=T dx dpfe |
|

represent the slope of the deflection
surface at the same point. The
curvature of the platein the diametral

. . [ |
section Xz 1s e x+lz

dw  de Fic. 84.
a9

In determining the radius of curvature r» in the direction
perpendicular to the xz plane it is necessary to note that after
deflection of the plate sections such as nm form a conical
surface whose apex B is the point of intersection of #m with
the axis 0z. Then 4B represents the radius 7, and, from the
figure,

I
"

&)

xI6

1
72

13 This case of bending was developed by Poisson, Paris, Mém. de
I’Acad., Vol. 8, 1829,
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We proceed in the same manner as in the bending of a bar
and assume that there is always the same relation between the
bending moments and the curvatures as in the case of pure
bending of a plate (art. 23). Equations (116) and (117) can
therefore be used here also. Substituting (4) and (&) into
these equations we find

d
M= D (% +u%), (123)

d
M2=D(§+u;§)- (124)

Here, as before, M; and M, denote bending moments per
unit length, M, along circumferential sections of the plate
such as mn, and M, along diametral sections xz. Equations
(123) and (124) contain only one variable ¢, which is deter-
mined from the equilibrium of an element aécd (Fig. 85) cut
out from the plate by two cylindrical sections a4 and ¢4 and

by two diametral sections ao

mr Mo, and d0. The couple acting on
x -CLT ﬁ—rj—'————ﬁ the side ¢d of the element is
T *ﬂv_—;:.z t Mxd8. (¢)
b y The corresponding couple on
x D‘J{‘fi o side abis
———"g AR
Fio. 85 (a6 + O )+ dwyds. (@)

The couples on the sides ad and bc are each Madx, and they
have a resultant in the plane xz equal to

M,dxdb. (e)

In addition to these couples there are shearing forces 7
on the sides a6 and ¢d.** If ¥ represents the shearing force
per unit length, the total shearing force acting on the side
¢d of the element is ¥xdd. Neglecting small quantities of

14 Tt follows from symmetry that there are no shearing forces on the
sides ¢ and ad of the element.
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higher order, a shearing force of the same magnitude acts on
the side #b. These two forces give a couple in the plane xz
equal to

Vxdydsx. )

Summing up moments (¢), (d), (¢) and (f) with proper signs,
the equation of equilibrium of the element abed is

( iy + 0 dx) (¢ + dx)dd — Mixd§ — Maddd + Vieduds = o,

from which we find, by neglecting small quantities of higher

order,

dM.
Ml+—d’—€—1x—M2+Vx=o. (£)

Substituting expressions (123) and (124) for M, and M, eq. (g)
becomes

die | 1de @ 14

wtxd @~ TD (125)

In any particular case of a symmetrically loaded circular
plate, the shearing force » may be determined from statics;
then eq. (12) can be used for determining the slope ¢ and the
deflection w of the plate. Take, for example, a circular plate
loaded by a uniformly distributed load of intensity ¢ and a
concentrated load P applied at the center. Taking a section
of the plate by a cylindrical surface with axis 0z and radius x,
the shearing force 7 per unit length of this section is found
from the statement of the equilibrium of the inner part of
the plate cut out by the cylindrical surface. The load acting
on this part of the plate is P + wa%¢. This load must be
equal to the resultant of the shearing forces distributed over
the cylindrical section; hence

arxV = P + wx%
and

=74 R (126)

2 27X '
Substituting into eq. (125),
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e  1de o 1 [ gx £_

e Trac - "D\ 2 Tanx

dl1d 1 (gx P
a[;w’c@]: —E('{er)’

from which, by simple integration,

or

1d I x> P
ST (xe) = — 3 %+-—lognx)+ G, (h)

2T

where Ci is a constant of integration. The integration of
(%) gives

4 P ‘21 - 2 2
xe = _1q6xD_27rD(x B x'i‘)J“Clx?Jf@
or
Cix
2

gx®

Px C
¢=_@_m(210gnx—1)+ +-x_2’ (127)

where C, is the second constant of integration. For small de-
flections (¥ig. 84),

dw
Y = - e’
giving us the following equation for deflections:
from which, by integration,
Cy

2
4" — G, log, x+Cs.  (128)
The constants of integation Cy, C; and Cs must be determined in
each particular case from the conditions at the edge of the
plate.

In the above discussion it was assumed that the middle
surface of the plate is a neutral surface, i.e., that there is no
strain in this plane. This assumption is justified only if the
edges of the plate are free from stresses in the middle plane
of the plate and the deflections are small in comparison with
the thickness of the plate.

g Px ) —
w=g Dt gep o ¥ 1)

THIN PLATES AND SHELLS 139

26. Uniformly Loaded Circular Plate.—Clamped Edges.
The slope and the deflection are given by egs. (127) and
(128) by putting P = o in these equations. In the case of
clamped edges, ¢ = o for x = a and for x = o, where a is
the outer radius of the plate. The following equations for
calculating the arbitrary constants C; and C; are then ob-
tained from eq. (127):

g G Gy
16D 2 v )T

gt Cw G
g o -0
16D 2 X a0 >

from which

2
GG=o and C = %, (a)
and these, put in eq. (127), give
X
0 = I%—D (a2 — x2). (129)

The deflections are calculated from eq. (128). In this equa-
tion set P = o and the arbitrary constants C; and C; as in
eqs. (@). Then

gxt  qa’x’

Y= 84D~ 32D

+ Cs. (%)

The constant C; is found from the condition that at the edge
the deflection is zero. Hence

ga' g4 _
64D 32D +G=o
from which
_ 94"
C3 - 64D

Substituting in equation (&), we obtain

w = 6_:ﬁ (a® — xH)% (130)
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The maximum deflection is at the center of the plate and is

4

5= 6q:D' (131)
This deflection is equal to 3% of the deflection of a strip (Fig.
76) clamped at the ends and of length equal to the diameter
of the plate. The bending moments are obtained from egs.
(123) and (124); expression (129) for (¢) is substituted into
these equations, which gives

My = Lo+ - #G+w], (©)
My = L2+ w) — #( + 3] @)
At the edge (x = @) these equations give
2 2
M= —%5 M= -HE (©)
At the center (¥ = 0),
My = My = g »
The maximum stress is at the edge and is equal to
6 ga? az
(O'z)ms.x = F %‘ = %%2 : (132)

Simply Supported at the Edge. The method of superpo-
sition is used in calculating deflections of a plate simply
supported at the edge. It was shown (egs. ¢) that in the
case of clamped edges there are negative bending moments

M, = — (ga®/8) acting along the edge,

M/(”:' 2a N Fig. 86 (@) . If this case is combined
2_\/;//- M with that of pure bending shown in
Fig. 86 (%), so as to eliminate the

", .

(A\___/;>M’ bending moment at the edge, we get
®/ the bending of a plate simply sup-

ported at the edge. The deflection

Fic. 86.
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due to pure bending is obtained from eq. (120). Substituting
in this equation M = ¢a?*/8, we find

LA L

r 8D(1 + p) »
The corresponding deflection at the middle for a sphe;ical
surface is (see p. 94, Part I)
YA L
Y7 or T 16D F )
This 1s added to the deflection (131) to get the deflection of
a plate supported at the edge,

ga* qa* 5+

_ _ M
S=6 DT DG Fm ~ st Fop % (133)

For u = 0.3, this deflection is about four times as great as it
is when the edges are clamped.

In calculating bending moments, the constant bending
moment ga*/8 must be superposed on the moments (¢) and
(d) found above for the case of clamped edges. Hence

My =L (3 + W)@ — ),

My = 6 (a3 + w) — #2(x + 3]

The maximum bending moment is at the center, where

M1 = M2 =3 ;Euqﬂz.

The corresponding maximum stress is

6M, 2 ,
(Uz)max = (Uy)max = h2l = 3(3 ;_ #) . -q—}laz—-- (134)

For comparison of the bending stresses o, and ¢, at the lower
sides of the plates with clamped and simply supported edges,
the variation in these stresses along the radius of the plates
is graphically represented in Fig. 87. Measuring the ordi-
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nates from the horizontal axis passing through the point O,
we obtain the stresses for the plate with the clamped edges.
Adding to these stresses the constant value 3¢4%/44% le.,
measuring the ordinates from the horizontal axis passing
through the point O; in Fig. 87, we obtain the stresses for the

O%; Oy

Fic. 87.

simply supported plate. It may be seen that a more favor-
able stress condition is obtained by clamping the edge.

In the previous discussion the effect of shearing strain on
the deflection was neglected. When the thickness of the
plate is fairly large in comparison with its radius, this effect
may be considerable and must be taken into account.’® The
additional deflection due to shear is found by the same method
as in the case of beams (art. 39, Part I). In the case of
uniform loading the shearing force, from eq. (126), is

y=2.
2
If we assume the same distribution of shearing stresses over
the thickness of the plate, as in the case of a bar of rectangular
cross section, the maximum shearing stress is at the middle

15 The increase in deflection due to shear was demonstrated by
experiments made by G. M. Russell, Engineering, Vol. 123, 1927, p.
343. See also paper by H. Carrington, Engineering, Vol. 125, 1928, p. 31.
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surface and its magnitude at a distance x from the center of
the plate 1is

The corresponding shearing strain at the middle surface of
the plate is

and the additional deflection due to distortion of such an
element as abed 1in Fig. 85 1s

_ 3gxdx
vdx = 4 Gh
Summing up these deflections along the length of the radius
of the plate and noting that at the edge the deflection is
zero, we find

This is added to the deflection (130) due to bending moments
to get the total deflection,

W= pip (@ =+ 3 (@ — ),

or, using eq. (109),

w = 64—q~D[(aZ — x%)? + 14—”}12(42 - xz)] (135)

The deflection at the center is

_ g~ 4 7
5‘@(‘+1—M—2)' (136)

In the case of thick plates the second term in the parenthesis,
which represents the effect of shearing stresses, may be of
practical importance.

The above theory of bending of circular plates is based
on the assumption that deflections are small in comparison
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with the thickness. For larger deflections the stretching of
the middle surface of the plate must be considered. If this
is done it can be shown that at larger deflections the plate
becomes stiffer than the above theory !® indicates and the
deflections are no longer proportional to the load.

In the case of a uniformly loaded circular plate clamped at
the edge the deflection can be calculated from the following
equation: ”

63 4
5+ 0.58 75 = 6%, (137)

which is in good agreement with experiments.

In practical applications, very thin uniformly loaded
plates are sometimes used. In such cases the bending stresses
may be small in comparison with the stresses due to the
stretching of the middle surface and the plate can be con-
sidered as a thin membrane which has no flexural rigidity at

- eEs

M =4

B =3

< .3 =2

9 ‘ﬁ =]

04 =0

LB

— %

0 0.5 10 B=4
Fic. 88.

all.’® The deflection at the middle of a uniformly loaded
circular membrane is given by the equation

8 = o0.6624 \3}%- (138)

We obtain an analogous equation by neglecting § in com-
parison with the term containing 8 in eq. (137). Experiments

16 See author’s paper, loc. cit., p. 133. See also “Theory of Plates
and Shells,” 1940.

17 See “Theory of Plates and Shells,” p. 336, 1940.

18 See H. Hencky, Zeitschr. f. Math. u. Physik, Vol. 63 (1915), p. 311.
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made on thin membranes are in good agreement with eq.
(138).1°

In the case of a uniformly loaded circular plate of variable
thickness the variation of the thickness with the radial dis-
tance can be expressed with sufficient accuracy by the equa-
tion:
.é — e—ﬂ12/6a2
ko ’
in which %/, is the ratio of the thickness at the radial distance
x to the thickness 4, at the center, and B8 is a constant. The

L g=4
\ I
A ~3=2
-3=1
-3=0
L3 =1
18 =-2
0 s
\\ ﬂ:—4_/// =
00 &&t&_ﬁ%//
04

Fic. 89.

shapes of the diametrical sections of plates for various values
of the constant 8 are shown in Fig. 88. The maximum bend-
ing stress ¢, in radial direction at a radial distance x from the
center can be expressed by the equation:

a2
Gr = 7Y 3202 3

in which v is a factor varying with the radial distance «.

1 Bruno Eck, Zeitschr. f. angew. Math. und Mech., Vol. 7, 1927,
p. 498. Information on corrugated diaphragms see in “Techn. Notes”
738, 1939, Nat. Adv. Comm. Aeron.
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The values of this factor ® for a plate with clamped edges are
given by the curves in Fig. 8g. For a simply supported plate
these values are given in Fig. go.
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27. Circular Plate Loaded at the Center.—Clamped Edge.
For this case ¢ = o is substituted in eq. (127), which gives

o= — % (2log s — 1) + OX 4 G, (@)

The constants of integration C; and C; are found from the con-
ditions that ¢ is equal to zero at the clamped edge and at
the center of the plate; hence

Px C]X
[ 8D(210gn —I)+——+ ]I=0~o,

]’x (?1x (h
~ g7p (2 lognx — Y b T

As (xlog, x),—0 = O, the following values of arbitrary con-
stants are obtained from (4):

&)

Cl=;r%(zlogna— 1); C: = o, (¢)
and eq. (@) becomes
Px a
¢ = 4751 gn - (d)

20 These values are given in the dissertation by O. Pichler, “Die
Biegung Kreissymmetrischer Platten von Veranderhcher Dicke,” Berlin,
1928,
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The equation for the deflection surface is obtained by sub-
stituting ¢ = o and the values (¢) of the arbitrary constants
into eq. (128), which gives

P I
8’})(1gn——5)+03. (e)

The constant C; is obtained from the condition that at the
clamped edge the deflection is zero, giving C; = Pa?/16%D.
Substituting this into eq. (¢) we obtain

Px? X P

w=z35 logn =4+ ) (a® — x%). H
The deflection at the middle is
Pa?
= 6:D" (139)

This deflection is four times as great as that produced by a
uniformly distributed load of the same magnitude (eq. 131).

Bending moments are calculated from eqs. (123) and (124),
using expression (),

P a
M1:5[<1+#>logn;—1], (©)
P a
MZ :H[(I +/J') logn;_ﬂ]- (}l)
At the edge (x = a) these moments become
P P
M1=—4—7;, Mz=—u4—ﬂj> (140)
and the corresponding maximum stresses are
P u P
az:% ThE c7”_32 i’ (141)

Comparison with eq. (132) for a uniform load shows that the
concentrated load at the center produces stresses at the
clamped edge of the plate which are twice as great as the
stresses produced by a load of the same magnitude but uni-
formly distributed over the plate.
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At the center of the plate, eqs. (g) and (%) give infinitely
large values for the bending moments and the stresses. This
result is due to the assumption made that the load is con-
centrated at the point.2 If the distribution of the load is
taken over a small circle, the stresses become finite (see p. 151).

In determining the safe dimensions of a circular plate
loaded at the center we can limit our investigation to the
calculation of the maximum tensile bending stresses at the
bottom of the plate. It was already mentioned that expres-
sions (g) and (%) are not suitable for this purpose, and the
more detailed investigation indicates 2 that the proper for-
mula for calculating the above mentioned tensile stress is

P
(@) max = 75 (1 + 1) (0.485 IOg% + o.52) - (142)

Although the compressive stresses at the top of the plate may
be many times as large as the tensile stresses at the bottom
in the case of a strong concentration of the load, they do not
represent a direct danger because of their highly localized
character. The local yielding in the case of a ductile material
will not affect the deformation of the plate in general if the
tensile stresses at the bottom of the plate remain within safe
limits. The compressive strength of a brittle material is
usually many times greater than its tensile strength, so that
a plate of such a material will also be safe if the tensile stress
at the bottom is within the limit of safety.

Simply Supported Edge. The deflection of a plate simply
supported at the edge is obtained by the method of super-
position. On the deflections (f) found above for the case of
a clamped edge, we superpose the deflection produced in the

2 ] ocal stresses at the point of application of a concentrated load are
discussed in the paper by H. Hencky, Der Spannungszustand in recht-
eckigen Platten, Darmstadt, 1913, p. §4. See also A. Nadai, “Elastische
Platten,” p. 97, 1925. :

22 This question is discussed in “Theory of Plates and Shells,” p. 75.
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plate by moments M; = P[4 uniformly distributed along
the edge and thus obtain the case of a simply supported
plate. The curvature produced by the moments My = P[4
is, from eq. (120),

1 P

r 4r(i + wD’
and the corresponding deflection at the middle is
a Pa? _
ar 87(1 + wD
This is added to the deflection (139), and the deflection at
the middle of a simply supported plate becomes

Pa’ Pa? P2 34
=16:D T 87(1 + WD 167D 1+ p’ (143)

51=

This deflection is about 2.5 times as great as that for the
case of a clamped plate.

The expressions for bending moments are found by adding
P/47 to the moments (g) and (%) obtained above for a clamped
plate. The maximum tensile stress is obtained by adding
6/A%- P/47 to the stress calculated from formula (142).

28. Circular Plate Concentrically Loaded.—We begin with the
case in which the load is uniformly distributed along a circle of
radius 4 (Fig. 91). In this case we consider
separately the portion of the plate inside ’2‘ l'b“bi F
this circle and the portion outside. For & _JZ
each portion the general eq. (128) is used, 2-— a —se—a —7
with ¢ = o for both portions and P = o Fic. gr.
for the inner portion. The arbitrary con-
stants are determined in such a manner as to satisfy the conditions
of continuity at the circle x = 42 Denoting by P the total load,
the following results are obtained: 2*

2 The effect of shearing stress which produces discontinuity in the
slope at the circle ¥ = 4 is neglected in this case; see paper by G. A.
Garabedian, J. de I’Ecole Polytechnique, 2° Ser., C. no. 26, 1927.

2 See note of article 45 of St. Venant’s translation of the book by
Clebsch, “Theorie der Elasticitit fester Korper,” Paris.
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Clamped Edge. For inner portion (x < ),

P ) a
w=gp| — &) logas 4+ ( — 47

I b2
+E I+;Z‘5)(ﬂ2—x2)]' (@)
For outer portion (x > 2),

w=_P_ — (2 4 1 2 1 4 o
5D gt \TTz)@ - [ @
Simply Supported Edge. For inner portion (x < 4),

w=_P_ — (32 4 2 lop. £ 2

G+we - (0 —wp

T (a?—x?)]- (©)

For outer portion (x > 4),

_i 2 2 2
W=z — (x +é)logn;

G+ wae— (0 — e
+ 2(1 + #)42 £ (42 - x2) ] * (d)

Any case of bending of a circular plate loaded symmetrically with

respect to the center can be solved by use of these equations together
with the method of superposition.

Consider, for instance, the case ¢ c <

shown in Fig. 92, in which the load G—@@m )
is uniformly distributed over the P Zla 2
inner part of the plate bounded by

a circle of radius ¢. Substitute

in eq. (@) P = 2wbgdl, and the deflection produced at the center of
the plate by the elemental ring loading shown in the figure is

Fic. ga.

g a u
dw::ﬁ[_bz lognz—52+'2‘(ﬂ2+b2)]bdb- (e)

The deflection produced by the entire load is

— ‘ _ 9 ¢ a 1

2| _¢ 2 3 %t
= [—zlogn;—;g_t“+~4—]- (144)
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If ¢ = a, this equation coincides with eq. (131) for a uniformly
loaded plate. By substituting in eq. (144) ¢ = 0 and m%g = P,
eq. (139) for deflection by a concentrated load is obtained. To
determine bending moments and stresses at the center of the plate,
we calculate the second derivative with respect to & of the expression
(a). Settingx = oand P = 2mbgdb in this derivative, the curvature
at the center, produced by the elemental ring loading (Fig. 92), is

g ( _ a, &
4D( zlognb—l— 1 aQ)édé.

The curvature at the center produced by the entire load is then

aw _9 fc 4 I 42
(dx2) —o 4D Jy ( ZIOg"b f ﬂﬂ)édb
g¢* a, ¢ .
T 4D (logn ¢ 442) (145)

The cciresponding bending moment at the center from eqgs. (118)
and (119) is

dFw 14+ a
M, = M, = — D1 —|—,LL)‘—Z?= p 762(10gn;+;—a2) (146)
and the maximum bending stresses at the center are
_ _3 9 2, 2.
(02)max = (Fy)max = 2(1 ) 2 (k’gn €+4a2 (147)
Using the notation P for the entire load mc?g, this becomes
3 P a
(o'x)max = (O'y)max = E (I + I"') -7T_}L2 (log”? + '4} . (148)

By diminishing the radius ¢ of the circle over which the load is
distributed, we approach the con-

dition of a concentrated load. The M, ~Ms Mo M
stresses at the center increase as ¢ « N A | A>
decreases, but remain finite as long a 63 @

as ¢ is finite.
29. Deflection of a Symmetric- /" M % Ma
ally Loaded Circular Plate with a * \_ )

Circular Hole at the Center.— ()
Bending by Couples. Denote by a o
My, and My, the bending moments Fic. 93.

per unit length on the outer and
inner edges respectively (Fig. 93, ). For this case let P = ¢ = o
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in eqgs. (127) and (128) and we find

C1x Cz
© = Py +';) (a)
Cix?
w = ——;——Czlognz-i-Cg. *)

The arbitrary constants are now to be determined from the con-
ditions at the edges. Substituting () into eq. (123) we obtain

¢ G ¢ C
Mﬁd{f—ﬁ+p(f+ﬁ ] ©)

By putting x = 2 and afterwards x = 4 we get the following
equations for determining C; and Cy:

Cy C
D[;(I + ) —;2(1 —u)]=M1a,

p[Sa+m-Fa-|-m,

from which

Ch = Q(ﬂsz —_ szlb) X
T+ wD@ -8’

The constant C; is determined from a consideration of the deflection
of the plate. Assume, for instance, that the plate is supported at
the outer edge; then the deflection at this edge is zero and Cj is
calculated from (%), which becomes

Cla“’

—_ +C:;=O.
4

_ ﬂ%z(Mla - Mlb)
“t-—wb@-5 @

Ce

The deflection surface of the plate is obtained by substituting
Ci, C; and C; into eq. (2).

As a second example let us consider the case of bending of the
plate by the couples M;, when the inner edge is built in (Fig. 93, ).
The arbitrary constants C; and C; in eq. (4) are determined from
the conditions ¢ = o for x = 4 and M, = My, for x = a. Then
from egs. () and (¢)

. (T 6
2 T =

C: C: Mia
Za+w) - 50— =5,
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from which
. 2a2M1a
G =Pt ) + G -0’
ﬂ2é2M1a
Cy, =

T D20 Fw + B0 —-w]

Substituting into (@) and (¢),

_ a2 M. ( _6) ()

CEDlEG + ) + 20 —wi\T T x ) ¢
d?Mla . b2

M1=a2(1+/u)+172(1—u)[1+#+(I_“);¢E]' 2

Bending by Load Uniformly Distributed along Inner and Outer
Edges. If bending is produced by a loading uniformly distributed
along the edges (Fig. 94, 4), ¢ = o0 and P is equal to the entire
load on the inner edge. These values are substituted into eqs. (127)
and (128). Then, from eq. (127),

C]X Cz
2 T ©

The arbitrary constants C; and Cp are to be determined from the
conditions at the edges. For examplg, if the plate is clamped at the
edges (Fig. 94, ), the arbitrary constants are determined from the
conditions ¢ = o for ¥ = @ and x = 4. Then, from eq. (g),

Px
@ = ——m(zlognx— 1) +

Pa Ca C:
—5pClee D+ H T =0
Pb Cé G
—gp@le b — D+ =0

/|
do——— Q —— b

G
Y o 1 Mu% @

- [} et
‘H > Zlﬁi'd.a ¥ i 1287

7 ‘
) ,) ‘ (6) §%
17

Fic. 94. ' Fia. 9.

The expression for ¢ is obtained after C; and C: are calculated and
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substituted into eq. (g). The bending moments may then be
calculated from eqgs. (123) and (124).

In the case of a uniformly distributed load (Fig. g5, 4) the
shearing force 7 at any point a distance » from the center is

i
2x

I gx
_ 2 _ 72\ — 17 _
—Qﬂ_xrg(x ) 2

This quantity must be substituted into eq. (125), and egs. (127)
and (128) become

_ ¥

i} b -
¢= "16D Tgp 2lognx -1+

2 +x’

x4 é2x2 sz
w=694_D_ 870 (log,,x—l)——i*-—CElOgnx“f'Cs-

For determining arbitrary constants the conditions at the edges are
used. For instance, if the plate is clamped at the edges, th=
equations for determining Ci and C; are

_ 42 | 9P S

6D Tgp (2logea —1) +==4— =0,
_9 | ¢ Gb G

I6D—|—8D(zlogné—1)+ > —l—b = o.

Solutions of such problems as the bending of pistons of steam
engines and the bending of flanges ? of cylinders and tubes may be
obtained by combining the solutions discussed in this article.
For example, by combining the cases shown in Figs. 94 (4) and
95 (4), an approximate solution of the problem of the bending of a
piston (Fig. 95, &) by steam pressure may be obtained.26

Several cases of practical importance are represented in Fig.
9627 In all these cases the maximum stress is given by a formula

% See paper by Everett O. Waters and J. Hall Taylor, Trans. Amer.
Soc. Mech. Engrs., 1927.

26 Several problems of this kind are considered in the paper by M.
Ensslin, Dinglers Polytech. Journal, 1903 and 1904. See also Pfleiderer,
Forschungsarbeiten, n. 97, 1911.  Experiments with pistons are described
in the paper by C. Codron, Revue de Mécanique, Vol. 13 (1903), p. 340.
Circular plates reinforced by ribs are discussed by M. Schilhansl; see
Zeitschr. f. Angew. Mathem. und Mech., Vol. 6 (1926), p. 484, and V. D.
L, Vol. 71 (1927), p. 1154. A further discussion of circular plates see in
“Theory of Plates and Shells,” 1940.

*7 See paper by A. M. Wah! and G. Lobo, Trans. A. S. M. E. Vol. 52,
1929, "
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of the type: :
qa® kP
Omax = & 'ﬁ' or Omax = ?’ (149)

depending on whether the applied load is uniformly distributed over
the surface or concentrated along the edge. The numerical values

Case | Case 5 a b
<——O———>-<—b->’ ;i‘q

o
z/}

P
Wmax

Case 2 l Case 6 L

W N
max Wmax

Cose 3
ICmse 7 W max : .
N / |
T ! ?‘I
Wl/"nax
Case 4
w
1, £ mox. . Cose8
[ X%
N+
M l b2 V 1
Wmax

Fic. g6.

of the factor &, calculated for several values of the ratio /4 and for
Poisson’s ratio p = 0.3, are given in Table g.

The maximum deflections in the same cases are given by formulas
of the type:

4 V Pa?
Wmax = kl'% or Wmax = kl'E—}l3 . (150)

The coefficients #; are also given in Table 9.

30. Bending of Rectangular Plates.—The theory qf bending of
rectangular plates is more complicated than that for circular plates
and only some final results for the bending moments and deflections
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are given below.”® In deriving these results, it is assumed that
deflections are small in comparison with the thickness of the plate,
and that during bending the edges can freely displace in the plane of

TasLE 9.—COEFFICIENTS & AND ki IN Eqs. (149) anp (150) ror THE Eicur
Cases Snown 1N Fic. ¢6

alb = 1.2§ 1.5 2 3 4 5

Case k /€1 k kl k k] k kl k kl k kl

1.10 |0.341 |I1.26 {0.519 |1.48 |0.672 | 1.88 |0.734]2.17 |0.724]2.34 |0.704
0.66 [0.202 |1.19 |0.49T |2.04 [0.902 |3.34 | 1.220]4.30 |1.300| §.10 | I.310
0.13§] 0.00231| 0.410] 0.0183] 1.04 |0.0938| 2.15 |0.293| 2.99 |0.448| 3.69 {0.564
0.122}0.00343| ©.336] 0.0313] 0.74 |0.1250| 1.21 |0.291| 1.45 |0.417| 1.59 |0.492
0.090] 0.00077| ©.273| 0.0062| 0,71 |0.03291.54 |0.110|2.23 |0.179! 2.80 |0.234
0.115] 0.00129] 0.220| 0.0064| 0.405| 0.0237| ©.703| ©.062| 0.933| 0.092( 1.13 | 0.114
0.592|0.184 |0.976/0.414 | 1.440| 0.664 | 1.880!0.824] 2.08 | 0.830| 2.19 {0.813
0.227] 0.00§ 10| 0.428| 0.0249| 0.753| 0.0877| 1.205] ©.209| 1.514| 0.293| 1.745/ 0.350

O~ A b LR

the plate, i.e., there are no stresses acting on the middle plane of
the'plate.

Plate Supported at the Edges. In the case of a uniformly dis-
tributed load ¢ the maximum deflection occurs at the center of the
plate (Fig. 97) and is given by the equation:

ﬂ4

d=a %}3 > (151)
. in which a is the shorter side of the plate, /4 the thickness of the plate
and o is a numerical factor depending on the
. magnitude of the ratio 4/a. As before, we use
T the notations M, and M. for the bending
& moments per unit length on the sections paral-
lel to the y and x axes respectively. The
maximum bending moments occur at the cen-
ter of the plate and are

ol (Ml)ma.x = quﬂz; (MZ)max = 329612, (152)
Fic. 97.

x

in which B; and 8. denote numerical factors
depending upon the ratio b/a. Several values of the coefficients «,
B, and B; are given in Table 10. These values are calculated on
the assumption that Poisson’s ratio is equal to o.3.

28 The complete discussion of bending of rectangular plates is given
in “Theory of Plates and Shells,” 1940.
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TasLe 10.—ConstanNTs FOR CaLcuLATING UNniForMLY LoADED RECTANGULAR
Prates wite Smmpiy SuprporTED EDGES

bla = 10 1.1 1.2 1.3 1.4 1.5 1.6 1.7
a = 00443 00530 00616 00697 0.0770 0.0833 ©0.0906  0.0964
BL = 00479 0.0553 00626 00693 00753 0.0812 00862  0.0908
B: = 0.0479 00494 00501 00504 0.0506 0.0500 0.0493 0.0486

bla = 1.8 1.9 2.0 3.0 4.0 5.0 ©
a =o0.1017 0.I1064 ©.I1106 0.1336 0.1400 ©0.1416  0.1422
B1 = 00948 o0.0985 o.1017 01189 01235 01246  0.1250
B2 = 0.0479  0.0471 00464 00404 00384 00375 ©.037%

It may be seen from the above table that for 4/ > 3 the maximum
deflection and the maximum bending moment do not differ sub-
stantially from those calculated for 4/a = «. This means that
for long rectangular plates (4/a > 3) the effect of the short sides can
be neglected and the formulas derived in arts. 20, 21, 22 for bending
to a cylindrical surface can be used with sufficient accuracy.

Plate Built-In at the Edges. The maximum deflection takes
place at the center of the plate and can be expressed by the same
equation (151) as was used for the plate with supported edges.
The numerical maximum bending moment occurs at the middle of
the longer sides and is given by the equation:

(M1>max = 6942' (153)

Several values of the coefficients « and B8 are given in Table 11
below.

TaBLE 11.—Constants FOR UNiForMLY LoADED Rectancurar PraTes
wiTH CLaMPED EDGESs

bla = 1.00 1.2§ 1.50 1.7§ 2.00 ©
a = o0.0138 0.0199 0.0240 0.0264 0.0277 0.0284
8 = 0.0513 0.0665 0.0757 0.0806 0.0829 0.0833

This indicates that clamping the edges of the plate diminishes
considerably its maximum deflection. The
effect of clamping on the magnitude of the Builtin

maximum bending stress is not so large. Also E./ 2 e
in the case of clamped edges the maximum § ! b
deflection and the maximum bending moment S——7rid— N4
for 4/a = 2 nearly coincide with those ob- L—% —t—§
tained for 4/a = ». This justifies the use of Fic. 8.

the results obtained in art. 21 for bending to
a cylinder, when we make calculations for comparatively long rec-
tangular plates (4/2 = 2) with clamped edges.
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Plate with Two Opposite Sides Supported, Third Side Buiit-In
and the Fourth Side Free (Fig. 98). In the case of a uniformly
distributed load, the maximum deflection is at the middle of the
free side at the point 4. This deflection can be represented by the
equation:

gt

§=oapn: (154)

The values of the numerical factor « in this equation are given in
the table below. The maximum bending moment M, also occurs
at the point 4, and its magnitude is given by the equation:

(Ml)max = quﬂz- (155)

The maximum bending moment M, occurs at the point B, at the
middle of the built-in side, and is given by the equation:

(Mz)max = - 62952- (I56)

Several values of the coefficients 8, and B, are given in the table
below.

TasLE 12.—ConstanTts For UnirorMLY Loapep RECTANGULAR PLATE Smown

v Frc. ¢8
bla = o 1/3 1/2 2/3 1
a = 137 1.03 0.63% 0.366 0.123
B= o 0.0078 0.0293 0.0558 0.0972
B2 = 0.500 0.428 0.319 0.227 0.119

It can be seen from the table that when 2 is
large compared to 4 the middle strip 4B ap-
proaches the condition of a cantilever built-in
at B and uniformly loaded.

Uniformly Loaded Plate Supported at Many
Equidistant Points (Fig. 99). In this case
we can obtain a good approximation to the
maximum stress and to the stress distribution
near a support as follows. A part of the plate
near the support, bounded by a circle of radius
a = 0.22¢ (where ¢ is the distance between sup-
ports), is considered as a circular plate simply
supported at the outer edge loaded at the
0] inner edge by the load, P = ¢¢® acting up-
ward and uniformly loaded by a load of in-
tensity ¢ acting downward. This loading is

(a)

!
l
|
l

<

I___

Fic. g9.
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shown in Fig. 99 (4).2 The problem may be solved by using the
methods developed 1n art. 29.

The bending of rectangular plates on an elastic foundation in
connection with the stress analysis in concrete roads was discussed

by H. M. Westergaard.*

31. Thin-walled Vessels Submitted to Internal Pressure.
—This consideration will be confined to vessels having the
form of a surface of revolution, which are subjected to a
continuous internal pressure of intensity p, not necessarily
uniform but symmetrically distributed with reference to the
axis of revolution O-O (Fig. 100). If the thickness of the

F1c. 100.

wall is small in comparison with the radii of curvature and
there are no discontinuities such as sharp bends in the merid-
ional curves, the stresses can be calculated with sufficient
accuracy by neglecting the bending of the wall of the vessel,
i.e., by assuming that the tensile stresses in the wall are
uniformly distributed through the thickness.® The magni-
tudes of the stresses may then be easily calculated from the
equations of statics.

Let us consider an element musqg, cut from the wall of
the vessel by two meridional sections such as m# and s¢ and
two sections ms and ng normal to the meridians. From the

29 See paper by H. M. Westergaard and A. Slater, Proceedings of the
Amer. Concrete Inst., Vol. 17, 1921. See also V. Lewe, “Die strenge
Losung des Pilzdeckenproblems,” Berlin, 1922.

30 See his paper in “Ingenioren,” Copenhagen, Denmark, 1923, p. 513,
and also in “Public Roads,” Vol. 7, 1926, p. 25.

3 Shells which do not resist bending are sometimes called “mem-
branes” and the stresses calculated by neglecting bending are called
“membrane stresses.”” It is assumed that the external forces, uniformly
distributed along the edge of the shell, are tangent to meridians.
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condition of symmetry it is seen that only normal stresses
act on the sides of this element. Let

o1 be the tensile stress in the meridional direction, i.e., the
meridional stress,
a5, the tensile stress along the parallel circle, i.e., the Aoop
Stress,
4, the uniform thickness of the shell,
ds;, the dimension of the element in the meridional direction,
dss, the dimension of the element in the direction of the par-
allel circle,
r1, the meridional radius of curvature,
rs, the radius of curvature of the section perpendicular to
the meridian.

Then the total tensile forces acting on the sides of element
are koidsy and houdsi.  The tensile forces Adsyoy acting on the
sides ms and ng of the element have a component in the
direction normal to the element equal to (see F ig. 100, 4)

hdsyondfy = ;’il@- (a)
1

In the same manner the tensile forces acting on the sides m#
and s¢ have a normal component,
hoadsds
hdsyoady = 122 (%)
72
The sum of these normal components is in equilibrium with
the normal pressure on the element; hence

}10'16::51‘1152 + /za’gd.s‘ld.fz — pd-fldSZ (6‘)
1 T2
or

L, n_P,

. (157)

Some applications of this equation will now be discussed.
Spherical Vessel. In this case 71 = 1, = r and o, = 0y
= ¢. Equation (157) becomes

g =

S
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Conical Tank. Let us consider an open conical tank filled
with a liquid (Fig. 101). In this case, the curvature of the
meridian 1/ry = 0 and the hoop stress o, due to the liquid
pressure can be calculated from eq. (157).
The internal pressure at points m-n a
it 4 distance 4 — y from the surface of the

Cl I .
y _1 liquid 1s
N

P = 'Y(d _)’),

where v is the weight per unit volume
of the liquid. The radius of curvature . at these points is

Fic. 101,

_ytana

T
COos «

Equation (157) then becomes

cosa v(d — ¥)

2y tana A2
from which
y(d — y)ytana
7 = A cos « (@)

The maximum value of this stress occurs at points where the
product (4 — y)y is a maximum. If we set the derivative (?f
(d — )y equal to zero, we find y = d/2 and the stress at this
point is

vd? tan a ]

(92) max = 4k cos a

(e)

The stress o, at the level m—#» is found from the condition
that the vertical components of the meridional tensile forces
in the shell support the weight of the volume #mons of the
liquid (Fig. 101); hence

2wy tan a hoy cos a = wy? tan® a(d — y + 3y)v,

from which

_ytana(d — §y)v
o= 2k cos a 2
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This stress is maximum when y = 34. Substituting in eq.
(f), we find

3 dytana
16 & cosa

(&)

Equations (d) and (f) represent the complete solution of the
problem as long as the bending stresses in the wall of the
tank may be neglected.

In the case of a cylindrical shell of diameter d, submitted
to uniform pressure p, we found before (see p. 42, Part I)

_rd. _rd
TR T k]

(Ul) max —

Problems
1. The tank of Fig. 102 contains liquid at the level shown.

Fic. 102.

Determine the maximum stresses o1 and o2 in the cylindrical and the
spherical portions and also the compressive force in the reinforcing
ring mn.

Solution. 'The weight of the liquid in the container is

Q=|:7rdrz+7r(§R3—R2l+§ ]'y.

For the cylindrical portion of the tank,

dyr

= —— = const. and (02)max = %

T 2wk
For the spherical portion of the tank the maximum stress is at the
bottom, where the liquid pressure is vd; and o1 = o2 = vdiR/24.
The tensile force in the spherical portion of the tank per unit length

of the ring mn is Q/(2wr sin ). The radial component of this force,
producing compression of the ring (Fig. 102, 8), is (Q/277) cot @, and
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the compressive force in the ring is (Q/27) cot @. This is only an
approximation obtained on the assumption that the cylindrical and
spherical portions are membranes, resisting only to tension. In
calculating compressive stress in the ring adjacent portions of
cylindrical and spherical shells must be added to the cross section
of the ring mn itself.

2. Determine the stresses at the points m# of a cylindrical tank
with a hemispherical bottom, which contains liquid at the level
indicated (Fig. 103).

Solution. From eq. (157) for any point of the spherical portion
at a distance x from the surface of the liquid we have |

(a)

Fia. 103.

Since the meridional forces along the section m# support the weight
of the volume smont of the liquid, the second equation is

_YR{d—R R1—sinta
A 2 3 costa

o1

@)
and eq. (4) becomes

'yR(d—R Rsin3a+3sinacosza—1)
Oy = —— - *
/3 2 3 cos® « :

3. In Fig. 104 determine the relation between the outer diameter
of the tank, the diameter of the supporting ring m# and the depth &
of the liquid for which the ring m# is submitted to vertical pressure
only. The middle portion of the bottom of the tank is a spherical
surface of central angle w/2. The same angle has also the conical
portion mminn,.

Hint. The necessary relation may be obtained from the con-
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dition that the pressures on the ring from the side of the spherical
bottom and from the conical lateral surface both inclined 45° give
no horizontal component. From this it follows that the volume of
the liquid indicated in the figure by the shaded areas is equal to the
volume mnst,

. 4. Determine the maximum stress in the tank represented in
Fig. 102 if R = 10 feet, » = 8 feet, d = 20 feet, v = 62.5 lbs. per
cubic foot and 2 = ¢ in.

5. Determine stresses o3 and o3 in the wall of a torus submitted
to uniform inner pressure p (Fig. 105).

Fic. 105,

Solution. The condition of equilibrium with respect to vertical
forces of the portion mumin cut from the vessel by a vertical
cylindrical surface of radius # and conical surface mom; gives

w(r? — a®)p — ah2rrsina = o,
from which
_pt=a)

gL = .
! 2rh sin «

The stress o3 can now be calculated from eq. (157).

6. Determine the maximum
stress in the wall of the vessel rep-
resented in Fig. 10§ if 2 = 10/,
b=12, h=1%" and p = 50 lbs.
per sq. in.

32. Local Bending Stresses in
Thin Vessels.—In the previous
E ) article, bending of the wall of the

Fic. 106, vessel was neglected and only ten-

sile stresses, so-called membrane

stresses, were considered. The displacements due to membrane
stresses cause bending of the wall and the resulting bending stresses

* s

(a)
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may be of practical importance. This is especially so at the places
of discontinuity in the meridian. If the meridian consists of curves
which are not tangent, a reinforcing ring as shown in Fig. 102 is
necessary in order to prevent large bending of the wall of the
vessel. The stresses may be high also at the junctions in a merid-
ian consisting of several curves tangent to one another. The ad-
ditional stresses set up at such points will be called discontinuity
stresses.

The method of calculating them will now be shown for the
simple case of a cylindrical vessel with hemispherical ends submitted
to the action of uniform internal pressure (Fig. 106). We consider
first the membrane stresses only, and find for the cylindrical portion

gy = 2_;; H g2 = % ’ (4)
where 7 is the radius of cylinder and hemisphere and 4 the thickness

of the wall. For the spherical portion,

r
01=a2=0'=£—'

2h

The corresponding radial displacements for the cylindrical and
spherical portions are

r 7 7
Fo—w)=Lre-w ad Loy
respectively.
If the spherical and cylindrical parts of the vessel were disjointed

(Fig. 106, 4), the difference in radii due to membrane stresses would
be

2
5= j;jE- ®)

In the actual vessel, the head and the cylinder are kept together at
the joint by shearing forces Py and bending moments M, (Fig. 106,
4) per unit length of the circumference of the middle surface of the

- vessel. These forces produce bending of the adjacent parts of the

vessel. In discussing bending in the cylinder, since the deformation
1s symmetrical with respect to the axis, it is sufficient to consider the

~ bending of an elemental strip (Fig. 107), and the deflection of this

strip will be radial. For simplicity it is assumed the strip is of unit
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width. If y denotes the radial displacement at any cross section of
the strip, then the radius of the cylinder shortens at this section by y
and as a result of this there is a compressive strain in the circum-
ferential direction of the mag-
nitude y/r. The corresponding
compressive stress is Ey/r. Hence
when the strip deflects towards the
axis of the cylinder, lateral com-
pressive forces T (Fig. 107, ¢) are

length of the strip is

=-—=h ()

Fie. 107.

Since the angle 6 is equal to 1/r,
these forces give a radial resultant *
Eyh | _ Eyh

bl
r r?

@)

which opposes the deflection of the strip. These reactive forces are
distributed along the strip in proportion to the deflections y so that
the strip is in the same condition with respect to bending as a beam
on an elastic foundation (art. 1) with # = E&/r%. Since any change
in the shape of the cross section of the strip is prevented by the
adjacent strips in a manner similar to that in plates (see p. 119),
D'= ERj12(1 — p2) is to be used for its flexural rigidity. The
differential equation of the deflection curve of the strip is then
(see eq. 1)
4
ody_ B
dx* r?

Introducing, as before, the notation

s Eh 4301 — ¥

B= 4Dr? = e (158)
the deflection curve of the strip becomes (see eq. 11, p. 12)
—Bz
y = f@ [Py cos Bx — BMo(cos Bx — sin Bx)]. (e)

This is a rapidly damped oscillatory curve of wave length

_am_ s PR |
=% =N a -y v

2 Tt is nssumed that @ is a small angle.

produced whose magnitude per unit.
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which is small in comparison with 7 if 4 is small. From this it can
be shown that bending at the joint of cylinder and head is of Jocal
character and has an appreciable effect on the stresses only in a
narrow zone in the vicinity of the joint. This narrow zone at the
edge of the head is nearly cylindrical in shape and hence eq. (¢) can
be used for calculating deflections and stresses in the head also.

In the simplest case, in which cylindrical wall and spherical
head are of the same thickness, the deflections and the slopes pro-
duced at the edges of the spherical and cylindrical parts by the
forces Py are equal. The conditions of continuity at the joint are
satisfied if My = o and Py has such a magnitude as to produce a
deflection at the edge of the cylinder equal to /2. Putting M, = o,
x = o in eq. (¢), the equation for calculating Py is

P 3
28D~ 2’
from which \
_ _p* Eh _p
Po= 38D = 33E 46r = % (159)

With Py known the deflection and the bending moment at any cross
section of the strip may be calculated from eq. (¢). The corre-
sponding discontinuity stresses must be added to the membrane
stresses given by eqs. (@). If the head and the cylindrical portion
of the vessel have different thicknesses, there will be both a shearing
force Py and a moment M, at the joint. These two quantities are
calculated from the conditions: (1) the sum of edge deflections in the
spherical and in the cylindrical parts must be equal to § (Fig. 106,
b); (2) the angles of rotations of the two edges must be equal.

The above method can be used also in the cases of heads which
are not of hemispherical shape.®* If the thickness of the wall of

8 The proof that this is a sufficiently accurate assumption was given
by E. Meissner, Schweiz. Bauzeitung, Vol. 86, 1925, p. I.

3 This method was used in investigating stress distribution in various
shapes of steam boiler heads. See E. Hohn and A. Huggenberger,
Uber die Festigkeit der gewolbten Boden und der Zylinderschale,
Ziirich, 1927. See also W. M. Coates, “The State of Stress in Full
Heads of Pressure Vessels,” Transactions, A. S. M. E.; Applied Mech.
Div., 1929. It was used also in investigating local bending in tanks

- containing liquid. See T. Poschl and K. Terzaghi, Berechnung von

Behiltern, Berlin, 1926; H. Reissner, Beton und Eisen, Vol. 7, 1908, and
C. Runge, Zeitschr. f. Math. u. Phys., Vol. 51, 1904, p. 254. Cylindrical
shells with flat ends were discussed by E. O. Holmberg and K. Axelson,
Trans. A. S. M. E. Vol. g4, p. 13, 1932. A further discussion of cylin-
drical shells see in “Theory of Plates and Shells,” 1940.
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pressure vessels is not small, the bending stresses in the wall may
become of primary importance and a more detailed investigation of
the stress distribution becomes necessary.?

Problems
1. Determine the discontinuity stresses in the vessel represented
in Fig. 106 if p = 150 lbs. per sq. in,, 7 = 2§ in., A = 3 in., p = 0.3
Solution.  From eq. (158) 8 = 0.364 and from eq. (159)

- 150 '
‘Po = §X 0.364 51.5 lbs. per in,
The bending moment in the elemental strip is
d%y
M=~ dx?

and, by using eq. (¢) and substituting

P
y= Eﬁ%fﬁz cos Bx,
we obtain

M= —%—Oe‘ﬂ“ sin Bx.

'The numerical maximum of this moment is at Bx = /4, when Mpax
= 45.4 1bs. ins. The corresponding maximum bending stress in the
strip is 6 Mnax/A? = 1,090 lbs. per sq. in.  This stress must be added
to the membrane stress

oy = 1_2_2 = 150 X 2§ = 3,750 lbs. per sq. in.

The bending of the strip produces also hoop stresses. These are
made up of two parts: (1) stresses preventing cross sections of the
strip from distortion (see p. 120) (the maximum value of these
stresses at any cross section of the strip is &= 6uM/A?) and (2) stresses
— (yE/r) due to shortening of the circumference. Substituting the
above expressions for y and M, the discontinuity stress, which must
be added to the membrane stress oy, is

6ulP
_ —2% e cos Bx + ;;hzo ¢~ sin Bx
6IJP0 —Bz . »
= —Bzé—g (sin Bx — 1.83 cos Bx).

3 See “Theory of Plates and Shells,” 1940.
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The maximum value of this stress can easily be found by the usual
method. It will be small in comparison with the membrane hoop
stress pr/h = 7,500 lbs. per sq. in., so that

discontinuity stresses in this case do not ez
materially affect the maximum stress. I '

2. A thin cylindrical drum attached T
to two solid discs rotates about the axis =
0-0 (Fig. 108) with a peripheral velocity v.
Determine the local bending stresses in the
drum if it is built in along the edges mn and mn..

Solution. If the drum were separated from the discs the increase
in the radius of the drum, due to centrifugal force, would be (seeeq.
15, Part I) yo®/gE. The increase in the radius of the solid discs
is (see eq. 223)

)
fe v

”,

Fic. 108.

I — uyv’r
4 gE
The difference of these two quantities is

_3teytr
4 gk

Applying the same method as in the previous problem and con-

- sidering a strip of unit width, the magnitude of the shearing force

Py and the bending moment M, at the edge mn is found by using
egs. (11) and (12). Consider the discs as very rigid in comparison
with the drum and neglect the deformations produced in them by
the forces P, and couples Mo. The equations for calculating Py and
M, are

1
2"5@(?0 — BMy) =4,

1
2—5;5(}’0 — 28M,) = o,
from which

Py = 4533D; M, = 2632D.

Having these quantities, the deflections and the bending stresses
are found from an equation analogous to eq. (11).

3. Determine the maximum bending stress in the drum of the
previous problem if » = 25 in., 2 = § in., v = goo feet per sec. and
the material is steel.

4. Determine the bending stresses produced in a pipe by a
narrow ring shrunk onto it (Fig. 109).
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Solution. Consider a longitudinal strip of unit width and denote
by P the pressure between the ring and the
pipe, per unit length of the circumference of
the pipe. The bending of the strip is the same
as that of a long bar on an elastic foundation,
which carries a single load P (art. 1). The
Fic. 109. decrease in the radius of the pipe due to P,

from (eq. 8), is P/88*D. The increase in the

radius of the ring is 3 Pr?/AE, where A is the cross-sectional area
of the ring. If 8 is the initial difference in the inner radius of the
ring and the outer radius of the pipe, the equation for calculating

Pis

P Pr2

8D " 4E = °

or, by using eq. (158) and taking x = 0.3,

Pflr\ P
0.643 E\Z + JE = 5. ()

P is determined from this equation, and the maximum bending
moment in the strip is found from eq. (9).5” The maximum bending
stress in the strip is

_3P[ R
T2 N30 — @)

The same method is applicable also to cases in which a cylindrical
tube with reinforcing rings is submitted to either a uniform internal
or a uniform external pressure. If the distance between the rings
is so large that the effect of each on the deflections produced by the
others may be neglected, P can be obtained from eq. (g) by sub-
stituting 8 = pr®/Eh. This represents the change in the radius of
the pipe due to the uniform pressure.?®

5. Solve the preceding problem assuming that the length 7 of
the pipe is not large and that the ring is at the middle of the length.

3¢ The dimension of the ring in the radial direction is assumed to be
small in comparison with 7.

37 An example of such calculations is given in the paper by G. Cook,
Engineering, Vol. 116, 1923, p. 479. See also R. Lorenz, V. D. 1., Vol. 52,
1908, p. 1706; M. Westphal, V. D. 1., Vol. 41, 1897, p. 1036. _

38 The application of this method to the calculation of hull stresses in a
submarine having a circular cross section is given in the paper by K. v.
Sanden in the periodical, Werft und Reederei, 1920, p. 189.
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Hint. 1In calculating the pressure P per unit length of the ring
we use the results obtained for the problem shown in Fig. 13, p. 18.
Then the deflection produced in the pipe by the forces P is

&acoshﬁl—!— cosB/+2 P coshpl/+ cosBl/+ 2
2k sinh B/ +sing/ 88D  sinh Bl + sinpl

The equation for calculating P then is

P coshBl+ cospl+ 2 Prr
852D sinh 8/ -~ sin 8/ AE ~

8.

Find P for steel pipe if » = 25 in., 2 = § in.,, / = 50in.,, 4 = 4 sq.
in., and § = o0.05 in.

6. A cylindrical pipe with simply sup-
ported edges is submitted to a uniform in-
ternal pressure p. Find the longitudinal I ' P ! '1
bending stress and the deflection at the | .
middle of the pipe, Fig. 110. The dimen- I'—Zi——]-—zl-—-i 2r

| |

sions of the pipe are the same as in the

preceding problem. —l'
Hint. From the results of the problem C

shown in Fig. 20, p. 24, the deflection
and the bending moment per unit length
of the circumference at the middle cross section ¢—¢ are

Fic. 110,

Bl B!

R 2 cosh — cos —
Py 2 2
Y= En\' cosh 8/ + cos 81/
sinh & gin &/

2 2

~ 2B2cosh B/ + cos Bl

7. Solve the preceding problem assuming that the edges of the
pipe are absolutely built-in.

Hint. Use the results of the problem shown in Fig. 21, p. 24.

8. A circular steel pipe is reinforced by rings, a distance / apart,
Fig. 1114, and submitted to internal pressure p. Find the pres-
sure P produced per unit length of the inner circumference of a
ring. Find the maximum bending stresses in the pipe.

Solution. Let us begin with a consideration of the portion of
the pipe between the two rings * under the action of shearing forces

_ ¥ The width of the ring is assumed to be negligible in comparison
with the distance / between the rings.
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Vo (Fig. 1114) and bending moments Mo (Fig. 111¢) per unit length
of the circumference of the pipe. Considering a longitudinal strip
of unit width as a beam on an elastic foundation and using the

o~

(b) % (Mo @) Mo)

Fie. 111,

results of the problems in Fig. 12, p. 17, and in Fig. 18, p. 23, we
find for the deflection and the slope at the left end of the strip in
Fig. 1112:

2 VyBr® cosh B/ + cos g/

(@)emo = = =50 Gnh B + sin 87’ (&)
dw, 2V sinh B/ — sin Bl. @
(E>I=o ~ " ER sinh Bl + sin g/

For the left end in Fig. 111¢ we obtain

o 2M? sinh B/ — sin 8/ ()
(oo = = 0" Sinh Bl + sin 8’ J
dws, 4 M cosh B/ — cos B/ )
dx ). Eh sinh gl + sin g/
From our definition of P it follows that

P
Vo= —7~,-

*)

Substituting this in equation () and observing that in the pipe
(Fig. 1114) the tangent to the strip must be parallel to the axis of

the pipe, we obtain

dwn (di) _
( dx )z=o + dx =0 =%
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from which
P sinh 8/ — sin 8/

Mo = 48 cosh B/ — cospl” @
In calculating P we assume first that the rings are absolutely rigid.
In such a case the deflection in the pipe produced by forces P under
the rings must be equal to the radial expansion pr?/Ek which the
pipe would have in the absence of the reinforcing rings. Hence the
equation for calculating P is

72
(W1)emo + (W2)2mo = %72

or
PBr? coshBl 4+ cosB!  Ppr?
Eh “sinh g/ + sin g1~ 2Eh _
(sinh B/ — sin 8/)? | prt
X (sinh 87 + sin 8/)(cosh B/ — cos /) ~ Eh (m)

‘In each particular case this equation can be readily solved for P.

Substituting the value of P in expression (/), we obtain the required
value of the bending moment M.

To take into account the expansion of the reinforcing rings, we
observe that the forces P produce an extension of the inner radius
of the ring equal to Pr?/AE, where A is the cross-sectional area of
the ring. By the same amount the deflection of the pipe is dimin-
ished. Hence to obtain the force P in this case we have only to
substitute

prt Prt
Eh  AE
instead of pr?/EA into equation ().

9. Find the bending moment A,
and the shearing force 7, per unit —= —
length of circumference at the bottom - — {
of the cylindrical tank filled with I, d
liquid, Fig. 112, if r = 30 ft., d = 26 - —- T
ft., A = 14 in,, v = 0.03613 lb. per cu. 7 A |4 ‘{11
in, and p = 0.2, KA 7777777777727 7747 77

Answer. Moy = 13,960 in. lb. per Fie. 112,

Cin, Py = 563.6 1b. per in.

10. Solve problem § assuming that the ring is fitted at the left
end of the pipe. The resistance of the ring to torsion should be
neglected.

Hint. Use the result obtained for the problem shown in Fig.
22, p. 24.
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33. Thermal Stresses in Cylindrical Shells.—If a cylin-
drical shell with free edges undergoes a uniform temperature
change, no thermal stresses will be produced. But if the
edges are supported or clamped, free expansion of the shell is
prevented, and local bending stresses are set up at the edges.
Assume, for example, that the edges of a long cylindrical pipe
are built-in; then the shearing forces and the bending moments
at the edges are obtained as in problem 2 of the preceding
article. It is only necessary to substitute in the equation of
that problem & = ra#, which represents the increase in the
radius of the shell due to thermal expansion. If the length
of the pipe is not large and both ends have to be considered

simultaneously, the bending moments and the shearing forces

can be readily obtained by using the results of problem 8 of
the preceding article.

Let us now consider the case in which there is a tempera-
ture gradient in the radial direction. Assume that 4 and #
are the uniform temperatures of the cylindrical wall at the
inside and the outside surfaces, respectively, and that the
variation of the temperature through the thickness is linear.
In such a case, at points at a large distance from the ends of
the shell, there will be no bending, and the stresses can be
calculated by using equation (122), p. 132, derived for a plate
with a clamped edge. This gives for the maximum bending
stress
aE(t — &)

2(1 — p)

Omax = (a)
It is assumed that # > #. Then the tensile stress will act
at the outer surface of the shell.

Near the ends of the shell there will be some bending of
the shell and the total thermal stresses will be obtained by
superposing upon stresses (2) the stresses due to that bending.
Let us consider, as an example, the stresses at a free end of a
long cylindrical pipe. In calculating the stresses in this case
we observe that at the edge the stresses represented by ex-
pression (a) result in uniformly distributed moments Mo,
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Fig. 113 4, of the magnitude

aE(ty, — B)A?

M, = 12(1 — ) @)
To obtain a free edge, the moments
of the same magnitude but opposite h
in direction must be superposed, M.(\%-—x
Fig. 1134. Hence the thermal
stresses at the free edge are obtained I a

by superposing upon the stresses

(a) the stresses produced by the («M,

moments shown in Fig. 1136. =z ’1"{ x
These later stresses can be readily T
obtained by considering the bending ly )
of an elemental strip and then using Fic. 113.
solution (11), p. 12, which gives

y = — %}% ¢~#*(cos Bx — sin Bx), (¢)

where 8 is given by equation (158). The largest deflection,
obtained at the free edge (x = 0), is

M
ymax = - Z_B% (d)

and the corresponding hoop stresses are

M() E _. Ea(l‘1 - fz)

WD 7 o T ©

jrhc? bending moment acting on the end of the elemental strip
1s given by expression (4). The bending moments preventing
the cross sections of the strip from distortion during bending

- are

OlE(l'l bl tz)}lz

Mo = u 12(1 — ) ° (f)

The maximum thermal stress is acting at the outer surface of
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the pipe in the circumferential direction and consists of the
three parts: (1) stress (a), (2) stress (e), and (3) stress pro-
duced by moments (f). Hence

aE(tl~t2)[I +«/1—y2_”].

2(1 — u)

Omax —

\/_3 (160)
For u = 0.3 this stress is about 25 per cent greater than the
stress (a) calculated at points at a large distance from the
ends. We can therefore conclude that if a crack will occur
in a brittle material such as glass due to a temperature differ-
ence # — &, it will start at the edge and will proceed in the
axial direction. In a similar manner the stresses can also
be calculated in cases in which the edges are clamped or
supported.®®

Problems

1. Find the thermal stresses produced in a long steel pipe with
built-in edges if » = 25 in., 2 = }in., p = 0.3, coefficient of thermal
expansion a@ = 70.107, and the increase in the uniform temperature
of the pipe is 100° F.

Solution. With the given dimensions we find

B = 0.364 in.7%, D = 343.10% Ib. 1n.

The free elongation of the radius of the pipe due to temperature
rise is 8 = ar(t — %) = 70:25-100- 1077 = 174-107* in. Substi-
tuting in the equations of the problem 2 of the preceding article,
we find the shearing force and the bending moment per unit length
of the circumference at the built-in edge:

Py = 438D = 1160 Ibs. per in.
My = 268D = 1590 lb. in. per in.

With these values of Py and M, the stresses in axial and circum-
ferential directions at the built-in edge can be readily calculated.

2. Solve the preceding problem assuming that the edges are
simply supported.

3. A steel tube of the same dimensions as in problem 1 has the
temperatures 4 and # at the inside and the outside surfaces re-

40 Several examples of this kind are discussed in the paper by C. H.
Kent, Trans. Am. Soc. Mech. Eng. vol. 53, p. 167, 1931. The case of a
temperature gradient in the axial direction is discussed in “Theory of
Plates and Shells,” p. 423.
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spectively. Find the maximum stress in the tube if 4 — % = 100° F.
and the edges are free.

Answer.  omax = 18,750 lbs. per sq. in.

4. Solve the preceding problem assuming that the edges of the
tube were built-in when the tube had a uniform temperature equal

to (4 + %)/2.

34. Twisting of a Circular Ring by Couples Uniformly
Distributed along its Center Line.—There are cases in which
a circular ring of uniform cross sec-

tion is submitted to the action of
twisting couples uniformly distrib- m 0 "
uted along its center line.* Taking (@) ——a— )

half the ring (Fig. 114, a) as a free
body, from the condition of equi-

librium with respect to moments ) S g
about the diameter ox, there must B '&:/‘9
be a bending moment on each cross ~0.
section m and 7,
Y
M= Mta, (ﬂ) Fie. 114.

where 2 is the radius of the center line and M, is twisting
couple per unit length of the center line. Let us consider now
the deformation of the ring. From the condition of symmetry
it can be concluded that during twist each cross section rotates
in its own plane through the same angle 6, which is assumed
to be small in the following discussion.®? Let C be the center
of rotation (Fig. 114, 4) and B a point in the cross section at
distance p from C. Due to rotation of the cross section the
point B describes a small arc BB; = pf. Due to this dis-
placement the annular fiber of the ring, which is perpen-
dicular to the section at the point B, increases its radius by
ByB,. If the coordinate axes are taken as indicated, we have,

“ An instance of such a problem is the calculation of stresses in the
retaining rings of commutators of electric machines. Another is the
stress analysis of pipe flanges.

, % A general discussion of the problem, when 6 is not small, is given by
R. Grammel, Zeitschr. f. Angew. Math. u. Mech., Vol. 3, 1923, P. 429, and
Vol. 7, 1927, p. 198.
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from the similarity of the triangles BBB; and BDC,
DB _
BC ™ °
Let us consider first the case in which the cross sectional
dimensions of the ring are small in comparison with the
radius 2 of the center line. Then the radii of all ring fibers

may be taken equal to 4 without great error and the unit
elongation of the fiber B, due to the displacement given by

eq. (), is

B.B, = BB, 0’% = 0y. ®)

Oy

€ = ; . (C)

If there is no lateral pressure between the ring fibers, the
fiber stress, due to elongation e, is

_ £ty
= =2,

(d)

Now, from the equilibrium of the half ring, the sum of all
the normal forces acting on the cross section of the ring must
be equal to zero and the moment of these forces about the
x axis must be equal to M (see eq. a). If dA4 denotes an
elemental area of the cross section, these equations of equi-
librium become

2
f€Q¢4=W fﬁﬂd4=ﬂa )
a 4 a 4

where the integration is extended over the cross sectional area
A. ‘The first of these equations shows that the centroid of
the cross section must be on the x axis; from the second, we

find

ag

Ma M.a?

=%~ EL >’

(161)
where 7, is the moment of inertia of the cross section of the
ring with respect to the x axis. Substituting in eq. (d), we

find
Mtﬂ_y

a’=
I’

(162)
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i.e.,- the distribution of the normal stresses over the cross
section of the ring is the same as in the case of bending of
straight bars; the stress is proportional to the distance from
thﬁa neutral axis ¥ and the maximum stress occurs at the
points most remote from this axis.

As a second example let us consider a ring of rectangular cross
section (Fig. 115) whose width 4 is not

small in comparison with the radius @ of
the center line. Let ¢ and 4 denote the [~ <7 T2
inner and outer radii of the ring respec- & ” 27 x
tively, and 7 the radius of any fiber of the |o—r +— | |
ring, and assume as before that the de- [=——&——I¥
formation of the ring consists of a rota- g
tion of its cross section® through an Fic. 115,
angle 6. The elongation of the fiber at
a radius 7 and the corresponding stress are
Oy Eg
e=—"3 o= Ty : 0))

The equation of equilibrium analogous to the second of eqs. (e)

becomes
CHME 0 Besdeg
yaray
fc A

—h/2

and, by performing the integration,

Eop3 d
> loge; = M,
from which
0 — 12M _ 12Ma
= = 4 : (163)

ER logeé ER? loge;

Substitute into the second of egs. (f), and

__12My

Arlog. é

“ The'possibility of distortion of the cross section is neglected in this
consideration. The corresponding error is small, provided d/c < 1.3.
See A. M. Wahl, Trans. Amer. Soc. Mech. Engrs., 1929.
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The maximum stress is found at the inner corners of the ring,
where 7 = ¢ and y = }/a:
oo M 6Ma 160
d d
A log, P Fe log,

4

If 4 is small, eq. (163) can easily be changed to the form (161). Put
b

c=a—=

b
d=a+; and 5

then

a4ty b
loge;= loge—b; log, (I +;)~

a2

2
For small values of the ratio 4/a the above logarithm is approximately

equal to 4/a. Substitution of this into eq. (163) gives eq. (161).

These results can be used in calculating the stresses produced at
. the joint of a pipe and a flange # by forces R
*2;”’ the inner circumference of the pipe. The
force per unit length of the outer circum-
ference of the flange is R(c/d). Under the
M » action of these forces the cross section of the
|7 ¥ flange rotates through the angle 6, and the
—a —sl @ wall of the pipe bends as shown in Fig. 116 (4)
by the dotted lines. Let M, and P, be the
o bending moment and the shearing force at the
°‘7','\\f 5 joint per unit length of the inner circumfer-

(o ence of the pipe. The magnitude of these
R 69“—_ s quantities can be found from the condition
Fio. 116 of continuity at the junction of pipe and

flange. As ordinarily the flange is very rigid
1n the plane perpendicular to the axis of the pipe, the radial displace-
ment produced in the flange by forces P, is negligible, and the
deflection at the edge of the pipe can be considered zero. The
angle of rotation of the edge of the pipe is equal to 8, the angle of
rotation of cross sections of the flange. Then eqgs. (11) and (12)

“ Another method of calculating these stresses is given by E. O.
Waters, Journal Appl. Mech., Vol. 59, 1937, p. 161. See also J. D.
Mattimore, N. O. Smith-Petersen and H. C. Bell, Trans. A. S. M. E.,
Vol. 60, 1938, p. 297.

(Fig. 116). R is the force per unit length of
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give the following equations for calculating M, and Po:

1
2pp (Fo = M) = o,
— s (P — 26M) = 0.
From the first of these equations
Po = BMO (g)

Then

M, = CZBDH and Py, = 2321)0. (;l)

For a pipe of thickness 4; and inner radius ¢, is * given by eq. (158),

4300 — ) *)

B= N

The torque per unit length of the center line of the flange, produced
by the forces shown in the figure, is

A
M, =£[R(d— ) — My — POE]

PN

[R(d—— &) — M, — Mogﬁ]' )

The substitution of this into eq. {163) gives the angle 8 and from the
first of egs. (%)

A
My = 28D - ——IEL—‘?[R(J_ ¢) — M, — Mo;ﬁ]'
E/zsloge;

Replace D by its magnitude Ehd/12(1 — p?), and
I 2
Ty ()
5 () et

20¢

My = R(d — ¢) (165)

From egs. (165) and (g) the quantities M, and Py can be calculated
if we are given the dimensions of the pipe, Poisson’s ratio and the
forces R. Then the bending stresses in the pipe may be found as
in article 32.

% For small thickness of the pipe the difference between the inner
radius and the radius of the middle surface can be neglected.
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Problems

1. Determine the bending moment M, and the shearing force
P, in the pipe shown in Fig. 116 if d = 63", ¢ = 376", 4 = 175",
b= 13/16", p = 0.3.

Solution. From eq. (k)

v2.73 )
= ——L2 = 084 in."!
B Vel 754 10

d Bh
loge; = 0.635; P 0.564.

Substituting in eq. (165), we have
My = 0.459R(d — ¢); Py = 8My = 0.360R(d — ¢).
The maximum bending stress in the pipe is given by
6M,
}112

2. Find the expression for the small deflection of the conical
ring, shown in Fig. 117, which represents an element of a Belleville

g =

o d
lid - C R
h c
X
e =
WF .__a__"’j.y T; .
Or-——l‘
Fic. 117,

spring. R is the load per unit length of the inner edge of the ring.

Solution. Take, as before, the coordinates x and y with the
origin at the center of rotation C. The unit elongation and the
stress for any fiber with the radius  are given by egs. (f). From the
equilibrium of the half ring, we obtain

2
f@dd = 03 fE—oy—dd =M = Re(d — ¢). (m)

The position of the center of rotation C can be determined from the
first of these two equations. Let & be the radius at the point C and
assume the angle 8 of the cone to be so small that we can take
sin 8 = B; cos B = 1. Then by taking the axes x; and y, parallel
to the sides of the rectangular cross section and noting that y = y,
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+ Bx1 = y1 + B(r — a) the first of eqs. (m) becomes
12 e Fp
f f . [_}’1 + B(r — a):]dm’y1 E0Bh

—h{2

d
r—alog.r

= Eﬁﬁlz(a’— ¢ - aloge%’) = o,

from which
d—c¢ )

aqa =

: »
log. P

The second of egs. (m) becomes

412 i
[ f %9 [}’1 + B(r — ﬂ)]2d7'd)’1

hi2

4 —

b d
= EO[Eloge;-l—,B?}z(
d
— 24(d — ¢) + & loge;) ] = Re(d — ¢),

and by substituting eq. (#) for 2 we obtain for the vertical deflection
of the upper edge of the cone with respect to the lower

Re(d — ©)

)= — @)
A o fd+c _d—c¢
E[m(d C)loge +ﬁh< 2 ! é)}
oge[

This gives & if we know the dimensions of the ring, the modulus of
elasticity of the material and the load R. 'This derivation neglects
the effect of the change in the angle 8 due to the rotation 6.4

6=0d—c¢

46 For larger deflections the change in the angle 8 must be considered.
In such cases the deflection is no longer proportional to the load. See
paper by W. A. Brecht and A. M. Wahl, Journal Appl. Mech. Trans.
A.S. M. E. Vol. 32, 1930, p. 52. See also papers by J. O. Almen and A
Laszlo, Trans. Am, Soc. Mech. Engrs. Vol. 58, p. 305, 1936, and Siegfried
Gross, V. D. L. Vol. 79, p. 865, 1935.



. CHAPTER 1V
BUCKLING OF BARS, PLATES, AND SHELLS!

35. Lateral Buckling of Bars Compressed within the
Elastic Limit.—The discussion of simultaneous bending and
compression of struts (p. 244, Part I) showed that there is a
certain critical value of the compressive force at which large
lateral deflection may be produced by the slightest lateral load.
For a prismatical bar with hinged ends this critical com-

pressive force 1s
mE]
Pe = 2 (a)

Experiments show that when the compressive force in a
slender ? strut approaches this value, lateral deflection begins
and increases so rapidly with increase of the compressive
force that a load equal to the critical value is usually sufficient
to produce complete failure of the structure. Consequently
this critical load must be considered as the criterion of strength
for slender columns and struts.

From the equation above it will be seen that this critical
load does not depend upon the strength of the material but
only upon the dimensions of the structure and the modulus
of elasticity of the material. Two equal slender struts, one of
high strength steel and the other of common structural steel,
will buckle at the same compressive force, although the
strength of the material in the two cases is very different.
Equation () shows also that the strength of a strut may be
raised by increasing /. This may be done without changing
the cross sectional area by distributing the material as far as
possible from the principal axes of the cross section. Hence

* For more information on buckling problems see, ‘“ Theory of Elastic
Stability,” 1936. .
? When the strut is not slender enough, lateral buckling occurs at
a compressive stress above proportional limit. This case is discussed in
Theory of Elastic Stability,” p. 156, 1936.
184
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tubular sections are more economical than solid for compres-
sion members. By diminishing the wall thickness of such
sections and increasing the transverse dimensions their sta-
bility can be increased. There is a lower limit for the wall
thickness however below which the wall itself becomes
unstable and, instead of buckling of the strut as a whole, there
occurs a buckling of its longitudinal elements, which brings
about a corrugation of the wall.

This discussion shows then that the sidewise buckling of
compression members, i.e., their elastic stability, is of great
practical importance. Thisis especially true in many modern
structures where the cross sectional dimensions are being made
smaller and smaller due to the use of stronger materials and
the desire to save weight. In many cases failure of an
engineering structure is to be attributed to elastic instability
and not to the lack of strength on the part of the material.

In the previous discussion (p. 239, Part I) the magnitude
of the critical load was obtained by considering the simul-
taneous action of compressive and bending forces. The same
result may be obtained by assuming that the bar is only
compressed by a centrally applied load.®* Let us consider the
case of a bar in the form of a slender
vertical prism built in at the bottom
and loaded axially at the top (Fig.
118). If the load P is less than its
critical value the bar remains straight
and undergoes only axial compres-
sion. This straight form of elastic
equilibsium is stable, i.e., if a lateral
force be applied 2nd a small deflection
produced, this deflection disappears
when the lateral force is removed and the bar becomes straight

Fic. 118.

3 The values of the critical loads, for various conditions at the ends
of a compressed prismatical bar, were obtained first by L. Euler; see
Additamentum, “De curvis elasticis,” in the © Methodus inveniendi
lineas curvas maximi minimive proprietate gaudentes,” Lausanne, 1744.
See also Histoire de 1’Academie, Berlin, Vol. 13, 1757. An English
translation of this work is givep in “Isis,”” No. g8, Vol. 201, 1933.
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again. By increasing P gradually we may arrive at a condi-

tion in which the straight form of equilibrium becomes un-

stable and a slight lateral force may produce a lateral deflec-

tion which does not disappear with the cause which produces

it. The critical load is then defined as the axial load, which is

sufficient to keep the bar in a slightly bent form (Fig. 118, 4).

This load is calculated by use of the differential equation

of the deflection curve (eq. 79, Part I). The axes are taken

as indicated in Fig. 118, 4. Then the bending moment at any

cross section mn is P(8 — y) and the differential equation of
the deflection curve is ¢

2
EI%}—; = P(6 — y). (6)
It is clear that, with the upper end free, buckling of the bar

will occur in the plane of smallest flexural rigidity which we will
call EI. Let

P
P =77 (c)
Equation (&) then becomes
42
Th =9 @)

The general solution of this equation is
y = 0+ Cycos px + C, sin px, (d)

in which C, and C; are constants which must be adjusted to
satisfy the conditions at the built-in end:

d
<y)z=0 - O; (j}%)xﬂ, =0

These conditions are fulfilled if
C,= - 6; C, = o.
Then ‘
y = 8(1 — cos px). (&)

4 For the deflection shown in Fig. 118 (&) &%y/dx? is positive, hence
the positive sign on the right side of eq. (4).
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The condition at the upper end is that

(_y):z:l = 4.

It is satisfied if cos p/ = o, i.e., if
pl=(n+1)7%, )

where 7 is an integer. 'The smallest value of p/, anfi therefore
of P, which satisfies eq. (f) is obtained by putting # = o.

Then, using eq. (¢),
P T
= INFT = >

mEl
At

from which

P, = (166)

This is the critical load for the bar represented in.Fig. 1184,
i.e., the smallest load which can keep the bar in a slightly bent
shape. .

With#n = 1, # = 2, -- -, in eq. (f) we obtain

_ gEI7* p— 25 Elx? )

P 412 y - 412

The corresponding deflection curves are shown in Figs. 118 (¢)
and 118 (d). For the shape shown in Fig. 118 (¢) a force nine
times larger than critical is necessary, and for that in part (d)
twenty-five times larger. These forms of buckling are un-
stable and have no practical meaning because the structure
fails as the load reaches the value (166).

The critical load for some other cases can easily be obtained
from the solution for the foregoing case. For example, in the
case of a bar with hinged ends (Fig. 119) it is evident from
symmetry that each half of the bar is in the same condition as
the entire bar of Fig. 118. Hence the critical load for this case
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is obtained by using //2, instead of /, in eq. (166), which gives

Elr?
Py = [—;r (167)

The case of a bar with hinged ends is very often encountered in
practical applications and is called the fundamental case of

F1c. 119. F1c. 120.

buckling of a prismatical bar. In the case of a bar with built-
in ends (Fig. 120) there are reactive moments which keep the
ends from rotating during buckling. The combination of the
compressive force with these moments is equivalent to the
compressive force P, Fig. 120, applied eccentrically. There
are inflection points where the line of action of P intersects the
deflection curve, because the bending moment at these points
is zero. These points and the mid point of the span divide the
bar into four equal portions, each of which is in the same
condition as the bar represented in Fig. 118. Hence the
critical load for a bar with built-in ends is found from eq. (166)
by using //4 instead of /, which gives

_ 4mEl

P, = ¥ (168)

It was assumed in the previous discussion that the bar is
very slender so that the bending, which occurs during buckling,
remains within the proportional limit. Only with this con-
dition can eq. (&) be applied. To establish the limit of
applicability of the above formulas for critical loads let us
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consider the fundamental case (Fig. 119). Divide eq. (167) by
the cross sectional area 4 of the bar, and let £ = VI/A4 be
the smaller radius of gyration. Then the critical value of the
compressive stress 1s

P., k2
G = = TZE(Z—)- (169)

This equation is applicable as long as the stress o, remains
within the proportional limit. With this limit and also the
modulus £ known for a given material, the limiting value of
the ratio //k (which characterizes the slenderness of the bar)
can easily be obtained from eq. (169g) for each particular case.

In the cases represented in Figs. 118 and 120, proceeding
as above, we find

_en(AY, Cen(E).
Oor = T —2—1>, (170) O = T )" (171)

The equation for the fundamental case (169) may be used for
these cases also if we use a reduced length I, instead of the
length of the bar. In the case of a prismatical bar with one
end built in and the other free the reduced length is twice as
great as the actual length /; = 2/.  In the case of a prismatical
bar with both ends built in the reduced length is half the
actual length, /; = /. The equation for the critical stress
may consequently be represented in the form:

Oor = 71'21':(6%)2 = W2E(£)2, (172)

in which 8 depends upon the conditions at the ends of the bar
and is sometimes called the Jength coefficient.

In discussing the design of columns (p. 249, Pait I) the
fundamental case of a column with hinged ends was con-
sidered. The information given there can be applied to
columns, with other end conditions, provided the reduced
length, /,, instead of the actual length, /, is used. Thusin each
particular case the design of a column reduces to the deter-
mination of the proper value of the length coefficient.
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As an example of the calculation of this coeflicient, let us
consider the case of a centrally compressed

& strut with the lower end built in and the upper
T end hinged (Fig. 121). The critical value of the

[ compressive force is that value, P.,, which can

¢ keep the strut in a slightly buckled shape. It

T-— - may be seen that in this case, during buckling,
. a lateral reaction Q will be produced, and the
differential equation of the deflection curve be-
_L_l comes:
Y
. dZy
Fic. 121. EI(?J? = — Py + o — x). (g)

The general solution of this equation with notation (¢) is

y=Clcospx+Cgsinpx+TQ)(l-x). (%)
For determining the constants C: and C; and the unknown
reaction ), we have the following conditions at the ends:

(Pemo =0,  ()ami = o, (%)zzo = o.

Substituting solution (%) for ¥ we obtain

Cl+%l=0, Clcosp/-{— C2sinp/=o, ng—%=O. (l)
Determining the constants €, and C; from the first and the
third of these equations and substituting in the second equa-
tion, we find

tan p/ = pl. )

The graphical method is useful in solving this trigonometric
equation. In Fig. 122 the curves represent tan p/ as a func-
tion of p/. These curves have the verticals p/ = /2, 37/2,

' as asymptotes, since for these values of 2/, tan p/ becomes
infinity. The roots of equation (j) are now obtained as the
intersection points of the above curves with the straight line
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y = pl. The smallest root, obtained in this way, is

Pl = 4.493.
Then R
El
P, = pEI = 2o.IZ§EI T (173)

Thus the critical load is the
same as for a strut with hinged ¥
ends having a reduced length:

/1 = 0.7[.

As a second example let us
consider a strut on three sup-
ports and centrally compressed
by forces P, Fig. 123. In
calculating the critical value of
the compressive force we keep
our previous definition and as-
sume that P, is the force which
can keep the strut in a slightly
buckled shape. As a result
of buckling there will be some bending moment M, at the
middle ® support, for calculation of which equation (38), de-

rived for continuous struts, can

P 1 2 3 P beused. By observing thatin
o #»  our case the ends of the strutare
k_l‘ 7%” Le > hinged, we obtain M; = M; = o

0

Fic. 122.

Fie. 123. and equation (38) becomes
] .
<61%+62[—22)M2=0~ ()

This equation is satisfied and a buckled shape of the strut
becomes possible if

11 12 _ ;
311—14—527;—0- $))

® An exception is the trivial case when the two spans are equal and
the cross section is constant along the entire length. In this case M, = o
at the intermediate support, and each span is in the same condition as a
strut with hinged ends.
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where 8, and 8, are (see expressions (36) p. 36)

8, = [ I I
1=3 (2u41)? ~ 2w, tan 2u1]’
_ I I
=3 [(2u2)2 " 2u, tan 2u2] (&)

L [P L [P
m——; ETI’ u2=5 ETz (/)

If the dimensions of the strut are given, the ratio #; : u, is
known from the expressions (/) and the ratio B;: 8. from
equation (f), which gives

B Ll

6.~ "L (m)
Having the numerical table of functions 8, we can readily
solve this equation for the proper values of #; and #,. Then,
from expressions (/), the critical value of Pis obtained. Take,
for example, I, = I, = [ and /; = 2/;. Then u; = 24; and

B
E;=—2. ()

and

To solve this equation we have to find such a value 2#; of
the argument 2« that after doubling it the function 8 changes
the sign and reduces to a half of its numerical value at the
argument 2#;. Using the table of numerical values of 8, we
readily find that this condition is satisfied if

2u; = 1.93.
Hence, from equations (/),
1.93°E1  3.72EI  14.9E1
L2 T
It is seen that the value of the critical load lies between the
two values #2EI[/;? and x*El/l?, calculated for separate spans
as if each were a strut with hinged ends. The stability of the

shorter span is reduced, owing to the action of the longer span,
while the stability of the longer span is increased.

Pcr=

6 See such table in “Theory of Elastic Stability.”
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In the derivation of eq. (¢) for the deflection curve after
bending, the maximum deflection § remained indeterminate,
i.e., at the critical load the bar may have any small deflection.
The above theory applied only to small deflections because
only for such deflections may we use the approximate expres-
sion d2y/ds? for the curvature, in place of the exact expression:

d’y
dx?

[+ (2T

The solution of the exact differential equation for the deflec-
tion curve has been found for several cases 7 and shows that
there is really no such indeterminateness in the deflection as
implied above. For example for a bar with hinged ends the
maximum deflection may be represented by the equation:®

P
5=Z_‘7/T_§ PPM—I[I—%<’PZ—I])) (174)

which shows that the deflec-
tion increases very rapidly,
with the load above the criti- A
cal value. Assuming, for in- 1| 5 <
stance, a load only 1 per cent |
larger than P, we 'ﬁnd from Ple
eq. (174) a deflection about
9 per cent of the length / of
the bar.? 2 )
The relation between the Fic. 124.
load and deflection may be

7 Saalschiitz, “ Der Belastete Stab,” Leipzig, 1880. See also Halphen
Traité des Fonctions elliptiques, Vol. 2 (1888), p. 192.

8See R. v. Mises, Zeitschr. f. Angew. Math. u. Mech., Vol. 4, 1924,
p. 435; see also O. Domke, Die Bautechnik, Vol. 4, 1926, p. 747, and
R. W. Burges, Phys. Rev., 1917.

9Tt is assumed that deformation remains within the proportional
limit.
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represented graphically as shown in Fig. 124 by the curve
O4B, in which the load is represented by ordinates and the
deflections by the abscissas. As long as the load is smaller
than P the deflection is zero. Beyond this limit the de-
flection increases rapidly with the load.1

In experimental investigations of the lateral buckling of
compressed bars, the relation between the deflection and the
load depends very much upon the accuracy with which the
load is centered and on the straightness and homogeneity of
the bar. The load deflection curve is usually like curve OD in
Fig. 124. Due to inaccuracies of one sort or another deflection
begins at small loads, but progresses very slowly as long as the
load is far below critical but very rapidly when the load
approaches the critical value. The more accurately the bar
is made and loaded the more nearly the curve approaches the
theoretical curve OA4B.1

Problems

1. A steel bar of rectangular cross section 1 X 2 in. with hinged
ends is axially compressed. Determine the minimum length at
which eq. (167) can be applied if E = 30 X 108 lbs. per sq. in. and
the limit of proportionality is 30,000 Ibs. per sq. in. Determine the
magnitude of the critical stress if the length is 5 feet.

Solution. The smaller radius of gyration is & = 1/2V3 in.;
the minimum length from eq. (16g) is

I =100k = ~2 = 28.9 in.

243

19 When yielding begins the curve 4B is no longer applicable and the
further buckling is going as indicated by dotted line BC, Fig. 124.

L A very close coincidence of experimental and calculated values of
critical loads was obtained by Th. v. Karman, Forschungsarbeiten,
nr. 81, 1910, Berlin; see also K. Memmler, Proceedings of the 2d Internat.
Congress of Applied Mech., Ziirich, 1926, p. 357.
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The critical stress for / = §’, from eq. (169), is

o = 72 X 30 X 10° = 6,850 lbs. per sq. in.

1
12 X 60°

2. Solve the above problem, assuming a bar of circular cross
section I in. in diameter and built-in ends.

Answer. Minimum length = 50 in. For / = ¢/, o, = 20,800
lbs. per sq. in.

3. Determine the critical compressive load for a standard I
section 6’ long, 6" depth, weight 12.5 lbs. per foot, and with hinged

ends.
Answer.

mtEl  9.87 X 30 X 10° X 1.8

Py = 2 722

= 103,000 lbs.

4. Solve problem 1 assuming that one end &

SR o, . 2

of the bar is hinged and the other built-inas | L0 el |
in Fig. 121. A

5. Determine the critical value of the \Me 1,
forces P which compress the vertical mem- y H

in Fig. 771 [ Fer

bers of the rectangular frame shown in Fig. ; i
125. | N T

Solution. Buckling produces reactive / \
bending moments M, which resist free rota- (Mo JEL
tion of the ends of the vertical members. The Pﬁﬁé ________ P

differential equation for the deflection curve
of the vertical member is

dy
E1E=—Py+Mo.

The general solution of this equation is
. M
y = Cicos px + Czsmpx-l—?o-
The constants of integration and M, are to be determined from the

following conditions based on the symmetrical form of the buckled

frame (Fig. 125):

dy _ dy g M
Do = o5 (E)z=z/z =9 (dx>z=0 =0= 2ELL
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From the above solution for y,

Moll

M, . pl !
Cl+“})_=0; —Clpsm?-l—Czpcos—Q-:o; Cz]):m'

These give the following transcendental equation for determining p
and the critical load:

pl Ph_
tan + 2pEL o,
or, using notation {c),
pl Lhpl _
tan2+1112—o. (0)

When (Z/1,)(11/]) is large, i.e., when the resistance of the horizontal
members of the frame to buckling of the vertical members is small,
tan (p//2) 1s a large negative number and p//2 approaches /2. The
critical load then approaches the value m2EJ/? obtained before for
a bar with hinged ends (eq. 167).

When (7/1,)(%/]) is small, i.e., when the resistance of the hori-
zontal members of the frame to buckling of the vertical members is
very great, tan (p//2) is a small negative number and p//2 approaches
m. Then the critical load approaches the value 4x2EI//2 obtained
before (eq. 168) for a bar with built-in ends. :

In the case of a square frame with all members of the same cross
section / = /i, I = I, and the equation for determining the critical
load becomes

tan%l + ‘%l = 0,
from which 12
_ 16.47E1 _ n2El
Pcr = 2 = (0.7741)2 " (P)

The reduced length in this case is therefore /; = o0.774/.

6. Solve the preceding problem assuming that in addition to
vertical forces P there are two pairs of horizontal forces Q which
are producing a compression of the horizontal members of the frame.

Hint. Since the horizontal bars are compressed, the angle of

2 Curves similar to those in Fig. 122 can be used also in this case.
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rotation 6, indicated in Fig. 125, is 13

0 = Moll tan «
T oEL u ’
where x
2 4y
U = —(—— -+
4E11 Q

The equation for calculating the critical value of g,
P is obtained by substituting 71x#/tan u instead of
I, in equation (o) of the preceding problem. “‘ehig

7. A strut with hinged ends 4B, Fig. 126, |2 M| 2

is compressed by forces P; and P, Find the B

critical value of the force Py 4 Py if (P14 Ps): b ||

P1=m,]2:11=n,12/11=r. 'I"’It
Solution. Assuming that the buckled shape lA

of the strut is as shown in Fig. 126 by the dotted @ 1 y

line, there will be horizontal reactions Q = §P,// R-R

produced during buckling. The differential equa-
tions of the upper and the lower portions of the
deflection curve are

Fic. 126.
4%y 8P
EIIW;= "Plyl"'_jz([_x)’
a2 5P ()
EI, 4522 = = Piya— 7 (L= %) + Paé — o).

Using notations

_Pl_ 2 _P2_ 2 P1+P2_72 £2__ 2 ()
EL =P ELTPO TEL TP BTG G
we obtain the solutions of equations (7):
. 0 P
y1=Clsxnp1x+C2cosp1x-—zp—:(l—x)
Py
. o pa?
y2 = Cssin psx + Cy cos psx + Z%x

The constants of integration are obtained from the end conditions

181t is obtained from equation (48) by substituting ui for «.
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of the two portions of the buckled bar:

()’1):=z = 0O, (yx)x=z, = 4, (yz)z=z, =J, (y2)z=0 = O.
From these,
_ 5(])121 + P42ll)
- plzl(sin Pllg — tan pll cos P112) ’

C. — (pstl — p2l)
8= p32l Sin p;;lz

G

Cy= — C tanpll

C4=O.

Substituting these in the continuity condition

(%)..- (%)
dx I=l2_ dx Za=ly

we obtain the following transcendental equation for calculating
critical loads:

P_42 _ 2+ p42[1 _ ])_22 + P32l — P22]2 (l)
2 pl tan plll - P32 Pa tan P.)ZZ

which can be solved in each particular case by trial and error or

by plotting both sides of the equation and deter-
Pt mining the intersection point of the two curves.
/ Taking, as an example, s = 5, I1 = I; = I and
L1,  P1= Py, we obtain

m2E]
e Pt P = Goigly

—

— —> o~ o]

Y <
ey

8. Find the critical load for the column built-in
y at the bottom and free at the top and consisting of
Fic. 127. the two prismatical portions with moments of inertia

I, and I, Fig. 127.
Solution. If § is the deflection at the top during buckling the
differential equations for the two portions of the deflection curve are

d2y1

Ellzgz‘ = P(d — y1),
d2y2
EIZ—J);,‘,— = P(5 — y2).

By making use of our previous notations (s) the solutions of these
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equations are reached:

y1 =8+ Ccos pix + D sin pyx,
yo2 = 8(1 — cos pax).

- The constants of integration are obtained from the conditions:

(_yl)z=l = J, (}’l)z=lz = ()’2)z=lz)

which give
8 + Ccos pi/ + D sin py/
P + C COSpllz + D sinpllg

from which

5,
8(1 — cos pals),

8 cos pals cos pi/

C = — D tan pyl, D= sin pi/y

Since the two portions of the deflection curve have the same tangent
at x = /, we have the equation:

5P2 sin lez = - Cpl sin Pll2 + Dpl (o] pllz.
Substituting for C and D the above values, we finally obtain the

following equation for calculating P,

tan pi/y tan pols = P,
P2

In the particular case when

! |P
pils = pole = EN/E’

we obtain .
t 2 .[. __Pi_ —
am\2Nzr )= b
‘. /_P_ _T
2 NEI = 4
and
rEl
P, = 4[2 *

This is the critical load for a column of constant cross section.

36. Energy Method of Calculating Critical Compressive
Loads."*—Euler’s formulas, given in article 35, were derived

™ See writer’s papers in Bulletins of the Polytechnical Institute in
Kiev, 1910, and Annales des Ponts et Chaussées, 1913, Paris.
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by solving the differential equation of the deflection curve for
a compression member with certain end conditions. There
are cases in which this equation is complicated and exact
solution becomes difficult. We may then use an approximate
method, based on consideration of the energy of the system.
As a simple example consider a column built in at the bottom
and carrying a load at the top (Fig. 118 (a) and (4)). The
straight form of equilibrium of the compressed bar is stable if
the compressive force P is small, but unstable after P reaches
its critical value, at which lateral buckling begins. This
critical value of P may be found by comparing the energy of
the system in the two cases: (1) when the bar is simply com-
pressed, and (2) when it is compressed and bent. 'The strain
energy in the bent bar is larger than that in the straight
compressed form, because the energy of bending must be
added to the energy of compression, which may be considered
constant for small deflections. The potential energy of the
load P must also be considered; the deflection of the bar is
accompanied by a lowering of the point of application of the
load P so that the potential energy of the load diminishes.
Let U be the potential energy of bending and U; the decrease
in the potential energy of the load. Then, if Ui is less than U,
deflection of the bar is accompanied by an increase in the
potential energy of the system; this means that it would be
necessary to apply some additional lateral force to produce
bending. In such a case the straight form of equilibrium is
stable. On the other hand, when U, > U, the deflection of
the bar is accompanied by a decrease in the potential energy of
the system and the bending will proceed without the applica-
tion of any lateral force, i.e., the straight form of equilibrium
is unstable. The critical value of the compressive force is
therefore obtained when

U= U (179)

To calculate the magnitude of the critical load from this
equation we must obtain expressions for U and U;. From eq.
(¢) (p. 186), the deflection curve of the bar, when under the

BUCKLING OF BARS, PLATES, AND SHELLS 201

action of a compressive load equal to the critical load (p/
= 7r/2), is

y—-—&(l—cos{-?)- (a)

With this value for y, expression for the strain energy of bend-
ing becomes .

! (2N g = BT b

U=§Elj;(gﬁ)dx—64Z3EI. @)

The lowering of the point of application of the load during
bending is (see p. 47)

LAY, e
v [ (%) =S ©
Therefore, .
%2
U, =P\ = i )

Substituting (#) and (d) into the fundamental eq. (175), we
have

Elx?
Pcr = j&"a

which coincides with eq. (166) obtained previously.

In this case the deflection curve (2) was known and the
exact solution for the critical load was obtained from eq. (175)' .
In cases where the deflection curve is unknown an approxi-
mation to the critical load may be obtained by assuming a
suitable curve (that is, one satisfying the conditions at the ends
of the bar) for the deflection curve and proceeding in exactly
the same manner as above. .

In order to show what accuracy can be obtained by using
this method, the previous problem will be considered again.
Assume, for instance, that in the case shown in Fig. 118 (%)
the deflection curve is the same as for a cantilever loaded at
the end by a transverse force Q. Then, from eq. (97) Part I,
y = [Qx*/6EI](3/ — x). This is substituted into 'the ex-
pression (4) for the strain energy U of bending, and into the
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exgression (d) for Uy:

ol
0

dx? 6EI’
_ _£ 1 _‘{.X 2 _ P Q2l5
U= P\ = 2fo(dx) dr = T (o

Substituting into eq. (175), P.r = 2.5EI/l2. Comparing this
result with the exact formula (166) above, we see that the
error arising from this approximation is only about 1 per cent-

This error can be considerably reduced and a better ap-
proximation obtained if we take for the strain energy of
bending the expression:

1 1
U= fo Meds, ©)

Substituting in this expression

2
M= P(5 —y) =P[a—6%,(3/—x)]
x? |
-m[i-Ha-0] 0
we find '
_ Pyl
T 2El 35

The diminishing of the potential energy of the load P is

2EI35 ~ 5 I’
from which

2 EI EI
P, = ‘;—7 L Sr = 24706 55 -
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The correct value 1s

m* El EI
Pcr = Z'_Z? = 2.46747 .

Hence the error of the approximate solution is only 0.13 per
cent. In using expression (¢), instead of expression (&), for
strain energy we introduce in our calculations the deflection
y of the assumed curve, instead of the derivative 4%y/dx2
Since y is represented with a much better accuracy than
d*y[/dx? by the assumed curve, the second method of calcula-
tion actually results in a better approximation for P,,.

The energy method usually gives a very satisfactory ap-
proximation provided the assumed curve is properly chosen.
Sometimes we can make a very rough assumption for the
shape of the curve and still obtain a satisfactory result. For
example, we might assume the deflection curve in the above
example to be a parabola given by the equation

ox?
Y=
Then
tM2dx Pt Y x%\? P2 8
U=ﬁfmz=ﬁio@—ﬁ)”=aﬁ§4
I AL
Ur=7 ; (6-{;) dx_g/P'
By substituting into equation (1735),
P2 8 2 §?
2EI =378
and
EI
P.. = 2.5 7

A satisfactory approximation is thus obtained although the
parabolic curve, which we assumed, cannot be considered as
a very satisfactory one. It has an approximately constant
curvature along the length while in the actual curve the



204 STRENGTH OF MATERIALS

curvature is proportional to the bending moment. It is zero
at the top of the bar and a maximum at the bottom.
Applying the energy method with an assumed curve satis-
fying the end conditions, we always obtain a value for the
critical load which is higher than the true value. This follows
from the fact that the actual deflection curve of a buckled bar
1s always the one that corresponds to the least resistance of the
bar. Only by the merest chance will an assumed curve be the
true curve of the least resistance. In almost every case the
assumed curve will be different from this curve of least re-
sistance, thus giving values too high for the critical loads.

Problems

1. Solve the problem shown in Fig. 121 assuming the deflection
curve is the same as for a uniformly loaded beam with one end
built-in and the other hinged.

2. Solve by the energy method problem 7 of the preceding article
(p- 197) assuming /y = /, = //a.

Solution. Assuming that the deflection curve is a sine curve,

™
7

y=6sinl

the bending moments for the two portions of the curve are

oP
M1=P1y+72(1—x),

6P2x
/

M2=(P1+P2))""

The strain energy of bending is

oo (Mo fmmw
~ Jys 2EL o 2EI,
62 / / 2/
= 2EL (P12;+ Pf;;-{- P1P2;2)
5 / / 2/
m[(P1+P2)2;+P22£— Pz(P1+P2)’I§2]'

The diminishing of the potential energy due to lowering of the

gt
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points of application of the loads Py and P, is

SN B ESAY &f”(d_yz;_égif .
Ul-— 2410' (dx) dx-l— 2 A e ax = 41 (P1+'2‘P2).

Substituting in equation (175) and using our previous notations,
we obtain

(Pl + P2)cr =
(w2EL[I%) (m + 1)

mfm — 1\ 3 1 omfm—1\2 8m—1]|
m+6( m ) —;z<'”*1>+”[;+z( m )hz—r]
3. Solve problem 8 of the preceding article by using the energy

method.
Answer. Assuming the deflection curve

o s ™
y = \ I COS 21
we obtain
L LT, 1(12 ) AL
2 = —1
Iy

P, = =
1 [[1 ™

37. Buckling of Prismatical Bars under the Ac-
tion of Uniformly Distributed Axial Forces.—As-
suming that under the action of uniform axial load
a slight lateral buckling occurred, Fig. 128, we can
obtain the critical value of the load by integrating
the differential equation of the deflection curve.
The equation in this case is not as simple as we
had before and its solution requires the use of
Bessel’s function.’® An approximate solution can
be readily obtained by using the energy method.
As an approximate expression for the deflection curve let us take

Fic. 128.

™

y=5(1—-cos-2—l) (a)

which is the true curve for the case where buckling occurs under the
action of a compressive load applied at the end. The bending
moment resulting from that portion of the load above a cross section

1> See “Theory of Elastic Stability,” p. 115.
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mn at that cross section is
!
M= f gt — y)dE.

Substituting equation () for y and setting

7 = 6(1 —/cosr——g),
2/

we obtain after integration with respect to ¢:

M= - LAY B Y
; 8g[(l x)cosﬂ —\1—sing

Substituting this in the expression for the strain energy of
bending, we obtain

(" Mx  @¢P (1 9 32

U"fo zEl‘zEl(E*”{Z—F)' Q)
In calculating the decrease of the potential energy of the distributed
load during lateral buckling, we note that, owing to the inclination

of an element ds of the deflection curve at the cross section mn,
the upper part of the load undergoes a downward displacement

equal to
2
ds — dx = l(f&) dx
2\ dx ’

and the corresponding reduction in the potential energy is

1{dy\?
3(3%) g — x)dx.

'I}‘lhe total decrease of the potential energy of the load during buckiing
then is

Hdy\? g1 1
=1 &2 — = ——=1.

U= 2?‘£ (dx) (I — x)dx = 3 <4 1r2) (e)
Substituting expressions () and (c) into equation (175), we obtain
el (1 L9 32\ m¥gfr 1
oEI\6 " x2 x¢) 8 Z_;E)’

8qFET
(Do = L2222

from which
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The exact solution for this case is

283EI  mEI

(gher = — = (1.122))2 (178)
Thus the error of our approximate solution is less Ix
than 1 per cent.
P
Problems \
1. A prismatical bar with hinged ends, Fig. 129, \
is submitted to the action of a uniformly distributed &

load of intensity ¢ and of a central compressive force 1 _JIf
P. Tind the critical value of P by assuming for the t r

deflection curve the equation:

y=6sin7r——lx- LA

Answer. Paql

er /2 2 Fic. 129.

38. Buckling of Bars of Variable Cross Section.—A bar of
variable cross section symmetrical with respect to the middle and
- having two axial planes of symmetry is shown in Fig.

By '1 . . . . .
6 e | T 130. The middle portion 1s of uniform cross section
4-- ! with a smaller moment of inertia J,. At the ends the
-f-- A cross section varies and the smaller moments of in-
% ertia follow the law:

; I 1=Io(§>m, (@)

in which x and 4 are distances from a certain fixed
_4 point (Fig. 130) and misa number depending upon the
type of column. When the middle portion is a solid

] cylinder and the ends are solid cones, I varies as the
I A fourth power of x and m = 4 in eq. (¢). When the
W column has a constant thickness in the direction per-
pendicular to the plane of Fig. 130, the moments of in-

ertia J with respect to axes parallel to the plane of the
figure are proportional tox and m = 1 ineq. (). When the column
consists of four angles connected by lattices, as in Fig. 131, the cross
sectional area remains constant and I can be taken proportional to

Fic. 130.
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%%. Then m = 21ineq. (¢). Calculations made for m = 1, 2, 3, 4,
show 16 that the critical load within the elastic limit can be repre-
sented by the equation: -

EI
Pcr = a 7‘2’ (179)

in which « is a numerical factor depending upon the ratios 4// and
I./1,, where I, = I,(é/a)™ is the moment of inertia of the end cross
sections. Assuming the ends of the column hinged, the magnitudes
of & for various proportions are given in the table. It can be seen
that as the ratio 4// or the ratio 7:1/7, approaches unity the factor
a approaches #? and eq. (179) approaches eq. (167) for a pris-
matical bar.

TasLe 13.—CokerriciEnT a IN Eq. (179)

5L/, kil = o 0.2 0.4 0.6 0.8 1

m=1 6.48 7.58 8.68 9.46 9.82 w2

o m=2 5.40 6.67 8.08 9.25 9.79 «

’ m=3 5.01 6.32 7.84 9.14 977 «“

m=4 4.81 6.11 7.68 9.08 9.77 “

m=1 7.01 7.99 8.91 9.63 g.82 «

m=2 6.37 7.49 8.61 9.44 9.81 «

0.2 «
m=3 6.14 7.31 8.49 9.39 9.81

m=4 6.02 7.20 8.42 9.38 9.80 «

m=1 7.87 8.60 9.19 9.70 9.84 «

o m=2 7.61 8.42 9.15 9.63 9.84 “

4 m =3 7.52 8.38 9.10 9.63 9.84 «“

m=4 7.48 8.33 9.10 9.62 9.84 “

m=1 8.60 9.12 9.55 974 | 9.8% ‘:

0b m=2 8.51 9.03 9.48 9.74 9.85 :‘

) m=3 8.50 9.02 9-47 9:74 9-85 .
m=4 8.47 9-01 9-45 9-74 9.85

m=1 9.27 9.54 9.69 9.83 9.86 “

o8 m=2 9.24 §.50 9.69 9.82 9.86 “

’ m=3 9.23 9.50 9.69 9.81 9.86 :
m= 4 9.23 9.49 9.69 9.81 9.86

1 2 2 2 2 2 «

16 See A. Dinnik, Bulletins of Engineers (Westnik Ingenerov), 1927
(Russian). The numerical table below is taken from this paper.
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As an example in the application of this table consider a wooden
strut 6’ 6" long of rectangular cross section. The thickness of the
strut remains constant and equal to  in. The width varies ac-
cording to a straight-line law and is 4 in. at the middle and 2.4 in.
at the ends. Determine P, if E = 1.2 X 10% In this case
Al = o, m =1 and Ii/I; = 2.4/4 = 0.6. From the above table

a = 8.60 and the critical load, from eq. (179), is

1.2 X 10% X 4 X 3%
4% X 12 X 78%

As a second example let us consider a pyramidal column (Fig. 131)
whose square cross section consists of four angles 33 X 33 X &
in. The outside width of the column at the endsis 121in. and
at the middle 203 inches. Thelength of the column s 65 feet.
Determine the critical load for this column, taking for struc-
tural steel E = 30 X 10° lbs. per sq. in. and assuming that
the lattice bars are rigid enough to allow the application of
eq. (179), derived for solid bars. The cross sectional area
A=248X4=1992 in; [1 =29 X 4+ 248 X 4 X (6
— 1.01)? = 249 in4; Iy = 2.9 X 4 + 2.48 X 4 X (10.2%
— 1.01)? = 860 in.t. Taking I; : Iy = 0.3, m = 2 approxi-
mately and %// = o, we find from the above table by inter-
polation oo = 7 approximately. Then, from eq. (179),

30 X 10% X 860
652 X 122

P, = 8.60 = 239 lbs.

Pcr = 7 X = 297,000 le.

39. The Effect of Shearing Force on Critical Load.—In
the derivation of the critical load, the differential equation
used for the deflection curve (see p. 186) neglected
the effect of shearing force on the deflection.
When buckling occurs, the cross sections of the
bar are no longer perpendicular to the compres-
sive force and there will be shearing forces. The
effect of these forces may be found by use of the
energy method developed in article 36. In using
this method the energy of shear must be added
to the energy of bending in calculating the strain
energy U due to buckling. Let 4B (Fig. 132)
P represent a solid strut with hinged ends, buckled
Fie. 132.  under the action of compressive force P. The

X
P
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magnitudes of the bending moment and the shearing force at
any cross section mn are

M="Py; V= Pjy (a)

From previous considerations (see art. 66, Part I) the potential
energy stored in an element of the bar is

2 2
dU=de al?dx

where A is cross sectional area,
a is coefficient depending on the shape of the cross
section such that
aV'|GA is the magnitude of the shearing strain at the neutral
axis (art. 39, Part I).

Accordingly, the displacement of the section m# with respect
to mny, due to this shear,is («’/GA)dx, and the second member
on the right side of () represents the potential energy of shear
stored in the element. By using (@) and (&), the energy stored
in the strut during buckling is

! P2ydx YaP? (dy\?
v [ 55+ J, sea(@) & 2
The decrease in the potential energy of the load P is
P rtfdy\?
U1=»2—fo(ﬁ) dr. @

Assuming that the deflection curve of the buckled strut is a
sine curve,

y=6sin¥, (e)

and with this value in (¢) and (d)

P2l P2Z a7r
P1r

U1=527.

sET T 264 @) ~
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Substituting in eq. 175 we obtain
w2 El I
2 EI ar? (8
GAd IF
Comparison with Euler’s formula (167) shows that, due to the
action of shear, the critical load is diminished in the ratio

Pcr=

1

ET o (180)
'Y CAE
Let
BT GA
WT =Py - =Py (#)
then eq. (g) becomes
Po=P— - (181)
+ €
I Pd

For solid bars, P, is very large in comparison with P,, and the
effect of the shearing force can be neglected. In the case of
latticed bars, especially when spacing plates or battens only are
used (Fig. 134, @), Ps may become of the same order as P,, in
which case the effect of shearing force can no longer be
neglected. This will now be considered.

40. Buckling of Latticed Struts.—Latticed struts are
used extensively in steel structures. Their resisting capacities
are always less than those of solid columns having the same

_cross sectional area and the same slenderness ratio //k, and

depend greatly on the spacing details such as lattice bars,
spacing plates and battens. This lowering of the critical
stresses is due principally to the fact that in the case of latticed
columns shearing forces produce a much larger effect on
deflections than in the case of solid bars. To calculate the

17 See F. Engesser, Zentralblatt d. Bauverw., 1891, p. 483, and 1907,
p. 60g; L. Prandtl, V. D. 1., 1907, and also writer’s paper in Bulletin of
the Polytechnical Institute at Kiev, 1908. These papers discuss the
problem of buckling of latticed struts in connection with the collapse
of the Quebec bridge.
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effect of shearing force on the critical load, eq. (181), which
was derived for solid bars, can be adapted to latticed struts.
As before, let P, be the critical load obtained from eq. (167);
Psin eq. (181) has, in the case of solid struts, a simple physical
meaning, namely, that /»/P, represents the additional slope
~ in the deflection curve produced by shearing forces. Pghas
the same meaning also in the case of latticed struts, provided
the number of panels is large. To determine P, in any par-
ticular case, therefore, we must investigate the lateral dis-
placements produced by the shearing force.

Consider first one panel of the latticed bar shown in Fig.
1334. The displacement due to shear is that due to the
4] elongation and contraction of the di-
7 agonals and battens in each panel (Fig.
133, #). Assuming hinges at the joints,
N4 (JI—E the elongation of the diagonal pro-
F duced by the shearing force 7 1is

4

V4 |
V4 ! Valsin ¢ cos ¢EA4, in which
@ le—b —(6)V . .
8 ¢ is the angle between the batten and
-y the diagonal,
el /v . . . .
n i is the tensile force in the diagonal
I / cos ’
ll L I ¢
a . .
@l / A —— is the length of the diagonal,
!/ v sih ¢
(© A, is the cross sectional area of two di-
Fie. 133. agonals.

The corresponding lateral displacement, Fig. 1334, is

5 = Va (@)

sin ¢ cos? oEA;

The shortening of a batten and the corresponding lateral
displacement (Fig. 133, ¢) is

0y = EA’ )

where
4 is the length of the batten,

A, is the cross sectional area of two battens.

" element of the strut cut out
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From (a) and (%), the angular displacement produced by the
shearing force 7 is

it b V n Vb
=74 T sinecos’oEA, " aEA,’
Then using the above definition V/Pgq = v, we find

I I b
P, sin ¢ cos® pE A, + aEA,

Substituting in eq. (181),

miEl 1

P, = (182)

P 2ET ; ;
L+ p (sin o cost oE Ay T aEdb)

If the sectional areas 4; and A, are very small in comparison
with the cross sectional area of the channels (Fig. 133, 4), the
critical load (182) may be considerably lower than that
obtained from Euler’s formula (167).

Equation (182) can be used also in the case represented in
Fig. 133 (d) if the angle ¢ is measured as shown in the figure
and the member due to the deformation of the battens is
omitted.

In the case of a strut made with battens alone as in Fig.
1344, to obtain the lateral dis-
placement produced by the
shearing force 7, we must con-
sider the deformation of an

by the sections mn and mn;.
Assuming that the deflection
curves of the channels have
points of inflection at these sec-
tions, the condition of bending
will be as shown in Fig. 134
(6).1®* The deflection consists of

poad ;3

~EHEEEHE-

i—
[

Fic. 134.

18 The tension and compression forces acting on the cords are not
shown in the figure.
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two parts: the displacement §; due to bending of the batten,
and the displacement &, due to bending of the channels.
There are couples 7a/2 at the ends of the batten and the
angle 6 of rotation of these ends of the batten is (see egs. 103,
104, Part I)

Va b Va b Vab

2 3E.[2

where 4 is the length of the battens and EI, is their flexural
rigidity. The lateral displacement &, produced by this
bending of the battens is
a Vah
6. =0 5= m . (e)
The displacement 8, can be calculated from the cantilever
formula:

by = ot = o )

The total angular displacement produced by the shearing

force 7 is
b Vab Va*
- z - IZEIz 24E[1’
2

then, since 7/P; = v, we obtain

1 ab a?

P, = 2EL T 5EL

and eq. (181) for determining the critical load becomes

Elx? I
Pcr = 12 TZEI{ ﬂb + ag )) (183)
Vr "m\12EL, " 24EL

where, as before, EIn?/[? represents the critical load calculated
from Euler’s formula. It may be seen that when the flexural
rigidity of the battens is small the actual critical load is much
lower than that given by Euler’s formula.

s
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From equations (182) and (183) we note that in calculating
critical loads for built-up columns the actual length of a
column is replaced by a reduced length which is to be deter-
mined in the case of a latticed column as shown in Fig. 133,
from the equation:

mEl 1 b
L= l\ﬁ_l_ 2 (sin ¢ cos? o EA, + aEAb>

and, in the case of a batten-plate column as shown in Fig.
134, from the equation:

mEl ab a?
h= 1\/1 T (12E12 + 24EII)'

When the reduced length of a built-up column is deter-
mined, the allowable stress is obtained as for a solid column
with the slenderness ratio equal to /,/k.  If the design is made
on the basis of the assumed inaccuracies (see art. §6, Part I),
the proposed procedure results in a slightly higher factor
of safety for built-up columns, which seems completely
satisfactory.

In the design of built-up columns the proper dimensioning
of the lattice bars and batten plates is of great practical im-
portance. As a basis for determining stresses in these details,
an eccentricity in application of compressive forces should be
assumed in the design of shorter columns.’® If the eccentrici-
ties at the two ends are equal to e and are in opposite direc-
tions, the compressive forces P form a couple of the magnitude
2Pe which produces at the ends of the strut the shearing
forces:

=2 (184)

18 This question is discussed in more detail in the paper by D. H.
Young, Proc. Am. Soc. Civil Eng., December, 1934, and another paper
by the same author in Pub. Intern. Assoc. Bridge and Structural Eng.,
Ziirich, vol. 2, 1934, p. 480. See also “Theory of Elastic Stability,”
p- 197.
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The maximum value of 7 is obtained by substituting in this
equation for P the maximum load which the column can
carry. The eccentricity ¢ is usually taken as a certain portion
of the core radius 7, say ¢/r = 0.3. The details should then
be designed in such a way that the maximum stresses pro-
duced in them by 7 ..., does not exceed the yield point stress.

In the case of a compressed latticed member of a truss
with rigid joints, some bending moments at the ends of the
member are produced during loading of the truss. If the
magnitudes M, and M, of these moments are calculated from
the secondary stresses analysis, the corresponding eccentricities
e1 = Mi/P and e, = M,/P in application of the compressive
force P are known, and the magnitude of their algebraic sum
must be substituted in equation (184) instead of 2e.

41. Buckling of Circular Rings and Tubes under Ex-
ternal Pressure.—Buckling of a Circular Ring. It is well
known that a circular ring or tube can collapse due to external
pressure alone; and if the flexural rigidity of the ring is
insufficient, such a failure can occur at stresses far below the

Fic. 135.

elastic limit of the material. This phenomenon must be taken
into consideration in such problems as the design of boiler
tubes submitted to external pressure and reinforcing rings for
submarines.

The pressure at which the circular form becomes unstable
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and buckling occurs is known as the critical pressure. Its
value will be obtained by use of the general equation (95, p-
103) for the deflection curve.

Assume that under external pressure the ring (Fig. 135) is
buckled into an elliptical form as shown by the dotted line.
Suppose that

g is external pressure per unit length, of the center line,
R is the radius of the center line of the ring,
u is radial displacements during buckling,
uo is radial displacement for the cross section A,
M, is bending moment at the cross section A,
No = g(R — up) is longitudinal compressive force at the cross
section A.

The bending moment at any cross section B of the buckled

ring 1s

BN

M = My + gA404D — % AB~ (a)

2
Now, in the triangle Z0B,
OB = AB* + A0 — 240AD

or

V4B — 704D - }(0B* — A0)
= 3[R — 0 — (R — w)*}

Since # is small in comparison to R, terms in #* or u¢® can be
neglected, whence
14B? — AOAD = R(uy — u).
Substituting this value in equation (2), we obtain
M = Mo —_ qR(I/lo - 14).
Equation (95), page 103, becomes
do?

& R\ = MR + gRus. ,
(I +EI = ()

3;2"" 123 E[

RZ
+u = — 57 [Mo — gR(uo — )]

or
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The general solution of this equation is

. — MR? + qR%u
u = Cysin pp + Cycos po + EOI+4133 % (o)

in which C, and C, are constants to be determined from the
conditions at the cross sections 4 and F of the buckled ring,

and .
=1+ qE—I - (@)

From symmetry, it follows that

@) (e o
de ¢=0— ’ de ] o=ri2 '

From the first of these conditions C; = o and from the second,

sin‘—’;ir = o. )

The smallest root of this equation is

pr
— =T
2
or
P = 2.

Substituting this in (d), we ob-
tain the value for the critical
pressure *

El
Ger = 3R3 * (185)

Other roots of the eq. (f)
such as pr/2 = 2m, pr/2 = 3,
etc., correspond to a larger
number of waves in the buck-
led ring and give greater values for the pressure g. Figure
135 () shows, for instance, the buckled form for px/2 = 2m.

Fie. 136.

20 This problem was solved by M. Bresse, “Cours de Mécanique
Apgliquée,” Part I, p. 334. Paris, 1866.
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These higher forms of buckling are of interest in studying the
stability of short cylindrical tubes with fastened ends.

Buckling of a Circular Arch.—If a circular arch having
hinged ends be submitted to uniform pressure, it can buckle as
indicated by the dotted line in Fig. 136. The critical value of
the pressure depends upon the magnitude of the angle « and
may be calculated from the equation: 2

ET 2
Qm':'ﬁ;;"(%_l)' (186)

The problem of the buckling of a ring in the direction
perpendicular to its plane has also been solved.?

Buckling of Circular Tubes.—The theory of buckling
developed above for a circular ring can also be used in the
case of a long circular tube submitted to uniform external
pressure. Consider an elementary ring cut out of the tube

. by two cross sections unit distance apart. The moment of

inertia of the cross section of this ring is

1-4
I = 12 °

where % denotes the thickness of the wall of the tube. Since
the cross section of the ring will not be distorted during
bending,

E

I — u?

must be used instead of E. Equation (185), for calculating
the critical pressure, becomes
ER?
Der = G PR (187)

2 See author’s paper on the stability of elastic systems, Bulletin of
the Polytechnical Institute in Kiev, 1910. French translation, Annales
des Ponts et Chaussées, 1913. See also E. Hurlbrink, Schiffbau, Vol. g,
p- 640, 1907-1908; E. Chwalla and C. F. Kollbrunner, “Der Stahlbau,”
1937 and 1938; and the recent book by A. N. Dinnik, “ Buckling of Bars,”
Moscow, 1939.

% See E. L. Nicolai, Zeitschr. f. Angew. Math. u. Mech., Vol. 3,
p- 227, 1923. See also author’s paper, Zeitschr. f. Angew. Math. u.
Mech., Vol. 3, p. 358, 1923.
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This equation may be used as long as the corresponding
compressive stress in the tube is less than the proportional
limit of the material. Beyond the elastic limit the true
critical pressure will be less than that obtained from (187) and
the following equation may be used: ®

A gy.Pp.
DPer = 'R P R2) (188)
1+ 4T]Z—2

in which oy, ». denotes the yield point of the material in com-
pression. As the thickness reduces, the critical pressure

approaches the limiting value EA*/4R?, which is slightly less
than that given by eq. (187) and in all cases its value is less

than Aoy.p./R, i.e., less than the pressure corresponding to the
yield point.®

The failure of tubes under uniform external pressure de-
pends very much upon the various kinds of imperfections in
them. The most important imperfection is an initial ellipti-
city, the limiting value of which in each type of tube is usually
well-known from numerous inspection measurements. Hence
it seems desirable to have a design formula in which this ini-
tial ellipticity appears explicitly. To derive such a formula
let us assume that the initial deviation of the shape of the
tube from the perfect circular form, indicated by the dotted
line in Fig. 137, is given by the equation:

U1 = Uy COS 2¢, (a)

in which %, is the maximum initial radial deviation, which is
considered small in comparison with R, and ¢ is the central
angle measured as shown in the figure. The initial shape of

2 See R. V. Southwell, Phil. Mag., Vol. 29, p. 67, 1915.

2 Experiments on the collapse of short tubes by external pressure
are described by G. Cook, Phil. Mag., p. 51, 1914. For bibliography
on the subject by the same author see Brit. Assoc. Rep. (Birmingham),
1913.

% See writer’s paper, Trans. A. S. M. E., Journal of Applied Me-
chanics, vol. 1, 1933, p- 173-
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the tube is then represented by the full line in Fig. 137. If
on such a non-circular tube an external pressure p is applied,
a further flattening of the tube occurs. Denoting the radial
displacements corresponding to the later flattening by #, and
considering an elemental ring of unit width, we obtain from

equation (95):

2
%—t—m:—%MRZ )
where
_ EF
Co12(1 — )

is the flexural rigidity of the elemental ring. Regarding the
bending moment M, we see that owing to pressure p, the de-
crease in curvature occurs in the portions 4B and CD of the
elemental ring, hence M is positive there, while in the remaining
portions of the ring the moment is negative. At points 4,
B, C and D the bending moment is zero, and the interaction
between the parts of the elemental

ring is given by forces § tangential S 4=~
to the dotted circle representing the
ideal shape of the tube.?® This circle
can be considered as a funicular curve
for the external uniform pressure p.
The compressive force along this S
curve remains constant and equal
to § = pR. Thus the bending mo-
ment at any cross section is obtained
by multiplying S by the total radial deviation #; + . at this
cross section. Then

AN

D/‘(—_'F »
b
T
5 \\ y
O\

Fic. 137.

M = pR(us + uo cos 20), ()
and equation (4) becomes
d?
7522 + = — %PR3<”2 4+ 1o cos 2¢)

26 The action of forces § on the portion 4B of the ring is shown ir
the figure.
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or
dzllz

( E)_ I R
d¢2+”2 1+p5 ) = — ppRuocos 20

The solution of this equation satisfying the conditions of
continuity at the points A4, B, C, and D 1s

Uy = p”ltof P Cos 29, (189)
in which p. is given by formula (187). It is seen that at
the points 4, B, C and D the displacement #, and its second
derivative vanish. Hence the bending moments at these
points are zero, as was previously assumed. The maximum
bending moment occurs at ¢ = 0 and ¢ = 7 where

. R
Mmax = R.( uop ) = Puo .
? U +pcr -7 L ? (190)
Der

It is seen that for small values of the ratio p/p.. the change
in the ellipticity of the tube due to pressure p can be neglected,
and that the maximum bending moment is obtained by multi-
- plying the compressive force § = pR by the initial deviation

uo. If the ratio p/pe is not small, the change in the initial

ellipticity of the tube must be considered, and equation (190)
must be used in calculating Mpx. \

The maximum compressive stress is now obtained by
adding the maximum compressive stress due to bending
moment Mu.x to the stress produced by the compressive force
pR. Thus we find:

_ ?_Ri 6pRllo 1 .

Omax — }l + 72 * L 1 (d)
Der <

The dangerous value of the pressure p is that value at which

the yielding of the material begins. Denoting this value by
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pr.p. and substituting oy.p. for om.x, we obtain

Dr.p. 6pr.rp.Ru I
oy.p. = Y}f + Y}I;g °. (e)

Y.P.
. _prr

pcr ’

from which the value of the dangerous pressure py.». can be
calculated if oy . and initial deviation #oare known. By using
the notations

R
5 =m and fII—§=71, (f)

the equation (e) for calculating py.». becomes

Ply.p. — [a;':' + (1 + 6m71)pcr]_pY.P. + 2’% = o. (191)
From this equation the curves can be plotted giving the
average compressive stress py.r.R/h as a function of R/4 for
various values of the ratio #o/R and for various values of oy.p.
By using such curves, together with a proper factor of safety,
the suitable wall thickness of a pipe can be readily calculated.
It should be noted that the pressure py.r. determined in this
manner is smaller than the pressure at which the complete
collapsing of the tube occurs; hence by using pr.r. as the
ultimate value of pressure, we are always on the safe side.

In our preceding discussion it was assumed that the length
of the tube / is large in comparison with its radius, say
/[R > 20. For shorter tubes, if the edges are built-in or
supported, the value of p.. is larger than that given by equa-
tion (187) and depends on the ratio //R. The theory of
buckling of such tubes is more complicated,? since the tube
subdivides during buckling in several waves along the cir-

cumference and the number of these waves depends on the
ratio //R.®

*" For discussion of this problem see writer’s “Theory of Elastic
Stability,” p. 445.

%8 Some curves for calculating critical pressures on short tubes are
prepared by the Research Committee on the Strength of Vessels under
External Pressure, A. S. M. E., December 1933.
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The problem of the buckling of tubes closed at the ends
and submitted to uniform pressure on both the ends and the
sides % has also been solved.®®

‘ ———— — » a
M -
\ ’,l_ T:’. *
[ | I 5 —
N N =
i i V L | =

[

©
Fic. 138, Fi6. 139.

(a) (b)

42. Buckling of Rectangular Platés.— The problem of
buckling of compressed rectangular plates is of a practical im-
portance in discussing elastic stability of compression mem-
bers built up of plates such as we often encounter in steel
structures, Fig. 138. A failure of such members may be
brought about by buckling of the web or of the sides, instead
of by buckling of the member as a whole. For example, in
the cases shown in Fig. 138 such buckling of the plates as is
indicated by the dotted lines may occur if the thickness of the
plate is not satisfactorily chosen. Since the length of a
compression member is usually large in comparison with the
cross-sectional dimensions, the problem reduces to that of
buckling of a long compressed plate, Fig. 139. The short
sides of the plate can be considered as simply supported;
the conditions along the other two sides depend on the shape
of the cross section. For example, if a tubular section, shown
in Fig. 138¢, has a square form, and the side plates are all of
the same thickness, they have the tendency to buckle simul-
taneously, and each side can be considered as a compressed
rectangular plate, all four sides of which are simply sup-
ported. In the cases shown in Figs. 13824 and 1384, the

29 We have such a condition in the investigation of the stability of
the hull of a submarine between two reinforcing rings.

30 See paper by R. v. Mises in Festschrift von Prof. A. Stodola,
Ziirich, 1929.
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lower edges of the vertical webs are free and the upper are
elastically built-in.3

Rigorous solutions of the buckling problem for various
conditions along the longitudinal sides of a plate such as
shown in Fig. 139 have been worked out.> We give here only
the values of the critical stresses obtained from these solutions.

Rectangular plate supported on four sides under uniform com-
pression in the direction of the x axis (Fig. 139) buckles by sub-
dividing into squares or rectangles which approximate squares.

The critical value of the compressive stress is given by the
equation: %

Oor = [0¢, (192)
in which
w2 ER?
T (99

4 is the thickness of the plate, 4 its width.

B=('a—+ﬁé>2 (a)

mb a

denotes a coefficient depending upon the magnitude of the ratio a/5
and the integer m, the number of waves into which the plate divides
in buckling. This later must be so chosen as to make § a mini-
mum.3* Several values of this coefficient are given in table 14.

3 First experiments in which the question of buckling of the thin-
walled structures was discussed were made by William Fairbairn and
were described in his book, “Britannia and Conway Tubular Bridges,”
London, 1849.

% See “Theory of Elastic Stability,” 1936.

3 The solution of this problem is due to G. H. Bryan; see London
Math. Soc. Proc., Vol. XXII, p. 54, 1891. Other cases of buckling of
rectangular plates were considered by the writer. See author’s papers:
(1) On the stability of compressed plates, Bull. of the Polyt. Inst. in
Kiev, 1907; (2) Z. f. Mathematik und Physik, Vol. 58, 19105 (3) Der
Eisenbau, Vol. 12, 1921; Proceedings Am. Soc. C. E., Vol. 55, 1929,
p. 855. See also H. Reissner, Zentralbl. d. Bauverw. (Berlin), p. 93,
1909,

# It may be seen that this minimum is equal to 4 and occurs when
a = mb, i.e., when the plates subdivide during buckling in squares.
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TaBLE 14.—ConsTaNTS FOR CALCULATING CriticAL COMPRESSIVE STRESS FOR
SimpLY SupPORTED REcTANGULAR PLATES

alb = 0.4 0.6 o.8 1.0 L2 1.4 1.6
B = 8.41 5.14 4.20 4.00 413 447 4.20
oy = 22,800 14,000 11,400 10,g00 11,200 12,100 11,400

alb = 1.8 2.0 2.2 2.4 2.7 3
= 4.04 4.00 4.04 4.13 4.04 4.00
Or = 11,000 10,00 11,000 11,200 11,000 10,900

For longer plates (2/6 > 3)B = 4 is always a good approxi-
mation. The values of ¢, given in the above table are calculated
on the assumption that £ = 30 X 108 Ibs. per sq. in.,, ¢ = 0.3 and
A/6 = o.o1. The critical stress for any other value of the ratio 4/%
can be obtained by multiplying the tabular values by 10%(4/4?).
To illustrate, consider a long steel plate having a yield point stress
of 40,000 lbs. per sq. in.; suppose we wish to determine the value of
the ratio 4/A at which the critical stress is equal to the yield point
stress. Assuming 8 = 4 and using Table 14,

2

k .
o = 10,00 X 10* 75 = 40,000 Ibs. per sq. in.,

from which
14
k

For larger values of the ratio /4 failure occurs by buckling'at a
compressive stress smaler than the yield point of the material.

= §2.2. )

TasLe 15.—Constant 8 For CarcuraTiNG Critical COMPRESSIVE STRESS FOR A
RecrancuLarR PLaTe wrtH THREE SupporTED EDGES
anp THE FourtH (y = ) Free

afb=|o5| 10| 12 | 1.4 | 1.6 | 1.8 | 20 | 25 | 30 | 40 | 50

8 = |4.40] 1.440] 1.135 | 0.952 | 0.835 | 0.755 | 0.698 | 0.610 | 0.564 | 0.516 | 0.506

Under such condition the critical stress and not the yield point of
the material must be taken as the basis for determining working
stress.

Three Sides of the Plate Supported and the Fourth Free. 1f one
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of the longitudinal edges such as y = & (see Fig. 139) is free, the
previous equation (192) can be used for calculating the critical
values of the compressive stress, taking the values of the coefficient
B from the table 15.

Two Opposite Sides Simply Supported, the Third Built-In, and
the Fourth Free. The sides ¥ = o, ¥ = a4 in Fig. 139 are considered
as simply supported and side y = o as built-in. The same equation
(192) can be used. The values of the coeflicient B are given in
Table 16.

TaBLE 16.—ConsTANT 8 FOR CaLcULATING CrrticAL COMPRESSIVE STRESS FOR A
RecrancuLar Prate with Two OpposiTE SipDEs SimMpPLY SUPPORTED,
THE TrirD Buirr-In, anp THE FourtH (y = 4) FRrEE

alb= |1o|n1|n2|r3|t4|nslné|17|1.8|1.9|20(22|2.4[26|28] 3

B = [1.70[1.56]1.47|1.41{1.36{1.34{1.33{1.33/1.34(1.36/1.38|1.45|1.47]1.41|1.36|1.34

For larger values of the ratio /4, a good approximation is
B = 1.33.

Two Opposite Sides Simply Supported and Other Two Built-In.®
The sides x = 0 and ¥ = a are considered simply supported. The
corresponding values of the coefficient 8 in eq. (192) are given in
the table below:

TaBLE 17.—ConsTANT B8 FOR CaLcULATING CriTicar COMPRESSIVE STRESS FOR 4
RectancuLar Prate, Two OrposiTe Sipes oF WaicH ARE
SimpLy SurporTED, AND Two Oraers Buirr-In

afb= | o4 |05 |0b)|o7|08|og| 10| 1214|116} 1.8]21

B= |9.44|7.69|7.05|7.00|7.29|7.83|7.69!705]|700]7.29}705]7.00

Rectangular Plate Supported on — -
Four Sides and Submitted to the = "="T"""p f x
Action of Shearing Stresses Uniformly | b
Distributed along the Sides (Fig. 140). ¥ ; l
The critical value of the shearing Yoo oo o
stress which may produce buckling of 1f
the plate is Fie. 150.

Ter = Bo'e- (194')

3% Such condition we have when the two opposite sides of the com-
pressed member, shown in Fig. 138¢, are very rigid dnd only the other
two may buckle.
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The values of the numerical coefficient B are given in the table
below.

TasLe 18.—ConstaNT § For CALCULATING CRITICAL STRESS FOR A RECTANGULAR
PLaTe SuPPORTED ON FOURr SIiDES AND SUBMITTED TO
THE AcTION OF A UNIFORM SHEAR

alb = I 1.2 1.4 L.§ 1.6 1.8 2.0 2.5 3 ©

g = 942 | 80 | 7.3 | 7.1 70 | 68 | 6.6 | 6.3 | 6.1 5.4

This table can be used in choosing the thickness of the web of a
plate girder. Near the supports the shearing force is the most
important factor. Therefore the part of the web between two
stiffeners may be considered as a rectangular plate with supported
edges, subjected only to the action of shearing stresses. For
instance, if the distance between the stiffeners is § ft., £ = 30 X 10°
Ibs. per sq. in. and p = 0.3, the following values of critical stress in
Ibs. per sq. in. are obtained for girders of thickness % and depth 4 by
using the above table:

TaBLE 19
b b= 3/8" h=17/16" h=1/2" h = 9[16”
5 9,980 13,600 17,790 22,400
7' 7,730 10,500 13,700 17,400
10/ 6,990 9,510 12,400 15,700

The necessary thickness of steel plates to be used in the built-up
compression members whose sections are shown in Fig. 138 can be
obtained from Tables 14-19. If the sides of the hollow section
(Fig. 138, ¢) are considered to be long r-ectangular plates simply
supported, the critical compressive stress is then

ki E )
gcr=4ge=-3—b—2—l_ug- (['

36 More data regarding the buckling of the web and design of stiffeners
are given in the writer’s papers, Proc. Am. Soc. C. E., Vol. 55‘(1929),
p. 855, “Engineering,” Vol. 138, p. 207, 1934- Sef: also E. Chwalla,
Reports Second Congress International Assoc. for Bridge and Structural
Eng., Berlin, 1936; “ Der Stahlbau,” 1936, Heft, 21 and 22.

BUCKLING OF BARS, PLATES, AND SHELLS 229

Taking, for instance, 4/6 = o.01, we find
o = 10,900 lbs. per sq. in.

This stress is far below the proportional limit of structural steel.
If the longitudinal edges of the same plate are assumed to be built in,

we find

Oor = 700 = i 10,900 = 19,100 lbs. per sq. in.

In cases (4) and (4) (Fig. 138) the compressed vertical steel
plates may be considered as long plates built-in 37 along the upper
edge and free along the lower edge. The critical stress is therefore

Gor = 1330, =~ = T ()

Again the stability of the plate depends on the magnitude of the
ratio 4/h. Assuming that the yield point of structural steel is
30,000 lbs. per sq. in., the value of /4 which makes o., equal to
this stress is, from (4),

5 . 2 X 6
— \/ 1.33m % 30 10

12 X 30,000 0.91

4 =~ 35.
Consequently, if 4/4 > 35, the critical stress becomes less than
yield point of the material. This fact must be considered in
choosing the magnitude of working stress. The stability of the
plate can be increased by reinforcing the free edge of the plate.

In all the above cases it was assumed that the critical stress is
below the proportional limit. For stresses beyond the proportional
limit our equations give exaggerated values of the critical stresses.®®

43. Buckling of Beams without Lateral Supports.—It is well
known that, in the absence of lateral supports, I beams loaded in
the plane of the web may prove to be insufficiently stable in a
lateral direction. If the load is increased beyond a certain critical
limit, such beams buckle sidewise, and further loading causes them

37 This assumption gives an upper limit for the critical stress. The
true critical stress will be somewhat lower, due to the fact that the fasten-
ing of the upper edge is not absolutely rigid.

3 This question is discussed in “Theory of Elastic Stability,” p. 384,
1936.
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to collapse.®® The energy method may be used to determine this
limit.

As an illustration consider a beam 4B (Fig. 141) of narrow
rectangular cross section with a central concentrated load P acting
in the longitudinal vertical plane of symmetry. If this force is

Frc. 141.

small, the deflection of the beam is in the vertical plane only and this
plane form of bending is a stable one. If the beam is deflected
sidewise by a lateral force, this deflection disappears with the
removal of the force and the beam returns to its initial form. If P
is increased, a limiting value is reached at which the plane form of
bending becomes unstable. The beam then buckles sidewise and
large lateral deflections may occur with a very small increase of the
load. This limiting value of P is called the critical load. 1t is
determined by considering the potential energy of the system. Any
Jateral deflection of the beam is accompanied by an increase of the
strain energy. Since after a small lateral buckling we have not
only the strain energy of bending in the vertical plane, which may be
considered unchanged, but also strain energy of bending in the
lateral direction and strain energy of twist. At the same time, the
potential energy of the load diminishes, because sidewise buckling

39 The collapse of girders as a consequence of sidewise buckling is
illustrated by the bridge disaster near Tarbes, France. See La Revue
Technique, November 15, 1897. The lateral buckling of beams of a
narrow rectangular cross section was discussed by L. Prandtl, Disserta-
tion, Niirnberg, 1899, and A. G. M. Michell, Phil. Mag., Vol. 48, 1899.
Buckling of I beams was discussed by the writer; see Bulletin of the
Polytechnical Institute, St. Petersburg, Vols. 4 and 3, 1903, 1906. See
also Annales des Ponts et Chaussées, 1913, and Transactions Amer. Soc.
C. E., Vol. 87 (1924), p. 1247. The practical application of the theory
is discussed by E. Chwalla, “Die Kipp-Stabilitat gerader Triger mit
doppelt-symmetrischem I-Querschnitt,” Berlin, 1939.
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is accompanied by a lowering of its point of application. Let U;
denote this decrease in the potential energy of the load, U the strain
energy due to bending in the lateral direction, and U, that due to
twist. Then the critical load is determined by eq. (175) (p. 200),
which becomes

U4 U; = U (2)

We must now calculate the quantities entering into this equation.
The bending moment in the vertical plane at any cross section a dis-
tance x from the left support (see Fig. 141) is Px/2. In calculating
sidewise buckling, the bending moment with respect to the z; axis
(Fig. 141, ¢) must be considered. This moment is equal to (Px/2)¢,
in which ¢ denotes the small angle of twist, variable along the
length of the beam. Then for small lateral deflection * we have
the following differential equation:
a2 Py
ELZL = - ®)

The corresponding strain energy of bending is

Ly P !
U= Elzj(: (2;—2) dx = 4le \ x2pdx. (c)

The strain energy of twist is (see eq. 210, Part I)

m=c£(%Y&, ()

in which the torsional rigidity C for a rectangular cross section is
obtained from eq. (156), Part I.

Let us consider now the lowering of the point of application of
the load P due to the lateral deflection. Take two symmetrically
situated elements dx of the beam (Fig. 141, & and ¢) and consider the
effect of the bending in the plane xy; of these two elements only.
The angular deflection due to this bending is equal to — (&2y/dx?)dx.
As this bending occurs in the plane xy; inclined at an angle ¢ to the
horizontal (Fig. 141, ¢), it causes a lowering of the load P equal to
— xo(d?y[dx*)dx. The total lowering of P due to such bending of
all the elements of the beam in buckling is therefore

i dZy
8= —j(: xgad—ﬁc?dx,

% In this case it is legitimate to take 42y/dx? for the curvature instead
of dy,[dx2.
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or, using eq. (%),
P, 2
6= 2EI£.£ x2otdx.
Hence
P2 ~ 5 o
U1=P5=2EIZJO xotdx. (e)

Substituting (¢), (4) and (e¢) in eq. (4), we find

i 2
o : )
f x2o%dx
0

By taking for the angle of twist ¢ a suitably chosen function of x to
satisfy the end conditions we obtain an approximate value of the
critical load from eq. (f). Assume, for instance, that

P =

. X
¢ =asn_;- (2

This function is zero at the ends of the beam, where the angle of
twist is zero, and is a maximum at the middle (x = /). Substituting

(g) in eq. (f), we find #

17.2VCEL,
or = _7-(-21)T— ° (195)

The critical value of the load thus depends upon the product of the
torsional and lateral flexural rigidities of the beam.

It was assumed that the load P is applied at the centroid of the
middle cross section of the beam. If the point of application is at a
distance @ above the centroid, the right side of eq. (195) must be
multiplied by [1 — 1.74(a/2))VEL,/C].%

If the load is uniformly distributed along the central axis of the
beam (Fig. 141), its critical value is

3. CEI:
(2g)er = 23(7)2 : (196)

For a cantilever of length /loaded at the center of the free end, the

1 A more detailed investigation shows that the error of this approxi-
mate solution is about 1} per cent. Hence eq. (195) is accurate enough
for applications.

22 See writer’s paper in Annales des Ponts et Chaussées, 1913. See
also “Theory of Elastic Stability,” p. 254, 1936.
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critical load is

.0IVCEI,
Pcr = 4_——12—“ ‘ (197)

In the case of an I beam, the equations for the critical loads have
the form obtained above for a beam of narrow rectangular cross
section except that the numerical factor in the numerator on the
right side is not a constant but depends upon the magnitude of the

expression: 43
C [ 2V
£ (2)

For instance, if an I beam is supported as shown in Fig. 141 and
uniformly loaded along the central axis of the beam, the critical
value of the total distributed load is

E z
(2D)er = %——fh : (198)

The magnitudes of the coefficient B for various values of the ratio «
are given in the table.

TasLE 20.—CriticaL STRESSES, IN TERMS OF THE CONSTANT @, FOR ¥ = 0.000I
AND E = 30,000,000 Lss. PErR Sq. In., Unirorm Loap
(STrEssEs 1IN PounDs PER SQUARE INcH)

a = o.1 1 2 4 6 8 12
8= 143.0 53.0 42.6 36.3 33.8 32.6 3L.§
O = 8,520 9,950 11,300 13,600 15,600 17,300 20,300
g = 5,510 6,810 8,070 10,300 12,200 13,800 16,800
o, = 13,200 14,500 15,800 18,000 20,000 21,500 24,500
a = 16 20 32 50 70 90 100
8= 30.5 30.1 29.4 29.0 28.8 28.6 28.6
O = 23,000 25,200 31,200 38,600 45,300 §1,000 53,700
oo = 19,400 21,600 27,600 35,000 41,600 47,400 50,000
o = 27,200 29,400 35,300 42,600 49,200 55,100 57,600

It will be seen that as a increases the constant 8 approaches the
magnitude given before for a beam of rectangular cross section. In
the third line of the table the magnitudes of the corresponding

% Torsional rigidity C of I-beams is discussed in art. §1, p. 275.
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values of the critical bending stresses are given, calculated on the
assumption that the quantity

I (7 \?
'y=7y<-2—l) = 0.0001I. (k)

Here 7,/I, is the ratio of lateral and vertical flexural rigidities, and
h/2lis the ratio of the depth of the beam to its span. For any other
proportions of the beam the critical stresses are obtained by multi-
plying the figures of the third line by the number 10%y.

The fourth and the fifth lines of this table give the critical stress
when the load is applied to the upper or to the lower flange of the
beam respectively. All calculations are made assuming perfect
elasticity of the material.#* Consider as an example a structural
beam of the following dimensions:

Length 2/ = 20 ft.
Depth 2 = 24 in.
Flange width & = 7 in.

2,087E 1b. X sq. in.
42.7E 1b. X sq. in.

Principal rigidity EI,
Principal rigidity EZ,

Thickness of web & = 0.5 in.
Mean thickness of flanges § = 3(0.60 + 1.14) = 0.87 in.
Area of section 4 = 23.3 sq. in.

Using eq. (256), p. 275,
C = G245 + 1h8%) = 4.07G.
Then, from eq. (4), assuming E = 2.6G,

a = 3.67,
and from eq. (k),
- 47 _ -6
Y= 2,087 X 100 205 X 107

Table 20 gives, by interpolation, for a = 3.67,
oer = 11,300 + (13,600 — 11,300)1.67 = 13,200 lbs. per sq. in.

This is the critical stress for ¥ = o.0001. The critical stress in
the example considered will be 13,200 X v X 10* = 26,900 lbs. per

4 For more detailed investigation of this subject, see the writer’s
paper, Trans. Amer. Soc. C. E., Vol. 87, 1924, p. 1247, and “Theory of
Elastic Stability,” Chapter 5. See also E. Chwalla, “ Die Kipp-Stabilitat
gerader Triger,” Berlin, 1939.
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sq. in. The load corresponding to this stress must be considered as
the ultimate for the beam. This numerical result shows that side-
wise buckling may occur at stresses far less than the ultimate stress
of the material under direct compression and even less than the
elastic limit. This fact must be considered and the critical stress
instead of yield point must be taken as the basis for determina-
tion of working stresses. For instance, with a factor of safety of 3,
the working stress will be equal to 26,900/3 = 8,970 lbs. per sq. in.



CHAPTER V
DEFORMATIONS SYMMETRICAL ABOUT AXIS

44. Thick Walled Cylinder.—If a circular cylinder of con-
stant wall thickness is submitted to the action of uniformly
distributed internal and external pressures, the deformation
produced is symmetrical about the axis of the cylinder and
does not change along its length. In the following we consider
a ring cut from the cylinder by two planes perpendicular to
its axis a unit distance apart (Fig. 142). From the condition
of symmetry, there are no shearing stresses on the sides of
an element of this ring, such as mnmn; (Fig. 142) which is
bounded by two axial planes and two concentric cylindrical
surfaces. Let o, denote the normal hoop stress acting on
the sides mm; and nn; of the element, and ¢, the normal
radial stress on the side mn. This stress varies with the
radius » and changes by an amount (do,/dr)dr in the distance
dr. The normal radial stress on the side 717, is consequently

ar + {;f dr.

Summing up the forces on the element in the direction of
the bisector of the angle do gives us the following equation
of equilibrium:!?

orde + odrde — (ar + éir’ dr ) (r + dryde = o, (a)

or, neglecting small quantities of higher order,

o — 0 — r‘fl‘;' = o. (5)

This equation contains two unknowns, the stresses ¢, and o,.
The second equation necessary for the determination of these
quantities is obtained from a consideration of the deformation

1 The weight of the element is neglected here.
236
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of the cylinder. The deformation is symmetrical with re-
spect to the axis and consists of a radial displacement of all
points in the wall of the cylinder. This displacement is
constant in the circumferential direction but varies along the
radius, i.e., 1t is a func-
tion of the radius. If
u denotes the displace-
ment of a cylindrical
surface of radius 7,
then the displacement
for a surface of radius

r+ dris

dé;
sl

du ,
u + E.dr- Fic. 142.

Hence an element such as mumin, undergoes a total elonga-
tion in the radial direction of (du/dr)dr, and the unit elonga-
tion in the radial direction is therefore

du
=% ©

- The unit elongation of the same element in the tangential

direction is equal to the unit elongation of the corresponding
radius, i.e.,

€ =

N IR

(d)

From eqgs. (38), p. 52, Part I, the expressions for the stresses in
terms of the strains are

o =

1 — i\ dr ey

K u. du
7= 7 _ﬂg(;-+uz-).

The normal stresses o, and ¢, are evidently not independent,
as they can be expressed in terms of one function . By

E du u)
(199)
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substituting expressions (19g) into eq. (#), we obtain the fol-
lowing equation for determining #:

; du  1du  u

h Frrd AT Q

The general solution of this equation is
C
u=Cr+7, )

which can be verified by substitution. The constants Cy and
C, are determined from the conditions at the inner and outer
surfaces of the cylinder where the pressures, i.e., the normal
stresses o,, are known. Substituting (f) into egs. (199), we
obtain

1

i

[clo Y- G “], (%)

| a6 +w+ai52| (#)

g
T 1 _/-"2 7.2

gt I — “2
If p; and py denote the internal and external pressures respec-
tively, the conditions at the outer and inner surfaces of the
cylinder are

(0’,)7=b = = Do and (G'r)r=a = — P (l)

The sign on the right side of each equation is negative because
normal stress is taken as positive for tension. Substitution
of expression (4) for o, in eqs. (/) gives two equations for
determining the constants Cy and C:, from which

1 — pa’p; — Bpo I+ p @8 (pi — po) (m)
E bz — g2 b) E bz — g2

With these values for the constants in eqs. (%) and (k) the
general expressions for the normal stresses ¢, and o, become 2

C = G =

2 This solution appeared first in the paper by Lamé and Clapeyron,
“Mémoire sur 1’équilibre intérieur des corps solides homogénes,” Mé-
moires présentés par divers savans, Vol. 4, 1833.

DEFORMATIONS SYMMETRICAL ABOUT AXIS 239

_@pi = Upy  (pi — po)at’

gr = e 2P =)
o= S0 B = p)a (200)
¢ 2 — 22 7,2(52 — 42) ’

It is interesting to note that the sum of these two stresses
remains constant, so that the deformation of all elements in
the direction of the axis of the cylinder is the same, and cross
sections of the cylinder remain plane after deformation.

Let us consider the particular case po = o, i.e., the cyl-
inder is submitted to internal pressure only. Then egs. (200)

become
a2p’l: b2
arzm(l—ﬁ): (201)
ap; J2
a,=——bzfa2(1 +F) (202)

These equations show that o, is always a compressive stress
and o, a tensile stress. The latter is maximum at the inner
surface of the cylinder, where

p 2 b2
(o't) max — p ;j —+6l2 ) . (203)

(0) mux is always numerically greater than the internal pres-
sure and approaches this quantity as 4 increases. The min-
imum value of ¢, is at the outer surface of the cylinder. The
ratio

(0' t) min 2ﬂ2

(o't)max _ ﬂz + b2

increases with increase in the thickness of the wall of the
cylinder. For a comparatively small thickness there is not
a great difference between the maximum and minimum values
of ¢;. Taking, for instance, & = 1.14, (¢:)m.x exceeds () min
by only 104 per cent. We should then make no very great
error if we assume the tensile stresses o, uniformly distributed
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over the thickness of the wall and use the equation:

y

o’:
¢ b—d,

which coincides with equation on page 162 given for thin cyl-
inders. The shearing stress is maximum at the inner surface
of the cylinder where

Ggi— 0y l[pi(dz—l-bz) p,-(bg—-tﬁ)]: b

Tmax =

Py =2 P P — a2

When only an external pressure acts on the cylinder, p; = o,

and egs. (200) give

b2 ﬂ2
Or - bZPO 2 ( I — —) ) (204)

— Obz

7,.2
2
Ut——zg—p—_{ﬁ(l +%) (205)

il

In this case o, and o, are both compressive stresses and o; 1s
always numerically greater than o,. The maximum com-
pressive stress is at the inner surface of the cylinder, where

2pob?
(60)r—a = — ﬁ%? . (206)

It is interesting to note that as the ratio &/a of the radu of
the cylinder is increased, this maximum compressive stress
approaches twice the value of the external pressure acting on
the cylinder, namely, — 2.

Let us consider now the deformation of the cylinder. Sub-
stituting expressions (m) for the arbitrary constants in eq.

(f), we find

1 —udpi— 5o

1+ u % (ps — po)
“="F “p-—a& o o

@ — d)r (207}

This gives the radial displacement of any point in the wall of
the cylinder. In the particular case of a cylinder submitted
to internal pressure only, po = o, and the radial displacement

b‘z__ﬂz‘ (”) )

£y
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at the inner surface, from eq. (207), 1s

612

. 2 b‘l
(4)r—a = % Zz j + P”) : (208)

When the cylinder is submitted to external pressure only,
p: = o, and the radial displacement at the outer surface is

b 2 +b2
() = — % Zz—_?—' u) : (209)

The minus sign indicates that the displacement is towards
the axis of the cylinder.

45. Stresses Produced by Shrink Fits.—If it is necessary
to produce contact pressure between a hub and a shaft or
between two rings mounted one inside the other, it is usual
practice to make the inner radius of the outer part smaller
than the outer radius of the inner part and to assemble the
structure after a preliminary heating of the outer part. After
cooling, a contact pressure between the two parts is produced,
which is called the shrink-fit pressure. The magnitude of this
pressure and the stresses produced by it can easily be calcu-
lated with the equations of the previous article. ~Assume,
for instance, that the external radius of the inner cylinder in
an unstressed condition is larger than the internal radius of
the outer cylinder (Fig. 143) by the amount 4. Then, after
assembly, a pressure p is produced between the cylinders; its

50,0005

35200

- 14,600 L”l ---- -

Fic. 143.

magnitude is found from the condition that the increase in
the inner radius of the outer cylinder plus the decrease in
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the outer radius of the inner cylinder, produced by p, must
be equal to § . Hence, from eqs. (208) and (209),

bp (B + ¢ bp(a+ 8 )=
(g (5 -

from which

{210)

Es (B2 — ad)(c® — b))
= .

2B — D)

Equations (201) and (202) then give the stresses in the outer
cylinder and egs. (204) and (20¢) the stresses in the inner
cylinder. Usually the stresses to be considered in design are
those at the inner surface of the outer cylinder. These
stresses are

bZ 2
0’¢=P—(‘_2—_‘tb€—), or = — p.

The maximum shearing stress at this surface is (see eq. 7,
p. 240)

p¢

¢+ max = CZ — b2

or, substituting expression (210) for p,
Escx(p? — a?)
Tmax = —m . (21 I)

In the particular case of a solid shaft and a hub we havea = o,
from which

Es )
= — (& — 212
p= e -, (212)
Eb
Tmax = 7 (213)
i i.e., the maximum shearing stress is the same

as in a simple tie rod which undergoes a unit
elongation equal to /4.

The above discussion assumed that both
cylinders have the same length. In dealing with a hu.b and a
shaft (Fig. 144) the projecting portions of the shaft resist com-

Fic. 144.
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pression which results in an increased pressure near the faces
of the hub as indicated by the shaded areas.?

If a built-up cylinder, such as represented in Fig. 143, is
subjected to internal pressure, the stresses produced by this
pressure are the same as in a cylinder with a solid wall of the
thickness ¢ — @. These stresses are superposed on the shrink
fit stresses. The shrink fit produces a tangential compressive
stress at the inner surface of the cylinder which reduces the
maximum tangential tensile stress at this point produced by
the internal pressure so that a more favorable stress distribu-
tion may be obtained than in the case of a solid tube (see
problem 2, p. 244). This is one reason why cylinders built
up of several tubes are used in cases of very high internal
pressures, such as are found in guns.

A distribution of initial stresses analogous to those de-
scribed above in the case of built-up cylinders can also be
obtained in a solid tube by applying a high internal pressure
sufficient to produce permanent set in the inner part of the
tube. After removing this internal pressure some stresses
remain in the tube due to the permanent set, so that the
inner part is then in a state of compression, and the outer in
a state of tension.*

Problems

1. Determine the tangential stresses at the inner and outer
surfaces and at the middle thickness of the wall of a cylinder with
inner radius 4 in. and outer radius 8 in. submitted to an internal
pressure p; = 30,000 lbs. per sq. in.

Answer. From eq. (202): (o4),—4r = §0,000 lbs. per sq. in.;
(02)r—» = 27,500 lbs. per sq. in.; (o4),—s» = 20,000 lbs. per sq. in.

3 An experimental investigation of shrink fit stresses is given in a
paper by A. Huggenberger, Technische Blitter, Schweiz. Lokomotiv.
und Maschinenfabrik, Winterthur, 1926. A further discussion of shrink
fit stresses see in the paper by W. Janicki, “Schweiz. Bauz.,” Vol. 88,
P- 93, 1926 and Vol. g0, p. 127, 1927. See also papers by J. W. Baugher,
:I“rans. A. S. M. E,, Vol. 52, 1930, and O. J. Horger and C. W. Nelson,

Journal of Appl. Mech.,” Vol. 4, p. 183, 1937 and Vol. 5, p. 32, 1938.

1 A further discussion of this question see in art. 71.
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2. Determine the stresses in a built-up steel cylinder (Fig. 143)
submitted to an internal pressure p; = 30,000 lbs. per sq. in. i
a=4in;b =6in;c = 8in; and the shrinkage § = 0.005 in.

Solution. Determine first the initial stresses in the cylinder due
to shrinkage. From eq. (210)

30X 108 X 0.005(6% — 4%)(8% — 62)
7= 6 X 2 X 6:(8¢ — 47
The tangential stresses produced by this pressure in the inner,
cylinder, from eq. (205), are

= 4,050 lbs. per sq. in.

2p 2 X 4,050 X 6 .
(00)rearr = — 7 — 2 = — .—67——4_.2_— = — 14,6001bs. per sq. in.,
b2 2
(o) rmgrr = —%2—:_'_—:2—) = — 10,500 lbs. per sq. in,

The stresses for the outer cylinder, from eq. (202), are

PP F D) 4,050(6 + 8

(0rmsr =5 52 G~ 5 1bs. per sq. in.,

2pl 4,050 X 2 X 6

(00rer = 5" 5o g — 6

= 10,400 lbs. per sq. in.;

the distribution of initial stresses o; over the thickness of the wall is
shown in Fig. 143 (4) by the dotted lines m# and mym. The stresses
produced by the internal pressure are the same as in the previous
problem and are represented in the figure by the dotted line ss.
Superposition of the two stress distributions gives the distribution
represented by the shaded area. It may be seen that, due to
assembly stresses, the maximum stress when the cylinder is sub-
mitted to internal pressure is reduced from 50,000 to 42,000 1bs.
per sq. in.

3. Referring to Fig. 143 find the shrink fit stresses o, atr = 61in.
and 7= 10in. ifa = 4in, b =8 in, ¢ = 121in. Usea shrinkage
factor 8/6 = o.001, and take E = 30.10° Ibs. per sq. in.

Answer.

(00)rmerr = — 13,500 lbs. per sq. in.
(61)r10r = 13,750 bs. per sq. in.

4. For the hub and shaft in Fig. 144 find the uniform pressure
p if the radius of the shaft is 6 in., and the outer radius of the hub
‘s 12 in. The initial difference in diameters between hub and shaft

is o.012 in. Take E = 30.10° lbs. per sq. in.
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. 46. Rotating Disc of Uniform Thickness.—When a
circular disc rotates about the axis of symmetry perpendicular
to tl}e disc the inertia forces set up stresses which become
considerable at high speeds. These stresses are distributed
symmetrically with respect to the axis of rotation and may
be calculated by the method indicated in article 44. It is
assum.ed that the stresses do not vary over the thickness of
the d}sc and this thickness is taken equal to unity. The
equation .of equilibrium of an element such as mumin; in
I‘flg. 142 s derived by adding to the forces which were con-
sidered in article 44 the inertia force acting on the element

¥ 0)27'2

drdb. (a)

Here"y 1s the v&'feight per unit volume and w the angular
.Veloc1.ty of the disc. The remaining notation is the same as
in article 44. The equation of equilibrium is now

do,  yoi?

Ok (%)

By substituting for the stresses their expressions as functions

f)f the disPlacement # (eqs. 199, p. 238), we obtain the follow-
ing equation:

dZ_u I du U ,szr
ety et (- oE = O (214)

The gene.ral solution of this equation is obtained by adding
any Cﬁzartlcular solution of it to the solution of the corre-
sponding homogeneous equation (see eq. 238). S

particular solution is T/, P 238 Such 2

yw? 73
u=—(1—p°) &5
( ¥ gE 3
Then, using the notation
602

N=(1—u2);—E—, ()
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the general solution of eq. (214) is
3
u=—N%+Clr+—€Z, ()

in which, as before, C; and C; are constants which must be
determined in such a way as to satisfy the conditions at the
edges of the disc. For a disc with a hole at the center.(_Flg.
142) and with no forces acting on its edges, these conditions
are

(‘Tr)r=a = 03 (O'r)r=b = O. (e)

The general expression for o, is obtained by subst.itutipg ex-
pression (d) into the first of egs. (199) (p- 238) which gives
1
E[-sftvetatna-a-nai] o
1—u? 8 7
When » = a, » = &, this must be zero, as statcf,d in eqs..(e).
Making this substitution, we obtain the following equations
for calculating C; and Gy:

Or=

I
—3—;—_—”N42 + 04w —a-— H)Cra—z = 0,

(g)
I
—Q—"gﬁNﬁ + @+ G- 0 —whyp=o
from which
34w . _ 3R pN G
Cl:S—(I——i—T)(ﬂz—i_bZ)N’ C: 8(1—,u)ab ()

The general expression for « is obtained when these Va.lues
are put into eq. (4). Substituting this expression for u into

egs. (199) (p. 238), we find:

252
a'r:8—<‘—31—‘—-*._—_—“:‘l'—2)‘EN(ﬂ2+b2—r21—%)) (215)
1 , 1+ 3 ?ﬁf’f).
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Replace NV by its value (eq. ¢) and let
F=es  3=x; be=no (k)
Equations (215) and (216) then become

2 2
a,=%38ﬂ(1 +a2—x2—;i2), (217)

_ Lvs_u( : _T+3m, 1) .
PR L 3+“x +x2 (218)
It will be seen that the radial stress ¢, becomes zero at the

edges, where ¥ = I or ¥ = ¢, and that it is positive for other
values of x and becomes maximum at the points

x=\/&=\/§’

[

i.e., where
r = Vab, 0]
with this value for 7, eq. (217) gives
*3 +
(a'r)max = Zg—s—glf (I - a)z' (219)

The tangential stress o, is maximum at the inner edge of the
disc, where x = a. From eq. (218) we then obtain

(Ut)max— g 4 I +3+I~La (220)

It can be seen that (o) max is always larger than (o,).ux.
In Fig. 145 the values of the parentheses of egs. (217) and
(218) are plotted as ordinates for values of x as abscissas;
the full lines represent the case & = 1, i.e., the inner radius
is one fourth the outer radius. The dotted lines represent
the values of the parenthesis of eq. (218) for other values of a.
Equation (220) shows that the stress (¢:)msx 2t the inner edge

varies with « according to a parabolic law. This is shown by
the curve m# in Fig. 143.
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It is interesting to note that when the inner radius 1s

very small, le., a approaches zero, there is a very sharp

" change in the stress 0, near

i P the hole. This is shown by
- <~ N\ the curve mpg, for which

2420~

'lv.Z 3_-1__& . (221)
g 4

For the other extreme case,
when the inner radius ap-
proaches the outer radius of
the disc, o approaches unity,
and eq. (220) becomes

(a't) max —

v

F1c. 145. (at)max - g '

This coincides with eq. (15), Part I, which was obtained for a

thin rotating ring. It will be seen that, in the case of the disc

with a hole at the center, the maximum stress does not change

very much with the radius of the hole; the value for a very

thin ring is only about 20 per cent higher than that for a
very small hole.

In the case of a solid disc u = o for r = o; hence the
constant C» in the general solution (4) must be taken equal
to zero. The constant C; is found from the condition that
o, = o at the outer edge of the disc. Then, from the second

of eqs. (g),

By
Nl
Ay

3+t
G =50+
This value of Ci, and zero for C., are introduced into the
general expression for the displacement « (eq. 4) which is thefn
substituted into egs. (199) (p. 238). In this way we obtain

N&. (m)

a3t e e
G, = c g (1 x2), (222)
_y*3tm "f"( _1+3e )
o= g I Tt . %2, (223)
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where, as before, ¥ = 7/6. Both stresses are always positive
and increase with decrease of w, i.e., as we approach the
center. At the center ¥ = o and

v 3+
it (224)

(Ut)max = (Ur)max =

Comparing this with eq. (221), we see that, due to stress
concentration, the stress at the edge of a smiall central hole
is twice as great as that at the center of a solid disc. The
variation of the stress o along the radius of a solid disc is
represented in Fig. 145 by the dotted line p1pg.

The equations derived above for rotating discs are some-
times used also for comparatively long cylinders,® for instance
for rotors of electric machines. In large machines the per-
ipheral velocities are very large. The above discussion shows
that the stresses produced by inertia forces are proportional
to the square of the peripheral velocity and are therefore of
primary importance in such cases. Hence, for a material of a
given strength and for a given angular velocity of the rotor,
there is a definite limit to the diameter of the rotor beyond
which it is dangerous to go. In discussing working stresses
for such rotors it is important to note that very large forgings
are likely to have defects in the material at the center, which 1s
exactly the place of maximum stress produced by inertia
forces. To eliminate uncertainties it is a usual practice now to
bore a central hole along the axis of the rotor. Although the
maximum stress is doubled, due to the presence of the hole,
this is compensated for by the possibility of investigating the
soundness of the material inside the forging. It is also usual
to run the rotor at a certain overspeed ¢ during the pre-
liminary tests, so that the stresses around the hole may exceed
the yield point. After stopping the rotor, the stresses will
not disappear completely, due to a permanent set of the mate-
rial at the hole. The inner portion of metal, which has

5 Stress distribution in thick discs is discussed in “Theory of Elas-
ticity,” p. 319.
8 In electric machines usually 20 per cent above service speed.
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yielded, is compressed by the outer, and the outer is kept
in tension by the inner.” The conditions are similar to those
in a thick cylinder, overstressed by internal pressure (p. 243).
The residual stress, produced at the hole by overstressing, is
opposite in sign to that produced by inertia forces; hence
overstressing produces a favorable effect on the final distri-
bution of stresses in the rotor.®

It is important to note also that the equations for stresses
obtained above (see egs. 217, 218) contain besides v only
ratios such as a and x; hence for a given material and periph-
eral velocity, the stresses are equal in similarly situated points
of geometrically similar rotors. This may simplify the calcu-
lations of stresses in geometrically similar discs. It is also
used in establishing the strength of large discs from tests on
models.

In the previous discussion it was assumed that the edges of the
discs are free from external forces. If there are tensile or com-
pressive forces uniformly distributed around the edges of the disc,
the stresses due to them are found by using the theory of thick
cylinders (article 44). These stresses (see egs. 200) can be repre-
sented in the following form:

()

in which % and # are constants depending upon the dimensions of
the disc and the magnitude of the external forces acting at the
edges. Stresses (#) are to be superposed upon the stresses (217)
and (218) and the total stresses may then be represented in the

7 This question is discussed by C. Honegger, Brown Bowery C.
Mitteilungen, November, 1919.

8 Residual stresses in rotating discs du2 to yielding of metal were
investigated by A. Nadai and L. H. Donnell; see Trans. Amer. Soc. Mech.
Engrs., Applied Mechanics Division, 1928. See also H. Hencky,
Zeitschr. f. Angew. Math. u. Mech,, Vol. 4, 1924, p. 331, and F. Laszlo,
Zeitschr. f. Angew. Math. u. Mech., Vol. 5, 1925, P. 281.
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following form:

B
Ty = /{ + ';é bt Blw2r2,

(229)
g, = A — ;Z—szrz,
in which
_y3+u, _YIt3m
ﬁl’_g 8 ’ B_g 8 ) (226)

and 4 and B are constants of integration which may be calculated
in each particular case by using egs. (200), (217), (218). With the
notation:

5 = or + putr?,

) t = o, + Bu*r? (227)

and

1
w =5 (228)

eqs. (225) become

s =4+ Buw; t =4 — Bw. (229)
If s and # are known for any point of the disc, their magnitudes for
any other point can easily be obtained by using the following
graphical method.® Let s and 4 denote the magnitudes of s and ¢
for the point where w = w; (see Fig. 146). Then the magnitudes 52
and % of s and ¢ for any other point where w = w. are obtained
from the intersection of the vertical
line through w, with the straight
lines si52 and #t,, which have their
point of intersection on the vertical
axis of the coordinates (w = o) and
are equally inclined to this axis.
These lines represent equations l
(229) graphically. They have the

common ordinate 4 on the axis

w = o, and have equal and opposite

slopes (&= B). This graphical construction is very useful in cal-

culating stresses in rotating discs of variable thickness as we shall
see later.

152
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|

i
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0 W, A

~ *This method was developed by R. Grammel, Dinglers Polytech-
nical Journal, Vol. 338, 1923, p. 217.
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Problems

1. Determine the stresses due to centrifugal forces in a rotor
with 26” outer radius and 4" radius of inner hole. The outer
portion of the rotor is cut by slots 10" deep, which take the windings
(Fig. 147). The rotor is of steel and makes 1,800 revolutions per
minute. The weight of the windings in the slots is the same as that
of the material removed.

Solution. Because of the radial slots, the part of rotor between
the outer and the 16 inch radii can support no tensile hoop stresses.
The centrifugal force due to this rotating ring is transmitted as a
radial tensile stress across the surface of the
cylinder of 16 inch radius. The magnitude
of this stress is

I r=26 I e
— LA S ol
_pO 27T X I6 r=16 gw rdV 27 X 16 g
26 2 168
21rf r2dr = Yo 1095 ,
16 g 6

with v = 0.284 1b. per cubic inch, g = 32.2
X 12 inch sec.™?; this gives

Fic. 147. Po = 7,334 lbs. per sq. in.

The maximum tangential stress at the inner edge produced by the
tensile stress po is, from eq. (206),

2 X 162 .
o = 7,334 X e 15,700 lbs. per sq. in.

The maximum tangential stress at the same edge due to the mass
between the 16 inch and 4 inch radii, calculated as for a rotating
disc (eq. 220), is o¢”" = 5,580 Ibs. per sq. in. The total maximum
circumferential stress at the inner edge is then (¢)max = o + o
= 1¢£,700 + §,580 = 21,300 lbs. per sq. in.

2. A steel ring is shrunk on a cast iron disc (Fig. 143). Deter-
mine the change in the shrink fit pressure produced by inertia forces
at 3,600 r.p.m., ifa = 1,5 = 5, ¢ = 10", E, = 30 X 10° lbs. per
sq. in., E..;. = 16 X 10° lbs. per sq. in., v, = 0.284 1b. per cubic in.,
Ye.i. = 0.260 1b. per cubic in. A

Solution. Let po be the increase in pressure between the ring
and the disc. The arbitrary constants in eq. (f) for the outer ring
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are determined by the equations:

£ 3tw,,,
1 — HZI:— 8 NCZ + (I +/-L)(4'1 - (I - #)02;%] = O’

) 3+u (?)
I_,U2|:— g N&t + (1 +M)C1—(I—ﬂ)czzlg:|= — Po.

When we apply eq. (f) to the inner disc, for which the arbitrary
constants are denoted by Ci" and Gy’ and N’ is the constant defined
by eq. (¢), we obtain the equations for determining €\’ and &,':

E 3+te .,
I_M[— B 4+ we - G —u)cz'g—_,] = — 1o

E 3+uw.., )
1 —,u2[_ 3 N'a*+ (1 4w’ — (1 '—I-L)Cz/é]=o.

From equations (p) and (r), the four constants Ci, Gy, C/’ and Gy’ can
be found as functions of po. The magnitude of p, is now found
from the condition that, at the surface of contact, the radial displace-
ments of the disc and of the ring are equal. Using eq. (d), the
equation for determining p, is therefore ’

— ﬁ G /bs ’ ¢/
Ng+Cb+ 3= - N+ b+ ()

The numerical calculations are left to the reader.

3- Find the change in pressure p calculated for problem 4 of
the preceding article if the shaft and the hub rotate at 1,800 r.p.m.
v = 0.284, E = 30.10° Ibs. per sq. in. ’

. 47. Rotating Disc of Variable Thickness.—In the case of a
disc of variable thickness the problem of determining stresses
becomes more involved.’ We will now discuss an approximate
method of solving this problem, based on the replacement of the
actual profile by a system of discs of uniform thickness (Fig. 148).11

1° The general equation for this case, together with a consideration of
the different methods of its solution, can be found in the well-known
book by A. St(?dola, “Dampf- und Gasturbinen,” 6th ed., pp. 312—340
E;24:. A‘ rotating disc of conical profile was considered by H. M. Martin’
V(t)llgnllegrmg, Vol. 115, p. 1, 1923; by B. Hodkinson, Engineering:
Ver.' 16, 1‘)/ 274, 1923; and A. Fischer, Zeitschr. d. Oesterr. Ing. u. Arch.
L eines, Vol. 74, 1922, p. 46. See also the book by I. Malkin, “Festig-
eltflberefzhnung rotierender Scheiben,” Berlin, 1933.
ror This method was developed by M. Donath, “Die Berechnung
otierender Scheiben und Ringe,” 1912, Berlin. It is described in English
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The stresses in the separate discs are calculated by the equations ) g g g g g 9 g g g
given in art. 46. We must then consider conditions at the bound- % __gl g% & 3 2 & % & & g
. . . . . 0 —
aries between these discs, that is, at sections such as 2, 3, 4 (Fig. = = ® < B
148), where abrupt changes in the thickness occur. If y andy + Ay
denote the thickness of the discs on opposite sides of the section o =g ]»-d 1 & g 3 8 g g $
under consideration, the corresponding change Ag, in the magnitude SEim S & = g 2 A A o °
of the radial stress o, is found from the equation:
. g o Qwi Qo 0 o) o o o 9 o o
09 = (o7 + A0)(y + Ay), sl ezln | SR 8888 88|82 B8 |28 QR &8
== s = Cr || Rd | FS| S+ AR S<
in which it is assumed, as before, that the stresses are uniformly ¢
distributed over the thickness of the disc. Then .[N $elgs|gelyelnelegles
- > @ - - bt i oo
S 98| Ny = iy
Ac, = — _fi-‘-_yA ... @ g Pl i+ i+ i+ i+ 1+
y 3 2
i i fon | 5 |- $2 58182 82| 8388 22
The change Ao, in the tangential stress at the same section is found el 214 §| g 3 3 X ROl QY v |4
from the condition that the unit circumferential elongation is the E [ I o o A B O O B
X . B
same on both sides of the section. Hence £ NEAFREREE && z 3 T3 28
- gl t . ), 20 (2R 22| 2% T2l 2g
or — por = (6; + Ac) — plor + Agy), Z o bél& - il = S| AT T WS T4 d e
. ' 2z
hich ‘ g I [ [ [ ! I ! l
from w o — i | : =
Tt = pAGy. 3 > < P 3 2 & A 8
From eqs. (227), ! g | = < 4; = 3 S ] ] e A
Ay ‘ 5 A4 ! | | I
A5=Aa,=—-'—‘_|70r, 2 |
At = Aoy = phs gl TE & 8 2 % % & v 3
= t = . - - o s
Equations (226), (227), (228) and (230) together with the graphical | ] o | %z IN g 9 3 2 o 0 o o -
solution given in Fig. 146 are sufficient for the calculation of a disc I, 4 |28 | S A N 2 Q o 5 + &
of a variable thickness. | E
Cpnsider, as an example, the disc represented in Fig. 148, N EYIRR: 2 8 2 8 3 o, 9 o
rotating at a speed of 3,000 r.p.m. All the dimensions are given in o= l £ > iy 3 & = x ) ~ +
the table below. Assume that the centrifugal forces applied at the
outer edge, for instance centrifugal forces due to the blades in the 7 o] ar ® ® Q = . . - - -
case of a turbine disc, are such that at the outer edge % g o & NS S S = o < 3
(6.1 = 1,420 lbs. per sq. in. | ol o - . . 9 Q + > o -
- — A = =, = > & 8 T 3 g o
by H. Hearle in Engineering, Vol. 106, 1918, p. 131. Further develop- | -
went of the method was given by R. Grammel, loc. cit., p. 251, and the ; o . g P ™ o o & < E & 3
numerical example given below is taken from this paper. See also the ‘ - o s & 2N = 3 & + &
paper by M. G. Driessen, Trans. Amer. Soc. Mech. Eng., 1928, Applied | .
Mechanics Division; R. Grammel, Ing. Arch., Vol. 7, p. 136, 1936; o . g . 3 )
R. G. Olsson, Ing. Arch., Vol. 8, p. 270 and p. 373, 1937; A. Held, Ing. S :'5 « < bl o e~ o

Arch., Vol, 10, p. 339, 1939.
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and that u = 0.3; v = 0.2831b. per cubicinch. Then from eqgs. (226)
Ibs.

S.
2 - —_ 2 — —
B w* = 30.0: 5 w® = 17.3~+ .
! 3 in.4’ 6 7 3 in.t

The first eight columns of the table above are filled from these data
and from Fig. 148.

We begin the stress calculation from the outer edge of the disc,
where (o,); is given. The magnitude of the tangential stress (o)

Z
7

I I NG B4
'/ AN
/
/

o

S

3

1]
xis of rotation

P =g
/__zl.—_.....ﬁr-—-—s-%—ﬁg'{'""‘s 6 17 ls\s

A,

-
‘T@T“J—”‘—d—r—“l_rhq__l{ 0

F1c. 148.

at the outer edge is usually unknown and an arbitrary magnitude
must be assumed for a beginning. The simplest assumption is to
take (g.)1 so as to make s and # (see eq. 227) equal, in which case

(61 = (o + Brw?n® — Bu?rs?,
or, by using the figures in the fifth and sixth columns of the table,
(61 = 1,420 + 11,620 — 6,680 = 6,360 Ibs. per sq. in.
Now, from eqgs. (227),

51 = (o)1 + Buw?rn® = 1,420 + 11,620 = 13,040 lbs. per sq. in.,
fh = (601 + Bu'n? = 6,360 + 6,680 = 13,040 lbs. per sq. in.

Since sy = #, the s and ¢ straight lines coincide in the construction
explained in Fig. 146. In Fig. 149 in which s and ¢ are taken as
ordinates and w = 1/r* as abscissa these lines are represented by the
line a—a parallel to the w axis. The length of this line, corresponding
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to the radial distance 1-2 of the disc (Fig. 149), is determined from
the figures in column 4 of the table. From this we obtain for
section 2 (Fig. 148)

§2 = # = 13,040 lbs. per sq. in.;
then by using eqgs. (227),

(0)2 = 53 — Prw?r? = 13,040 — 9,410 = 3,630 lbs. per sq. in.,
(09)2 = h — Bulr? = 13,040 — §,420 = 7,620 lbs. per sq. in.

At section 2 an abrupt change in the thickness of the disc takes
place. To take this into account, we use eqgs. (230) together with
the figures in column 8 in the table. Then

(-5%5)
y+ay

= 1.50 X 3,630 = 5,450 lbs. per sq. in.,

(As)e = (Ady)s

(Af); = (Aog)s = p(As): = 0.3 X 5,450 = 1,640 lbs. per sq. in.

15§
(in*
21,0005t
[4
C, ———3
t8,0001 [ | e ¢
........... 5
. —— -2
15,0004 |lb /
b
ara
12,000 “~
\\/
S
35,0009 || | Feeee ] __LT
[y — T
6,000 I et
[ el
3,000 | o |
ficatl
oM e — : 2
=~ "g T
———
Fic. 149.

These quantities are added to the ordinate of the point & in Fig.
149 which gives points 4 and ¢; the lines 4% and ¢c are then con-
structed as explained in Fig. 146. In this manner s; and #; are

found for section 3. By repeating the above process all the data
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necessary for the third section are obtained, and so on. By this
method we may compute all the values in the upper lines in columns
nine to twelve of the above table.

Due to the fact that the stress (o), at the periphery of the disc
was taken arbitrarily, the conditions at the inner edge will usually
not be satisfied, and the stress (o) obtained by the above method
will not be the stress which actually exists there. In order to
satisfy the condition at the inner edge, an additional calculation is
required. We assume (o,)1 = 0, w = o, and take an arbitrary value
for (¢4)1 (in the calculations (¢¢); was taken 710 lbs. per sq. in.) and
obtain the corresponding stress distribution in the same manner
as before. For this case, from eqs. (227), s=o,and ¢t = o;. The
results of these calculations are given in columns nine to twelve in
the lower lines, and the corresponding constructions, in Fig. 149,
by the lines # and s’. The solution which satisfies the actual
condition at the inner edge of the disc is obtained by combining
the above two stress distributions as follows: Let (¢,)s and (s.)s’ be
the radial stresses at the inner edge of the disc, obtained by the
first and the second calculations respectively, and (e,)s® denote the
actual stress at the inner edge. Then the solution for the actual
condition is obtained by superposing on the first stress distribution
the stresses of the second distribution multiplied by

— (O'r)so — (O'r)9 .
(02)d’

The average stresses at the sections at which the thickness changes
abruptly may be calculated as follows:

(Ur)°=(ar+ )+n(ar+ )
00 = (o045 )4 n (o0 +2)

The results of such calculations for the case when the radial stress
at the inner edge is zero are given in the last two columns of the
above table and are represented by the two curves in Fig. 148.

48. Thermal Stresses in a Long Hollow Cylinder.—When the
wall of a cylinder is non-uniformly heated, its elements do not
expand uniformly, and mutual interference sets up thermal stresses.
In the following the distribution of the temperature is taken to be
aymmetrical with respect to the axis of the cylinder, and constant
along this axis. The deformation of the cylinder is then sym-
metrical about the axis and we may use the method developed in
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art. 44. A ring is cut from the cylinder by two cross sections
perpendicular to the axis, unit distance apart. During deformation
such cross sections can be assumed to remain plane if taken suffi-
ciently distant from the ends of the cylinder,”® hence the unit
elongations in the direction of the axis are constant. Let the z
axis be the axis of the cylinder, w the displacement in the direction
of the z axis, and the other notation the same as in article 44 and
Fig. 142. Then the unit elongations in the three perpendicular
directions are

dw
€ = E = const,,
du
€ = E:’ (a)
u
€ = — °
r

These elongations can be represented as functions of the stresses
G2y Or, 01, and the thermal expansion. Let a denote the coefficient of
linear expansion and # the increase in temperature, which varies with
the radial distance ». From eqgs. (43) (see p. 62, Part I) the elonga-
tions are

5z=E—'§(0'r+0't)+at;

e=F—gloto)ta @)
ét_og E(o'z+0'r)+at,

Using the notation A for unit increase in volume,

A=eteta="—Ft@toto)tiat @
From this and eqs. (%) we find

E ( I ) atE
g, = € + A -

I+ u I — 2u 1 — 2u
E atE
ar=1+u(r+1—2uA)_1—2u’ @

E A) atE
dt:l—{—y, t+1—2p, _1—2;1..

12 At the ends the stresses in the direction of the axis of the cylinder

are zero and the stress distribution is more complicated.
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These values are substituted into the equation of equilibrium of the
element mnmn in Fig. 142 (eq. (4), p. 236)

dO'r Or — 0

dr r

=0 (&)

and give, after using eqs. (@),
d*u 1du u 1+p
dr2+rdr_r2_1—u ar’ (231)

This equation determines the displacement « for any particular
distribution of temperature. It may be written in the form:

d 1+u dt
ar rdr( ) I—paa'r

Integration with respect to r gives

d 1+ p
dr(ru) = _#aﬂ"‘*“QCﬂ'.
A second integration gives the solution:
11 4+p (7 I
u=;1_#£ atrdr—l—Clr—{—Cz;, )

in which C, and G, are constants of integration which must be
determined in such a manner as to satisfy the conditions at the
surfaces of the cylinder. If these surfaces are assumed to be free
from external forces, C; and C, are determined from the conditions

(6+)r=a = 0 (6r)r—p = 0. (g)

A general expression for o, is obtained by substituting & = du/dr
and e = u«/r into the second of eqs. (4) and taking # from eq. (),
which gives

a-,.—_—E—(—I—ﬂ;zﬁratrdr+ G__ G, & ez).(/z)

I —2u r? I—2u

From eqs. (g) we obtain

I+ a b
Co=—5 2f atrdr, |
I—pb—a a

1+ I—2 X b
C1=( :)iu u) bz_azj; atrdr — ue;.

(k)
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With these values substituted in expression (%) the general expres-
sion for ¢, becomes

E 1 r 7,.2 —_ 42 b
Pa—— [ - ;z-j; atrdr + _—r2(b2 — a2)j,: atrdr] - (232)
The general expression for a; is obtained from the equation of equi-
librium (¢) which gives

do, E 1 [
a,—rr,-l—rdi I_“[;Efatrdr
r2 + ﬂ2
r2(b2 — &) [ atrdr — at] (233)

When the distribution of the temperature over the thickness of the
wall is known, we can evaluate the integrals of eqs. (232) and (233)
and obtain ¢, and o

Let us consider the case of a cylinder with a thin wall at the
temperature #; on the inner surface and zero on the outer.!® For
thin walls the stationary distribution of the temperature over the
thickness is practically linear; hence

:=:.-(1_;"‘)- (234)

— a

O, =

When this is substituted into eqs. (232) and (233) and the integration
is performed, we obtain

Eat; [ fl_:j ( & B — ]

T we a9l ‘ﬂ" )ﬁ_42,<n9
EOZ i

30— #)Eﬁ - a)[” T 2]- (236)

The tangential stresses at the inner and outer surfaces are

_ Eat; B —
@ = e =g\ 252 )
o0 = Eat: L 2\b—a
W =sn ot —al T\t )z |

13 Any temperature condition at the surfaces of the cylinder may be
obtained by superposing on this a uniform heating or cooling, which does
not produce stresses.

oy =
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These equations may be represented in a simpler form by using

b
- =1+ m, (l)

a

where m is small for a thin cylinder. With this notation the above
eqs. become

Eat; m
(08) r=a = *m(l +m), (237)

Fat; m
(0) rmp = 20 — @) ( I— W) : (238)

In the case of a very thin wall, the second term in the parenthesis of
these equations is negligible and the equations coincide with that
derived for a non-uniformly heated plate (see eq. 122).

When the thickness of the wall is not small, the stationary
temperature distribution is no longer a linear function of # but may
be represented by the function

l; b .
t= , 3 log, Pl (239)
og. :
With this expression for ¢ egs. (232) and (233) become
. = Eaw; [ I b a? ( 52) 1 b
r=———————| —logem—5—— {1 -5 oge—], 240
2(1 — ) logeg r b — g2 72 a (240)
. Ewt; [ - Vs a? ( " b2) I b (241)
= —log, - — — 1 - oge—]- 241
2(1 — 4) logeg r BRB—-a r? a

The n.1axi.mum o; occurs at the inner or outer surface of the cylinder.
Substituting in the above equation 7 = g and r = 4,

Eat; 25 b
(0 rme = (- reeel), e
2(1 — ) log,;;
Eat; 2
(68)r=p = ! =% 2_: 2 logeg) ’ (243)

b
2(1 — ) loge;

In the above discussion only ¢, and ¢; were considered and it was
shown that these quantities do not depend upon the elongation e,
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in the direction of the cylinder. ¢, may be calculated from the
first of eqs. (d). Substituting e = du/dr, e, = ufr, and using eq.
(f) for u and eqs. (k) for the arbitrary constants, we find the general
expression for ¢, to contain the constant elongation e, in the direc-
tion of the axis of the cylinder. If we assume that the cylinder can
expand freely, we calculate the magnitude of e, from the condition
that the sum of the normal forces over the cross section of the
cylinder perpendicular to the z axis is equal to zero. As a result of
this calculation the following final expression for ¢, is obtained:

Eat; b 242 b
oo=—— 3 \1—2 loge; ~R_ g loge; - (244)

2(1 — ) log. p

It may be seen that at the inner and outer surfaces of the cylinder
the stress o is equal to ¢;. A more detailed discussion of thermal
stresses in cylinders has been made by C. H. Lees.'* Charts for
rapid calculation of stresses from eqs. (240), (241) and (244) are
given by L. H. Barker.!®

In the case of a disc without a hole at the center and of a uni-
form thickness, which is assumed small in comparison with the
radius & of the disc, the radial and the tangential stresses are given
by the following expressions:

b r
.f,—_-aE(%,;fo mir—%ﬁ trdr), (m)
) S [
a¢=aE(—t+—ftrdr+—ftrdr)- (n)
bz 0 7"2 0

In each particular case when the temperature # is known as a certain
function of r, the integrals entering in these expressions can be
readily evaluated and the thermal stresses obtained.

Thermal stresses are of great practical importance, especially in
the case of large cylinders, such as steam turbine rotors, heavy
shafts or large turbine discs. In all these cases the heating or
cooling must be made gradual in order to reduce the temperature

14 See C. H. Lees, Proc. Roy. Soc., Ser. A, Vol. 101 (1922).
15 L. H. Barker, Engineering, Vol. 124 (1927), p. 443. The numerical

example given below is taken from this paper.
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gradient in a radial direction.’® Thermal stresses are also impor-
tant in Diesel engines.1”

Problems

1. Determine the thermal stresses in a cylinder having 22 = 3/8
., 26 = 1% in, Ea/(1 — p) = 615, if the inner temperature is

t; = — 1° C. and the outer temperature is zero.
Solution. From eqs. (242) and (243)

(0)r=a = (02)r—a = 420 lbs. per sq. in.,
(@)= = (62)rs = — 194 Ibs. per sq. in.
o, maximum, from eq. (240), occurs at » = 0.3 in. and is equal to

87 1bs. per sq. in. The distribution of the stresses over the thickness
of the wall is shown in Fig. 150.

P X %z
+ /6';
0 r
-
: EaNS
3
Fic. 150.

16 A discussion of thermal stresses in cylinders in which the tempera-
ture varies along the axis is given by A. Stodola, loc. cit., p. 253, Appendix.
See also G. Eichelberg, Forschungsarbeiten, nr. 220, 1923, and nr. 263.
For thermal stresses in discs, see H. Quednau, V. D. 1., Vol. 72, 1928,
p- 522. The same problem is discussed in “Theory of Elasticity,” p. 366,
1934.

17 See R. Zulzer, “Temperature Variation and Heat Stresses in Diesel
Engines,” Engineering, Vol. 121 (1926), p. 447; A. Nigel, “The Transfer
of Heat in Reciprocating Engines,” Engineering, Vol. 127 (1929), p. 282,
and W. Nusselt, V. D. L., Vol. 70 (1926), p. 468; J. N. Goodier, Journal
Appl. Mech., Vol. 4, p. 334, 1937.

CHAPTER VI

TORSION

49. Shafts of Non-Circular Cross Section.—In the first
part of our book (see p. 261, part I) the problem of torsion
of circular shafts was considered. Formulas for maximum
stress and for the angle of twist for rectangular
shafts also were given. There are several other 17\
shapes of cross section of a twisted shaft for which ~ , 4m lo i»
the problems of stress distribution and of the angle l
of twist are solved. In the following only some -,
final results, which may be of practical interest,
are given.

Fic. 151,

Elliptical Cross Section!—The maximum shearing stress takes
place at the ends of the minor axis, Fig. 151, and is

6M
1 Tmax = Iﬁght- (245)

_'[- The angle of twist per unit length is

MJI
/] 0= (246)

Fic. 152,

where I, = (w/64)(6h® + &°h) is the polar mo-
ment of inertia of the cross section (see appendix, Part I, p. 347),
and 4 = wbh/4 is area of the cross section.

Egquilateral Triangle—The maximum shearing stress occurs at
the middle of the sides (points 7 in Fig. 152) and can be calculated

from the equation

20M,
Tmax — b:; : ° (24‘7)

The angle of twist per unit length is
M,  46.2M,
_ _ ) 8
06GI, ~  #G (248)

! The solution of this problem and of the following is due to Saint
Venant, Mém. des Savans étrangers, Vol. 14, 1855. The derivation of

8

the given formulas can be found in “Theory of Elasticity,” see p. 234.

265
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Regular Hexagon>—For this case

_ M
Tmax = o 2174d’ (249)
M
T 0.13344%G’ (250)

whe}'e d is the diameter of the inscribed circle and 4 the cross
sectional area.

Regular Octagon3—For this case

— Mt

Tmax — m) (251)
__ M :
" 0.13044%G’ (252)

where A4 and 4 have the same meaning as in the previous case. .
Trapezoid.*—In the case of an isosceles trapezoid approximate
values for the maximum stress and the angle of twist are obtained
by replacing the trapezoid by an equivalent rectangle, which is ob-
tained as indicated by the dotted lines in Fig.
153. From the centroid C of the trapezoid are
drawn perpendiculars, BC and CD, to the lateral
sides, and then verticals are drawn through B
and D. Equations (155) and (156) given in Part
Fic. 153. I (see p. 270), if applied to the rectangular cross
section thus obtained, give approximate values
of 7max and 6 for the trapezoid in Fig. 153.

For any solid (non-tubular) shaft an approximate value
for the angle of twist is obtained by replacing the cross section
by an equivalent elliptical one of the same area £ and the same
polar moment of inertia /,. Then the approximate value for
6 1s given by formula (246).

50. Membrane Analogy.>—This analogy establishes cer-
tain relations between the deflection surface of a uniformly

2 See C. Weber, Die Lehre von der Drehurfgsfestigkeit, Berlin, 1921.
3 See C. Weber, ref. 2.

4 See C. Weber, ref. 2. }

8 This analogy was developed by L. Prandtl; see Phys. Zeitschr.,
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loaded membrane and the distribution of stresses in a twisted
bar. Imagine a homogeneous membrane with the same out-
line as that of the cross section of the torsional member sub-
jected to uniform tension at the edges and submitted to a
uniform lateral pressure. It can be shown that the differen-
tial equation of the deflection surface ¢ of this membrane has
the same form as the equation which determines the stress
distribution over the cross section of the twisted bar. If §
is the tensile force per unit length of the boundary line of the
membrane, p the lateral pressure per unit area, and 6 the angle
of twist per unit length of the bar, then the two above-
mentioned equations are identical if

2 _ 5. (a)

If this condition is fulfilled, the following relationships hold
between the surface of the membrane and the distribution of
shearing stresses in twist: (1) The tangent to a contour line at
any point of the deflected membrane gives the direction of the
shearing stress at the corresponding point in the cross section
of the twisted bar. (2) The maximum slope of the membrane
at any point is equal to the magnitude of the shearing stress at
the corresponding point in the twisted bar. (3) Twice the
volume included between the surface of the deflected mem-
brane and the plane of its outline is equal to the torque of the
twisted bar.

All these statements can be readily proved in the case of
a circular shaft. Let Fig. 154 represent the corresponding
circular membrane uniformly stretched by the forces § and
loaded by uniform pressure p acting upwards. Considering
a concentric portion mn of a radius 7 of the membrane, Fig.

1903, p. 758; Jahresberichte d. Deutsch. Math. Ver., Vol. 13 (19c4),
p. 31. For further development see the papers by A. A. Griffith and
G. I. Taylor, in Proc. Inst. Mech. Eng., 1917, p. 755, and in Technical
Report of the Advisory Committee for Aeronautics, Vol. 3 (1917-1918),
PD. 920, 938, 950. See also “Theory of Elasticity,” p. 239.

6 It is assumed that deflections are small.
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1544, we observe that the total pressure on that portion is
ar?p. This pressure is balanced by the tensile forces § uni-
formly distributed along a circle of the radius 7 and having
that direction tangent to the deflected membrane. Denoting
by w the deflections of the membrane, we obtain

wr’p = — 277§ %v
and
dw  pr
— =4 (%)

Substituting in this equation the value of p/§ given by the
formula (@), we obtain
dw

-7 = Gor. ()

On the right side of this equation we have the known expres-

sion for the torsional stress in a twisted circular shaft (see

equation (), p. 263, Part I). Hence the slope of the deflected

membrane gives us the required

magnitude of the torsional stress.

The maximum slope of the mem-

brane at each point is in the direc-

tion of the meridian; hence the

| | tox:sional stress in the shaft at each

point has that direction perpendic-

ular to the radius. This conclusion

again agrees with the result of the

(b) elementary theory of torsion. To

Fi. 154. determine the torque which pro-

duces the stresses given by the

equation (¢), let us calculate the volume included between the

deflected membrane, Fig. 1544, and the plane of the boundary

AB. The integration of equation (c) gives the deflection sur-
face of the membrane: \

ﬂ ""*<—G—’
d

[ B |‘9‘.lg.

=11
A i | @)
/-

Go

w = 'E—(az - r2_),
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and the required volume is
a 4
V= [ owrdro = 0T = ] G,
0 4 2

Comparing this with the usual formula for torque (see eq. 147,
Part I), we conclude that in the membrane analogy the double
volume gives the magnitude of the torque. Hence all three
statements made above regarding the analogy can be readily
proved in the case of a circular shaft.

In other cases the shape of the surface of the deflected
membrane is easily visualized for a given cross section of the
shaft; consequently qualitative conclusions are readily drawn
concerning the stress distribution in torsion. For instance,
with a rectangular cross section (Fig. 1554), the corresponding
surface of the deflected membrane is as represented by the
contour lines. The stress is inversely proportional to the
distance between these lines; hence it is larger where the lines
are closer to each other. The maximum stress occurs at
points m—m, where the slope of the membrane is largest. At
the corners a, &, ¢, d, where the surface of the membrane
coincides with the plane of the contour aécd, the slope of this
surface is zero; hence the shearing stress at these points is zero.

tettnt bttt

IFTREREER
o

Bposbdp ittt dttttis

NEERRXRE:

IXXZXRRL

(@ ®
FiG. 133.
Consider now the case of a narrow rectangular cross
section (Fig. 1554). The deflection surface of the uniformly
loaded membrane at some distance from the short sides of
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the rectangle can be considered cylindrical. With this as-
sumption, each strip mm of the surface behaves like a uni-
formly loaded cord and its maximum deflection is given by
equation:

[2
o =% @
or, using eq. (a),
‘-2
§ = " Go. )

The maximum stress is equal to the slope at points m—m.
This slope is 45/c, for a parabolic curve; hence

40 ,
Tmax — ? = CG@. (d)

The corresponding torque is twice the volume enclosed by the
membrane. Neglecting the effect of the short sides of the
rectangle on the deflection of the membrane and calculating
the volume as for a parabolic cylinder of length &, we find

M, = 2-%655 = %éo”Go. (e)
G from which
T
M,
f = -t .
7] T 360G (253)
b _f Substituting in equation (d), we obtain
1 M
— ¢ .
~ i Tmax = 173 (254)
Fic. 156. These formulas coincide with formulas (155)

and (156) given in Part I (see p. 270) if the
rectangle i1s assumed to be a very narrow one.

If instead of a narrow rectangle we have a narrow trapezoid,
as shown in Fig. 156, an approximate solution is obtained by
assuming that the surface of the deflected membrane at a sufficient
distance from the narrow sides is a conical one. The double vol-
ume corresponding to an element mm of the cross section is obtained
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as in equation (¢) above and is equal to

%Gﬂﬁdx, . f)
where ¢ is the variable width of the cross section given by the
equation:

e — (1

5 X. (g)

c=c1+

Substituting this in expression (f) and integrating the result, we
obtain the torque:

‘ b bGo
M, = f 1 GOctdx = — (c1 + ¢2)(c® + ¢2Y).
0o 3 12

The angle of twist then is

M
g = : . (255)

%b(é& + Cz)(€12 + 6‘22)G

When ¢; = ¢3 = ¢, this formula coincides with formula (253) ob-
tained for the narrow rectangle.

In more complicated cases in which the form of the deflec-
tion surface of the membrane cannot easily be obtained
analytically, this surface can be investigated experimentally
by using soap film for the uniformly stretched membrane
and measuring the slope of its surface by optical methods.
For this purpose the apparatus shown in Fig. 157 has been
used.” The aluminum plate with two holes—one circular
and the other of the required shape—is clamped between the
two halves of the cast-iron box 4. The lower part of the box,
having the form of a shallow tray, is supported on leveling
screws. By pumping air into this portion of the box, the
deflection of soap films covering the above mentioned holes
is produced. The mapping of contour lines of the soap film
surfaces is done by using the screw B passing through a hole
in a sheet of plate glass sufficiently large to cover the box in
any possible position. The lower end of the screw carries a

" See the paper by G. I. Taylor and A. A. Griffith, loc. cit., p. 267.
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hard steel point, whose distance from the glass plate is ad-
justable by the screw. The point is made to approach the
film by moving the glass plate until the distortion of the image
in the film shows that contact has occurred. The record is

Fia, 157,

made on a sheet of paper attached to the board E, which can
swing about a horizontal axis at the same height as the steel
recording point D. To mark any position of the screw it is
only necessary to prick a dot on the paper by swinging it down
on the recording point. After the point has been made to
touch the film at a number of places, the dots recorded on the
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paper are used for drawing a contour line. By adjusting the
screw B, this can be repeated for as many contour lines as
may be required. When these lines have been mapped, the
volume and the corresponding torque can be obtained by
summation. The slopes and the corresponding stresses are
obtained by measuring the distances between neighboring
contour lines. A better accuracy for measuring slopes can
be obtained by projecting a beam of light onto the surface of
the film and measuring the angle of the reflected ray. To
establish the relation between the measured slope and the
stress, the films covering the two holes mentioned before are
compared at the same air pressure. Since both films have
the same ratio p/S, the corresponding two shafts have the
same values of G# (see equation (4)). Hence, by measuring
the slopes of the two soap films we can compare the stresses
in the shaft of the given cross section with those in a circular
shaft of known diameter under the condition that they have
the same angle of twist § per unit length and the same shearing
modulus G. The corresponding ratio # of the torques is
determined by the ratio of the volumes between the soap
films and the plane of the plate. This ratio gives, evidently,
the ratio of the torsional rigidities of the two shafts. Regard-
ing stresses for a circular shaft,
the stress can be readily calcu-
lated at any point for any given
torque M, The stress 7, pro-
duced at any point of the non-
circular shaft by the torque #»M,,
is obtained by multiplying the
stress 7o in a chosen point of
the circular shaft by the experi-
mentally determined ratio of
the maximum slopes at the
two points under consideration.
Figure 158 represents an ex-
ample of contour lines obtained for a portion of the I-beam

(wooden wing spar of an airplane). From the close grouping
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of the contour lines at the fillets of the reéntrant corners
and at the middle of the upper face, it follows that the
shearing stresses are high at these places. The projecting
parts of the flange are very lightly stressed. The maximum
stress in the middle portion of the web is practically constant
along the side of the web and equal to that in a narrow
rectangle for the same angle of twist.

)
)Y
—
)
A\

s
o

s B e

& @)

(a)

Fic. 159.

51. Torsion of Rolled Profile Sections.—Equations (253)
and (254), derived for a narrow rectangular cross section, can
be used also for approximate solutions in other cases in which
the width of the cross section is small. For instance, in the
case of the cross sections of equal thickness shown in Fig.
159 () and (4) the angle of twist is obtained from equation
(253) by putting in this equation for 4 the developed length
of the center line, namely, 4 = ¢r in the case of section repre-
sented in Fig. 159 (2) and 4 = 24 — ¢ in the case represented
in Fig. 159 (4). The maximum stress for the first of these
two sections will be obtained from equation (254). For the
angle section (Fig. 159, 4) the maximum stress is at the re-
entrant corner. This maximum stress is obtained by multi-

plying the stress given by equation (254) by a factor larger

than unity; the magnitude of this factor will be discussed later
(see article 6o, p. 329).

These conclusions - follow from the membrane analogy
discussed in the preceding article. The reader may have
anticipated from that discussion that if the thickness ¢ of the
cross section shown in Fig. 159 (4) is small in comparison with
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the radius 7, the parabolic curve shown in Fig. 155 (4) and
defining the deflection of the film can still be used with a suffi-
cient accuracy.® In such a case the maximum slope of the
film and the corresponding maximum stress for the cross
section in Fig. 159 (4) will be approximately the same as for
a narrow rectangle.

In the case of a channel section (Fig. 159, ¢) the angle of
twist is obtained by subdividing the cross section into the

- three rectangles shown in the figure and substituting, in equa-

tion (253), &1c1® + 2b2cs® instead of &¢®.  Then

- 3M. )
. 0 = (516‘13 + 2&26’23)(; (256)

To calculate the stress, which occurs at the middle of the
sides &, of the sections of flanges, it is only necessary, as seen
from equations (253) and (254), to multiply 6 by ¢,G; then

_ 3M; - ¢ .
T 51613 -+ 2&2[23 (257)

The same approximate equations can be used also in the case
of the twist of I beams? with a constant thickness of the
flanges (Fig. 160, a).

In the case of an I beam with sloping flanges, Fig. 160 (4),
we denote by ¢, the thickness of the flange at the edges
and by ¢; the largest thickness of the flange defined by the
equation:

¢z = ¢2 + 365 tan .

Using, then, equation (2¢5) for flanges, we conclude that the
angle of twist 6 is obtained from equation (256) by substituting

8 The deflection surface here is no longer cylindrical, but if ¢ is small
in comparison with 7, the curvature of the film in the tangential direction
is small in comparison with that in the radial direction and can be
neglected.

? The maximum stress occurs at the reentrant corners and will be
discussed later (see art. 60, p. 329).
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in it the quantity
i(h + 6'3)(6'22 -+ 532)
instead of ¢’
The maximum stress usually occurs at the fillets and is of
a localized character. Its magnitude will be discussed in
art. 6o. Considerable stress may also occur at the points ,
Fig. 160 (#), at the middle of the outer surfaces of the flanges.

b
, : 'i_L b K3
o <,
. i
I

T
b, bl
T

ey
(a) (b)
Fic. 160.

This latter stress is obtained, as before, by multiplying the
angle of twist 8 by ¢;G, where ¢; is the maximum thickness of
the flange.

It should be noted that in the derivation of equation (256)
the formula for an infinitely narrow rectangle was used, and
that the action of the narrow sides of the rectangle in Fig. 155
on the magnitude of the volume bounded by the soap film
was entirely neglected. Owing to the presence of the narrow
sides, the volume will evidently be somewhat diminished.
At the same time at the corners of the channel section, Fig.
159 (), where two rectangles come together, a larger deflection
of the soap film should be expected than for a single rectangle,
and this added deflection will cause some increase in the
volume. Thus two factors, which were neglected in the
derivation of equation (256), are acting in opposite directions
and to some extent neutralize each other, so that equation
(256) is sufficiently accurate—especially for thin-walled
sections.®

19 The experiments with torsion of thin-walled I beams were made
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For the cases of torsion of rolled I beams and channels in
which the thickness of the flanges is not small and is varying
along the width of the flange, a more elaborate formula for
torsional rigidity has been developed, which is in a very
satisfactory agreement with experiments.!!

d,
Problems %
1. Find the ratio of the angles of ,
twist of a seamless and of a split circular
thin tube of equal geometrical dimen- 5 >

sions (Fig. 161) under the action of equal
torques. F1c. 161.

Solution. By using equations (151), Part I, and (253) we
obtain for a seamless and for a split tube respectively

32Mt
8 = ;
4 do* ’
wd I — E G
01 = 3Mt

Gaen
2 2
The ratio of the angles of twist is

For very thin tubes (42 4 4?) ~ 24” and the ratio of angles of

twist is

4(2Y

3\d
by the writer, Bulletin of the Polytechnical Institute, St. Petersburg,
Vol. ¢, 1906. _They showed a satisfactory agreement with equation (256).
A very extensive s.eries of torsional tests of rolled beams were made by
A. F.oppl,‘Sltz. Berichte d. Bayer. Akad. d. Wiss., 1921, p. 295, and ““ Der
Bauingenieur,” Vol. 3, 1922, p. 42. Some correction factors for equation
(256) were sugge.sted on a basis of these experiments.

" The experiments on a basis of which that formula was derived

were made by Inge Lyse and B. G. Johnston, Lehigh University Pub-
lication, Vol. g, 1935.




278 STRENGTH OF MATERIALS

2. Determine the angle of twist per inch of a channel (Fig.
159, ¢) if M; = 20,0001bs. ins., 4y = 101in., 6; = 3.51in.,¢; = 0.4 in.,
¢z = 0.61in.,, G = 12 X 10° Ibs., per sq. in.

Solution.
3 X 20,000

0= (1o X 0.4 4+ 7 X 0.6%)12 X 10°

= 0.00233 radians per in.

3. Determine the ratio of the maximum shearing stresses of the
tubes discussed in problem 1 if the torques are equal for both tubes.

4. Determine the torsional rigidity C for the I beam considered
on p. 274 if the sloping of the flanges is considered as explained
on p. 276.

52. Torsion of Thin Tubular Members.—In discussing
the torsion of thin tubular members the membrane analogy
again can be used to advantage.’? In this case the outer and
inner boundaries of the cross section are to be located in
different horizontal planes with the membrane connecting the
boundaries, as at mn in Fig. 162. If the thickness of the tube
is small, the curvature of the membrane may be neglected,
Le., the lines mn may be considered
straight. The slope of the membrane
surface is then constant over the thick-
ness of the wall and is equal to §/4,
where § is the difference in the levels of
the two boundaries and % is the thickness
of the tube, which may vary along the
circumference of the cross section. The
membrane analogy indicates that in this case the shearing
stresses are uniformly distributed over the thickness of the
wall and are given by the slope

Fic. 162.

T=%' (a-)

The stress along the circumference is therefore inversely
proportional to the thickness of the wall. The volume
included between the surfaces mm and sz is calculated by

2 Torsion of tubular members was discussed by R. Bredt, V. D. I,
Vol. 40, p. 815, 1896. See also T. Prescott, Phil. Mag., Vol. 60, 1920.
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using the center line of the ring cross section, indicated by the
dotted curve in the figure. If £ is the area bounded by this
line, the volume mmnn is 48 and, from the membrane analogy,
we obtain

- M, = 24s. (&)
From eqgs. (2) and (#) we then find
M,
T = m . (258)

This equation may be used in calculating the stresses in
tubular members under torsion if the thickness of the wall is
small, variation in thickness is not abrupt, and there are no
reéntrant corners.

The angle of twist 6 per unit length of a tubular member
may be calculated by considering the strain energy of torsion.
The strain energy per unit length of the tubular member is

* 2hds
U= fo 2G ’
where s is the length of the center line of the ring cross section
shown in Fig. 162 by the dotted line. Substituting expression

(258) for 7 in this equation and equating the strain energy to
the work done by the torque, we obtain

M2 (sds 1
8420]0 % =2 M (e)
from which
_ Mt s d.f _ I s
6 — 4726[) o —MGfO rds. (229)

In the case of a tube of uniform thickness = is constant and
eq. 259 becomes
75

0=2/{G'

(260)

From this equation the angle of twist can be readily calculated
as soon as the dimensions of the cross section are given, and
7 18 determined by using formula (258).



280 STRENGTH OF MATERIALS

Equation (259), derived from a consideration of the strain
energy of a twisted tubular member, can be obtained also
from the membrane analogy. Considering the equilibrium
of the plane z#-# in Fig. 162, we conclude that the pressure
pA B acting on this plane is balanced by the tensile forces §
acting in the membrane. The tensile force 845, acting on an
element ds of the boundary, has a small slope equal to 7;
~ hence the vertical component of this force is 78ds, and the
condition of equilibrium of the plane #-7 is

pd = [ rSis. ()
0

Observing that the tension § in the membrane is constant and
that p/S = 2G0 (see eq. 4, art. 50), we find from equation (d):

RN ——
0

Solving this equation for 6, we obtain formula (259), given
above, for the angle of twist.

Sometimes the torsional stresses in a tubular member with
intermediate walls, as in Fig. 163 (), must be calculated. The
boundary of the cross section in this
case is formed by the three closed curves.
In applying the membrane analogy these
curves are to be located in three dif-
ferent horizontal planes, nn, pp, and
mm, as shown in Fig. 163 (4). The
soap film connecting these three curves
forms a narrow surface, the cross sec-
tions of which are shown by the lines
mn, np, and pm. Assuming again that
the wall thicknesses—#1, 42, and As—are
small, and neglecting the curvature of
the membrane in the directions normal to the boundaries, we con-
sider that the lines mn, np, and pm are straight. In such a case

131n the case of thin-walled members the area 4 bounded by the
dotted line can be considered instead of the area of the plane n-n.
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the slopes of the membrane, giving the stresses in the wall of the
tubular member, are:

_ & 2

Tl'—'}“) Tz=*;l—2, (g)
_ 61 - 52 _ }L11'1 - }lsz

T3 = ;13 = /13 . (f)

The magnitude of the torque producing these stresses is obtained
by doubling the volume of the space mnnppm in Fig. 163 (4). If
we denote the areas bounded by the dotted lines in Fig. 163 (a)
by A1 and 4. this torque is

M, = 1(4151 + As8s), €3]
or, by using equations (¢), we obtain
M; = 24 k11 + 2Ashers. ()

Further equations for the solution of the problem are obtained by
applying equation (259) to the two closed curves indicated by the
dotted lines in Fig. 163 (4). Assuming that the portion BCD of the
wall has a constant thickness 4, and that the portions DEB and
DB have the constant thicknesses Ay and 4;, respectively, equation
(259) becomes

7151 + 7a53 = 2G0.41, (1)
ToSg — T3Sg = 26042. (J)

Here s1, 55, and s; are the lengths measured along the dotted lines
BCD, DEB and DB, respectively. In applying the integral (259)
to the closed curves BCDB and DEBD, we are passing the portion
DB of the length s; in the two opposite directions. Hence the
second terms on the left sides of equations (4) and () appear with
opposite signs. The angle of twist 6 on the right side of the equa-
tions (7) and (j) is evidently the same as the angle of twist of the
entire tubular member. The four equations (f), (&), () and ()
contain the four unknown i, 72, 73 and 8, which can be easily
calculated. Eliminating §, we obtain for shearing stresses the
following formulas:

_ hasedv + hoss( Ay + Ao)
=M, -
VS M S ede ¥ habei A2+ I+ AT ©
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. 123511{2 + 111!3(1{1 + 142) (1)
2[/11}13.\‘2/{12 + ;lzha.f11{22 + /11}1253(/{1 + /{2)2] ’

T = AMt

}115241 - 1125142

T3 =M, - 2[/11/1352/712 + hohssids? + }11/1253(41 + d2>2] ‘ (m)

If the wall DB of the cross section in Fig. 163 (2) is the plane of
symmetry of the cross section we have

S1 = S, h = /22, and /fl = /fz,

and equation (m) gives 73 = o. Thus in this case the torque is
taken entirely by the outer wall of the tube, and the intermediate
web remains unstressed.!*

To obtain the angle of twist 8 for the tubular member, we have
to substitute the calculated values of stresses in equations (7) or ().
Thus the torsional problem for a tubular member, such as is shown
in Fig. 163, can be readily solved with a sufficient accuracy provided
the wall thickness is small in comparison with the general dimen-
sions of the cross section.

53. Torsion of Thin-Walled Members in which Some Cross
Sections are Prevented from Warping.—In our previous dis-
cussion of the twist of I beams and channels (p. 275) it was
assumed that the torque was applied at the ends of the bar
and that all cross sections were completely free to warp.
There are cases, however, where the conditions are such as to
cause one or more cross sections to remain plane and the
question arises as to how such prevention of warping affects
the angle of twist and the distribution of stresses. For bars of
solid cross sections, such as ellipses or rectangles such con-
straint produces only a negligible effect on the angle of twist *
if the cross-sectional dimensions are small in comparison
with the length of the bar. With I beams, channels and other
thin-walled members the prevention of warping of the cross
sections during twist is accompanied by a bending of the

14 The small stresses corresponding to the change in slope of the
membrane across the thickness of the web are neglected in this derivation.
X . . . A

15 For the discussion of this question see “Theory of Elasticity,

p. 273.
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flanges and may have a considerable effect on the angle of
twist, depending on the rigidity of the flanges. A simple case
of this is an I beam which is twisted by a couple applied at
the middle and supported ** at the ends (Fig. 164). From

/4!——2 - Z——7’
|
] —>
”~~ - P
Fic. 164.

symmetry, the cross section m#z must remain plane during
twist and the consequent rotation of this cross section with
respect to the end cross sections is accompanied by bending
of the flanges. The end torque is balanced at any cross

//% : — v
/‘1 F4 / Mt ‘(‘
x \< 2
2 (b}
% = v
Yy @) gy
z——%
x
<) v
Fia. 1635.

section partially by shearing stresses due to the twisting and
partially by shearing stresses due to the bending of the
.ﬂanges.” Figure 165 (4) represents half of the beam shown
in Fig. 164. The middle section m#z remains plane due to

18 Supports are such that the ends of the beam can not rotate about
a longitudinal axis but are free to warp.

7 See paper by the author, Bull. Polyt. Inst. S. Petersburg, 1905—
1906, and Ztschr. f. Math. u. Phys., Vol. 58, 1910, p. 361. See also
K. Huber, Dissertation, Miinchen, 1922, and C. Weber, Ztschr. f. angew.
Math. u. Mech., Vol. 6, 1926, p. 85. Further discussion of the problem
for various shapes of thin-walled members is given by A. Ostenfeld,
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symmetry and we may consider it as built in, with the torque
applied at the other end of the beam. Let ¢ be the angle of
twist for any cross section of the beam. Then do/dx = 6 1s
the angle of twist per unit length of the beam. That part of
the torque M, which is balanced by the shearing stresses
due to torsion is determined from the equation:

M, = (s, (a)

in which C is the Torsional Rigidity of the bar (see p. 270,
Part I). In order to determine the portion M,” of the torque
which is balanced by the shearing forces in the flanges due to
bending, we must consider the bending of a flange (Fig. 165, ¢).
Denoting by 4 the distance between the centroids of the flanges
(Fig. 165, 4), the deflection at any cross section of the upper
flange is
ho
BE

) ®)

and by differentiation we obtain:

Pz _hdy ko
d ~ 2de 2de® (©)

Now, if we denote by D the flexural rigidity of one flange
in the plane xz and observe that z is positive as shown (Fig.
163, ¢), the expression for the shearing force in the flange due
to bending becomes

aM d*s  Dh d%
V=ax P& =7 aw @
Considering the positive direction of 7 (as shown in Fig.
165, ¢), we therefore have

' Di? d%
M, =—Vh=—TW (e)

Laboratorium f. Baustatik d. techn. Hochschule, Kopenhagen, Mit-
teilung Nr. 6, 1931. The case of rectangular tubular members was dis-
cussed by H. Reissner, Zeitschr. f. Flugtechnik u. Motorluftschiffahit,
Vol. 17, 1926, p. 385 and Vol. 18, 1927, p. 153.
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and the total torque is

D &%

MQ=M¢’+Mg,I=Cg——‘2_'dx2‘

(261)

In our case, M, is constant along the length / of the beam,
and the general solution of equation (261) is

[ —x
M, cosh( p )

0="0 1 ———— "> %)
cosh(—) J
a
in which
Dh?
a = ®

Since the flexural rigidity D and torsional rigidity C are both
measured in the same units (Ibs. in.2), equation (g) shows that
a has the dimension of length and depends upon the propor-
tions of the beam.

If we know the portions M.’ and M,” of the total torque
M, may be calculated for any cross section from equations
(@) and (¢). For the built-in section ¥ = o, § = o, and we
obtain, from (4), M, = o. Hence at this point the whole
torque is balanced by the moment of the shearing forces due
to bending in the flanges, and we have ¥ = — M,/k. For the
other end ¥ = /, and from equation (f)

Mt PR .
' ?(I - coshl(zé)) ?

If the length of the beam is large in comparison with the cross
sectional dimensions, / is large in comparison with 4, and the
second term in the parenthesis of equation (4) becomes neg-
ligible; hence 6 approaches the value M,/C.

Equation (d) gives the shearing force in the flanges, and
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from this the bending moment in the flange is
Dh df .
M = 2 dx’ ()

or, substituting equation (f) for 8, and using notation (g),

sinh(/—x) sinh(l—x)

_ Dh M, a a a )

M= 7y —aM— 7 O
cosh (;Z) cosh (;)

For the bending moment at the built-in end we find

!
Mawx = 5 M, tanh (;) : (k)

When / is several times larger than 4, tanh (//2) approaches
unity, and we can use

_ ﬂM¢
Mmax - —}l—’ (l)

1e., the maximum bending moment in the flange is the same
as that in a cantilever of length 4, loaded at the end by a
force M,/h. For a very short beam / is small in comparison
with a, tanh (//a) approaches //a, and we have, from equa-
tion (&),

M/
7 (m)

Mmax =

Take, as an example, a 12" standard I beam with a cross-sec-
tional area of 9.26 sq. in.  Replacing the cross section by the equiva-
lent cross section shown in Fig. 166 consisting of three rectangles
having the same cross sectional areas of flanges and web ™ and using
equation (256), we find

C = 1/3(10.91 X 0.358* + 2 X § X 0.5445)G = 0.692G.  (n)

The magnitude of D is obtained !* by taking half of the moment of

18 A somewhat better approximation for-C can be obtained by taking
account of sloping of the flanges as explained on p. 276.

19 The moment of inertia of the cross section of the web is neglected
here.

/475><2 T
4= h\/ 0.692 X 2 299k (0)
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inertia of the standard cross section about the vertical principal
axis and multiplying it by E. Then D= (9.5/2) - E = 4.75E, and
we obtain from equation (g) .

-~ 5 sl

Hence if the beam is loaded as in Fig. 164, /2° -~ [~035"
the maximum bending moment in the flange, N
from equation (/), is approximately three .
times the torque M, provided the beam is 3 [ losa
long enough to make tanh (//a) approach 1. Fro. 166,

For instance, for //a = 2,/ approaches 64, D
tanh (//a) = o.96, and the error of the above calculation 1s 4
per cent.

To calculate the angle of twist ¢ we use equation (f).
Recalling that 8 = dg/dx, integrating equation (f) and ad-
justing the constant of integration to make ¢ = o whenx = o,
we obtain
[ —x

a sinh (

a
cosh (é)
a

Substituting # = / in this equation, the angle of twist at the

end is
(@)o=t = % (1 — a tanh (i)) : (9)

The second term in the parenthesis represents the effect of the
bending of the flanges on the angle of twist. For long beams
tanh (//a) =~ 1 and equation (g) becomes

(@)emt = 5t (U = a). )

_ M,
$=7C

x +

)——atanh<g> . (»)

The effect of the bending of the flanges on the angle of twist
is therefore equivalent to diminishing the length / by the
quantity 4.

The method developed above for a constant torque may
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also be used when the torque varies along the length of the
beam. It is only necessary to substitute in equation (261) in
place of M, its expression as a function of x.

b
. i [
3 M =t

Z " ol JL T 4

-3 h \ * L.\jgl
%/7 1 (@) l (b)

5% l

F1c. 167.

In the preceding discussion of torsion of an I beam, Fig.
165, it was concluded from symmetry that its cross sections
are rotating with respect to the center axis of the beam.
Hence only bending of the flanges has to be considered. Itis
seen also that this bending does not interfere with the simple
torsion of the web since at the points of junction of the web
and flanges the bending stresses in the flanges vanish. In the
case of non-symmetrical cross sections or cross sections with
only one axis of symmetry the problem becomes more compli-
cated since not only bending of flanges but also that of the
web will be produced during torsion. As an example of such
a kind, let us consider the case of torsion of a channel, Fig. 167.
It was already shown (see p. 51) that in this case each cross
section rotates with respect to the center of twist O which is on
the horizontal axis of symmetry of the cross section at a
distance (see p. §3)

e = b*hu[4l, ()

from the middle plane of the web. From thisit follows that the
deflections of the flanges and of the web in their respective
planes are

A
z = =%

2 (4 and -~ Yy = ¢y, (t)

where ¢, as before, is the small angle of twist. It is assumed
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that the thickness of the flanges and of the web are small so
that the stresses due to bending of these parts in the directions
perpendicular to their surfaces can be neglected. In such a

——— j?
[ =

1
t
£,

z h P

’ X

et

{ — - e P i

Fic. 168.

case the action between the upper flange and the web is repre-
sented only by shearing stresses (7s.)o shown in Fig. 168.
These stresses produce bending and compression of the flange.
If S is the magnitude of the compressive force in the flange at
a distance » from the built-in end, we have

1A
Hredo = — ‘fl—i- and S =1t f (22 odv.

The magnitude of the force § is now determined from the
condition that the strain e, in a longitudinal direction at the
junction of the web and the flange is the same for both these
parts. Calculating the curvatures of the deflection curves
from the expressions (), we find that this condition is repre-
sented by the equation

T a2de 2 BE’ ()

from which, using expression (5), and using notation I,
= 1A [12 + bth?[2, we obtain

_ Ebnm &
S-———4—SIZ . dxz. (0)
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Having this expression for § we can readily calculate the
shearing stresses in the web and the flanges and also the por-
tion M, of the torque balanced by these stresses. Let us
begin with the shearing stresses in the web. Taking two
adjacent cross sections mn and mym,, Fig. 169 (a), and con-

e T 48

h

S

nl-—dx——n @) (b)
F1e. 169.

sidering in the usual way the equilibrium of the shaded ele-
ment, we obtain the equation

Taghrdx — "S o dx +dM [24

=0

in which Q is the moment with respect to z axis of the shaded
portion of the cross section of the web, Fig. 169 (4), I.
= #14%/12 1s the moment of inertia of the cross section of the
web with respect to z axis and M is the bending moment in
the web taken positive if producing tension at the upper edge
and equal to

M = EI, e‘fl“j = Sh.

The expression for the stresses 7., then becomes

A (),

T T hde\' T I/
Observing that the variation of Q along the depth of the cross
section follows the parabolic law, we find that the distribution

of 7., is such as given by the shaded area in Fig. 169 (¢) and
that the resultant shearing force in the web vanishes. This
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latter conclusion should be anticipated, since the shearing
forces in the web and in the two flanges must balance the
portion M, of the torque and this is possible only if the
shearing force in the web vanishes and the shearing forces in
the two flanges form a couple.

Z|l m m,
| \ :
tredc| &
4 x
nL—dx——In. (@) (b)

Fie. 170.

In calculating shearing stresses 7., in the flange, Fig. 170
(@), we observe that at a cross section m#n there are acting a
compressive force § and a bending moment *

d’¢ }z
- = w
M=D_5-," (w)
Considering the equilibrium of the shaded element between
the two adjacent cross sections we then obtain

b aM , O
+ dx d _[1 ©

where Q, and I, are to be calculated for the flange in the same
manner as Q and 1./ for the web. Substituting for M its
expression (w) we obtain

1dSb —z E d¢ hQi

Tez = t dx b tde 2

tre.dx + % dx -

The two terms on the right-hand side of this equation are
represented in Fig. 170 (4) by the shaded areas of the triangle
and of the parabolic segment respectively. The sum of these
two areas multiplied by ¢ gives the total shearing force in the

20 D = Et#*/12 denotes, as before, the flexural rigidity of the flange

~in its plane,
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flange which 1s 2
bdS b &

Ve dm T E
or substituting for § its expression (v) and setting 6 = do/dx
we obtain
_ Ebh LA\ d%
y =R 1) 2 )

Hence the torque balanced by the shearing forces in the
flanges is

2
M¢H="'V=—P‘:l—‘(1+

hA\ d%
41 P )

This expression, instead of the expression (¢) obtained for the
I beam, should be used in calculating the angle of twist of the
channel shown in Fig. 167. Hence all the conclusions ob-
tained for the I beam can be used also for the channel if the
quantity 4? given by expression (g) is replaced by the quantity

Dh? HA
“= T(I + 412)'

The method used in discussing torsion of a symmetrical
channel, Fig. 167, can be applied also in the more general
case of a non-symmetrical channel section, Fig. 171. We
begin with determination of the center of twist O. Assuming
that the channel is built in at one end and loaded at the other
end in such a way that the bending without twist occurs in

the plane of the web, we find in the usual

R l‘b:* t, manner (see p. §3) the shearing forces Ry,
' R . . .

==y R, and 7 acting in the flanges and in the

t..l‘ h web of the channel. The resultant of

c , these forces must pass through the center

0 ts of twist O (see art. 8). Another line pass-

Tp "R, ing through the same point is obtained, if

Vily ™ we assume that the channel is bent in the

Fie. 171. horizontal plane and calculate again the

2t The positive direction for » is as shown in Fig. 165 (¢).
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three corresponding shearing forces in the flanges and in the
web. The point of intersection of the resultant of these
latter forces and the previously determined resultant of the
forces Ry, R; and 7 is the required center of twist O of the un-
symmetrical cross section. Having this center and proceed-
ing as before (see egs. (£)), we express the deflection curves
of the flanges and of the web by the angle of twist ¢. The
tension compression forces §1 and §» in the flanges are now
determined from the conditions that at the junctions the
longitudinal strain e, is the same for the web as for the ad-
jacent flange. When the forces §1 and §; are calculated, the
distribution of shearing stresses can be found as in the above
discussed case of a symmetrical channel, and it can be shown 2
that the shearing force in the web vanishes and the shearing
forces R in the two flanges give a couple balancing the portion
M, of the torque.

Problems

I. A cantilever of a]_section, Fig.
172, built in at one end is twisted by
a couple M, applied at the other end.
Find the angle of twist and the maxi-
mum bending moment in the flanges.

Solution. 1In this case the center
of twist coincides with the centroid C
of the cross section. There will be no
bending of the web. The forces § are
identical in this case for both flanges and the distribution of shear-
ing stresses is such as shown in Fig. 172 (4). The shearing force in
the web vanishes and the equal and opposite shearing forces 7 in
the flanges equal

Fic. 172.

EGhe (34 )@
12 2bt 4+ hty ] dx?
form a couple so that
" — Ph= — D _:W_) &
M= =Th=— T 2+ bt ) A

2 The calculations are given in the paper by A. Ostenfeld, loc. cit.,

p. 283.



294 STRENGTH OF MATERIALS
where D is the flexural rigidity of one flange. The angle of twist

and the maximum bending moment in the flanges are calculated
from eqs. (k) and (/) in which, for this case,

2_%(2 _3k
=7 Tt

2. Solve the preceding problem assuming that

"-_’l the cross section is as shown in Fig. 173.
Tr_: ] Answer. The shearing forces in the flanges
£

T

d ] are
nl _ Lo
: V= Dd%8
| y&  where
_ El‘lbl3 d bZSt2
l——b.-l b= h—d~ bty
Fre. 173. The torque M,” taken by the bending of flanges is
1 dS(p
M‘ = - Ddll 'd_xs' ¢

The value of 4 to be substituted in egs. (k) and (/) is obtained from
the equation

Dd?
2 — — ., I
c A T
3. Solve the problem 1 for the cross )\ >é l

sections shown in Fig. 174. o 5 =
Answer. In both these cases the @ k)

center of twist O is at the junction of Fie. 174.

the flanges. Rotation with respect to

this point does not produce any bending of flanges in their planes

and the entire torque is transmitted by the torsional stresses alone.

54. Torsional Buckling of Thin-Walled Compression Mem-
bers.—From the discussion of art. §1 it may be concluded that
the torsional rigidity C of thin-walled open sections decreases
as the cube of the wall thickness while the flexural rigidities
are decreasing in a smaller proportion. Hence a thin-walled
member is more flexible in torsion than in flexure. If such
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a member is submitted to the action of an axial compression

a torsional buckling may occur # at a smaller load than the

Euler load discussed in art. 35. The ap-

proximate magnitude of the load at which x| P

this torsional buckling occurs may be read- P

ily obtained by using in each particular case

an equation, equivalent to equation (261) —— i

of the preceding article, defining the tor- l

sion of a thin-walled member one of the

cross sections of which is prevented from I
|

warping. As an example let us consider 1
here a column of a channel cross section,
built-in at the bottom and centrally loaded
at the top (Fig. 175, ). If the column (@)
buckles sidewise as indicated in the figure
by the dotted .lines,.the vertical compres- Z[\—ij %
sive force P gives, in each cross section, ——tléd—"+ y
a component Pdy/dx acting in the plane i o —~¢
of the cross section and passing through Fia. 175, @)
its centroid. The action of this force

can be replaced by the bending action of an equal force passing
through the shear center O, Fig. 175 (), and the torque

T
I
|
|
|

M, = CPZ% = C2P£% = ¢*P§ (a)
in which ¢ denotes the distance of the shear center O from the
centroid of the cross section and ¢ is the angle of twist. If
the compressive force P is several times smaller than the Euler
load for the buckling of the column in the xy plane the above
mentioned bending action may be neglected and only the

% The torsional buckling was discussed by H. Wagner, Technische
Hochschule, Danzig, the 25th Anniversary Publication, 1904-1929. See
also H. Wagner and W. Pretschner, Luftfahrtforschung, Vol. 11, 1934,
p-174; and R. Kappus, Luftfahrtforschung, Vol. 14,1937, p. 444. [English
Translation of the later paper see in Tech. Mem. No. 851, 1938, Nat.
Adv. Com. Aern. Regarding experiments with torsional buckling see

paper by A. S. Niles, Tech. Notes No. 733, 1939, Nat. Adv. Com. Aern.
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torsion considered.” In such a case equation (261) can be used.
Substituting for M, expression (@) and for M, expression (y)
derived for a channel section, we obtain

2 3 2
2P = C —%—(1 +t1h)d0

41, ) dx?
or
2,
Z,—Z + k0 =0 )
where
2P —-C
k2= %( t1/z3) . (c)
2 I+ 41,

Since the lower end of the column is built in and there is no
bending moment acting on the flanges at the top, the end
conditions for 6 are

(8)2—0 = 0, (%)M = o. @)

To satisfy the first of these conditions we take the solution of
the equation (4) in the following form:

0 = A sin kx. (e)

This solution will satisfy also the second of the conditions (4)
if we put

™ ™
k! = E, k = ;/ . (f)
Substituting for k2 its expression (¢) we obtain
= D hid cC
Pcr_4l2—?6.?(1+4[z)+c—2 (262)

The first term on the right side of this equation is due to local
bending resistance at the built-in end, and the second, inde-
pendent of the length /, is due to torsional resistance.

If instead of a channel we have a thin-walled open section

2 If this force is approaching the Euler load a more elaborate analysis
is required as shown by R, Kappus, footnote 23.
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of some other shape we have only properly to change the
first member in expression (262) as explained in the preceding
article. In a particular case of a L section or of an angle, Fig.
174, the center of twist O coincides with the point of junction
of flanges, and there will be no bending of flanges in their
respective planes during torsion. Hence the first term in the
expression (262) vanishes, and we obtain

C

6.2

P, = (263)

It should be noted that in the discussion of the preceding
article the thickness of the flanges was assumed as very small
and the flexural rigidity of the flanges in the direction perpen-
dicular to the flange was neglected. If that rigidity is taken
into consideration, an additional term on the right side of the
expression (263) appears, the magnitude of which for an angle
with equal legs is 7220 E[12(1 — p?)4/% This is the sum of
the Euler loads calculated for the two flanges. It rapidly
decreases as the length / increases so that expression (263)
has a satisfactory accuracy for long columns.® Having the
value of the torsional buckling load for a column with one end
built-in and the other free, we readily obtain the buckling load
for a member with hinged ends by substituting, as usual,
//2 for /. In this way we obtain for a channel member with
hinged ends, from expression (262)

2 2 3
p _mDh (I+M)+C, (260)

o = [ g L) T e

% A more accurate formula for torsional buckling of an angle with
equal legs was derived by the writer, considering each flange as a longi-
tudinally compressed rectangular plate. See Bull. of the Polyt. Inst.
Kiev, 1907, and also Ztschr. f. Math. u. Phys., Vol. 58, 1ig10. It seems
that that problem was the first case in which the torsional buckling was
discussed. The fundamental equation (261) was given by the writer in
1905, loc. cit., p. 283. The extension of this equation on channel sections
was given by C. Weber, loc. cit., p. 283. The application of the equation
in studying torsional buckling is due to H. Wagner, Technische Hoch.
schule, Danzig, the 25th Anniversary Publication, 19209.
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I't may be seen from the formula that the first term on the
right side, dealing with bending of flanges, diminishes as the
length / increases so that for comparatively long members the
stability is practically controlled by the second term in
expression (264).

. The formula was developed by assuming that the cross sec-
tions at the ends of the member are free to warp. Any con-
straint preventing free warping of the end cross sections will
result in an increase of the first term in formula (264). If
th-e ends are built-in the length //2 instead of / must be sub-
stituted in formula (264) and we obtain for this case

_ 4m* DR? nhid C
P”"??c?(1+412>+25' (265)
It is interesting to note that the formula
Cc
Pcr = C_Z

which is obtained for the critical load if the bending resistance
can be neglected follows at once from the energy considera-
tion. Since during torsion the cross sections rotate with
respect to their shear centers, the center line of the member
becomes a helix, the tangent to which makes an angle 6¢ with
the initially straight axis of the member. Due to this angle
the compressive forces P come together by an amount 62%/2.
Equaling the corresponding work to the strain energy of
torsion we obtain

P£02€2=C_02/
2 2

which gives

Pcr=_c";‘

[

. 55 Longitudinal Normal Stresses in Twisted Bars.—In discuss-
ing torsion of circular shafts (art. §8, Part I), it is usually assumed
that the distance between any two cross sections of a shaft remains
unchanged during torsion. It will be shown now that this assump-

TORSION 299

tion is very accurate for such material as steel in which the maximum
shearing strain during torsion is very small. But for a material
such as rubber the maximum shearing strain during torsion may be
considerable. Then the change in distances between the cross
sections of the shaft during torsion must be taken into account if
we wish to getthe correct values of stresses. \
The same conclusion holds also for steel
torsional members of a narrow rectangular '
cross section or of thin-walled cross sec- ——
tions such as shown in Fig. 159. dx
Let us begin the discussion with the 4
case of a solid circular shaft and assume
first that the distance between the two cc > d
consecutive cross sections, Fig. 176, re-
mains unchanged during torsion. If vis
the shearing strain at the surface of the shaft, the elongation of the
longitudinal fiber ac is obtained from the triangle ace; as follows:

aci I
¢ = =acl(1+*72>-
€Os ¥ 2

Expressing v by the angle of twist per unit length 6, we obtain

1/ 64\?
ac=acl[1+;(?)]

and the unit elongation of the fiber ac is

Fic. 176.

1 I T2 hax
2 = — 22 = -
LA 2 G2

ac — 4acy

(a)

€max —

I
acy 2
The corresponding tensile stress is

— o  —————

Omax = €max

For any other fiber at a distance 7 from the axis of the shaft, the
anit shear is less than v in the ratio 7 : 4/2 and the tensile stress is

2r \? 27% Tnax
U=0’max(-j) :E:ZE G2 ¢ (b)

The assumption made that the distance between the cross sections
remains unchanged during twist brings us therefore to the conclusion
that a longitudinal tensile force, producing tensile stresses (), should
be applied at the ends to keep its length unchanged. If no such
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forc.e is applied, but only a pure torque, the twist will be accom-
panied by some shortening of the shaft. Let ¢, be the corresponding
unit shortening. Then instead of equation (4) we obtain

272 ETmax?
G = —

Z G ek )

The quantity e is determined from the condition that the longi-
tudinal force corresponding to the stress distribution (¢) should be
equal to zero. Dividing the cross section into elemental rings and
making a summation of forces corresponding to stresses (), we
obtain 26

" W2 [ 212 Etmas?
j(: wredr = 21r£ (;; TGz _GOE)M,,

from which

7'ma.x2

4G’

€ =

and the stress distribution, from equation (¢), becomes

Ernaxl [ 872
g = _47 PO (266)

The maximum stress occurs at the cuter surface, where » = d/a,
and we obtain
ETmax2

Omax = 462 . (267)

At the center of the cross section we obtain a compressive stress of
the same amount.

It is interesting to note that the stress o is proportional to 7max?;
hence the importance of this stress increases with increasing 7max,
le., with increasing angle of twist. For such material as steel
Tmax 15 always very small in comparison with G and the magnitude
of omax is therefore small in comparison with Tmax, and can be
neglected. But for such material as rubber 7. may become of the
same order as G and omax Will no longer be small in comparison with
Tmax and must be taken into consideration.

If, instead of a circular cross section, we have a narrow rec-

% It is assumed that the cosines of the angles between the fibers and
the axis of the bar can be taken equal to unity.
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tangular one, it can be shown # that even for such materials as steel
the stresses ¢ may become of the same order of 'magmtudsa a$ Tmax.
If the longer side of the cross section, 4, is large in comparison with
its shorter side, ¢, the maximum elongation of the most remote fiber
due to twist alone is, from equation (z), with & substituted for 4,

52

€max = g 62.

For any fiber at distance y from the axis, the elongation is less, in
the ratio (2y/6)2. Combining this elongation with the longitudinal
unit contraction e, we obtain

bZ 9 2 022
e=§02(7’y) —eo=-y——-eo.

The corresponding tensile stress is
02 2
0=E(-—éy-—eo)- (d)

The constant ¢ is determined, as before, from the condition that
the tensile longitudinal force is equal to zero; hence

b2 bi2 (g2 e B
f2wdy=cE (;y2—eo)dy=cE<E-Tz—eob>=o,

—b/ —b/2
from which
62 b
€ = _IE,
and we obtain, from (d),
Ee? &
_ 2 - — .
7T 2 (y 12) ()
The maximum tensile stress for the most remote fiber (y = 4/2) is
Eo6?
Omax — 12 * (f)
The maximum compressive stress at the center (y = o) is
Eob?
Omin = — ° (g)
24

27 See paper by Buckley, Phil. Mag., 1914, p. 778. See also C.
Weber, “Die Lehre der Verdrehungsfestigkeit,”” Berlin, 1921, and also
his paper in A. Foeppl, Festschrift, Berlin, 1924.
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To compare these stresses with Tmax, €quations (253) and (254) can
be used. For a very narrow rectangular section we obtain

Tmax
b= G’ (%)
Substituting this in expressions (f) and (g), we obtain
ETmax b ETmax2 b
T R C

It is seen that when &/c is a large number the stresses
Omax and omin may not be small in* comparison with
Tmax- The distribution of the stresses (see eq. e) is
shown? in Fig. 177. These stresses have the direc.
tion of longitudinal fibers of the twisted strip, and
are inclined to the axis of the strip at an angle 6y.

Their projections on the plane perpendicular to the
axis of the bar are

E6? by
U“oy—7<y3—§>' (%)

The component (k) of stress ¢ per element ¢dy of the
Cross section gives a moment, with respect to the axis
Fio. 177.  of the bar equal to

E¢ b2y
Yy (y3 — E)cydy.

Hence the torque resulting from the stresses o is

b2 g8 2y Ect?
- 3 2 = 3
f_‘b,z 2 (y Iz)cydy 3606'°

Combining this torque with that due to the shearing stresses and

determined from equation (253), we obtain the following expression
for the total torque:

I I 1 1 E & .
R 3 . R 503 — . —— 2 .
M,—3ch 0+36 Ecbbg —-3&53(?0(1—}—12 Gcza) (269)

*$ This stress distribution takes place at some distance from the ends.
Near the ends a more complicated stress distribution, than that in ex-
pression (e), is produced and such as to make the ends entirely free from
normal stresses. This kind of stress distribution is discussed in “Theory
of Elasticity,” p. 152.
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It can be seen that in the case of a very narrow rectangular cross
section and comparatively large angles of twist t}}e stresses ¢ may
contribute an important portion of the_torque smce.thls p?rthn,
represented by the second term in equation (269), varies asl(: whﬂe
the portion due to the shearing stresses 7 varies as 6. Wf en the
magnitude of the torque is given, the corresponding angle of twist 6
is found from equation (269). The maximum shearing stress Tmax
is then calculated from equation (%) and omex, amin.from equations
(268). Take, for example, b = 4 in,, ¢ = o.0% in., E/G = .2.6,
G = 11.5 X 10° lbs. per sq. in. and M, = bc* X 15,000 lbs. ins.
= 5o lbs. ins. If the normal stresses o be neglected, equation (254)
gives Tmax = 15,000 Ibs. per sq. in. and equation (253) gives

Tmax
6= = 0.0261.
G

Taking into consideration the longitudinal stresses and using equa-
tion (269), we obtain

0.0261 = 6(1 + 2,2206%),
from which § = 0.0164;

Tmax = 8 ¢ ¢ - G = 9,430 lbs. per sq. in.;

2 52 .
= EE(% b—z = 10,700 lbs. per sq. in.
1262 ¢

Umax

It can be seen that for such a large angle of twist of a thin meta}hc
strip the normal stresses ¢ are of .the same order as the shear'mg
stresses 7 and can not be neglected in calculating the angle of twist.
From the above given discussion it may be concluded that a
uniform longitudinal tension will have some influence on the angle
of twist of a thin rectangular strip. Assume, for examplg tha_t a
uniform longitudinal tensile stress o is applied to the strip wh}ch
was just considered. In such a case the equation for calculation

€0 iS
2 53
CE(%E - eob) = gobc,

and we obtain
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The expression for longitudinal stress ¢ then becomes

LB b
T2 y—5)+ao

and the corresponding torque is

+b/2
Ectb b
0y - cydy = —— ore .
L/z Y 360 #+ 12

For the total torque, instead of equation (269), we then obtain

M, = ;‘I;écsco(l v LEZ, 'E@E)'

120 G ¢ 4G ¢ (270)

gttr}s seﬁn that. when &/c is a large number, i.e., in the case of a thin
1p, the tensile stress may reduce considerably the angle of twist 6

P
j 56. Open Coiled Helical Spring.
4 —In the previous discussion of

helical springs (see p. 271, Part I),

1t was assumed that the angle a be-

. tween the coils and the plane per-

pendicular to the axis of the helix

was very small. This angle neg-

lected, the deformation is only a

twisting of the wire. Inopen coiled

springs the angle o« is no longer

8/ | @ small and the deformation pro-

66 duced by the axial loads P consists

of both twist and bending (Fig.

178). At any point 4 the tangent

to the helical center line of the

spring is not perpendicular to the

/) force P and this force produces at

the cross section A of the wire the

Fic. 178. begding moment about the axis 7y

and torque. P isresolvedi

components: P cos @ and P sin «, rescll)ectively perpelfc(liicl:rllltl:(;rt‘zg

and parallel to the tangent at 4. At this cross section the com-
ponent P cos a produces the torque

- &

n cos

nsina

8 IC a)v

b

M, = PR cc;s a, ()

where R is the radius of the helix, and the component P sin e
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produces the bending moment
M = PRsina. )
The maximum combined stress is (see p. 277, Part I):

————— 6PR .
O'max':';_g_s(M_'_ MZ_I_MEZ):I_J‘—(I—*'SIH(X)) (271)

in which 4 is the diameter of the wire. The maximum shearing

“stress 15 2?

16 16PR
—_— — 2 =
Tmax = — VM M = 5 (272)

Let us consider now the deflection of the spring on the assump-
tion that it is fixed at the upper end and loaded by an axial load P
at the lower end. An element ds between two adjacent cross
sections at A is twisted by the torque M. through the angle

_ PR cos a

Gl ds. (€)

de

Due to this twist the lower portion of the spring rotates about the
tangent at 4 through the above angle dp. This small rotation is
represented in the figure by the vector » along the tangent, which
s taken in such a direction that between the direction of the vector
and the direction of rotation there exists the same relation as between
the displacement and the rotation of a right hand screw. The
small rotation # may be resolved into two components: (1) a rota-
tion # cos a about a horizontal axis, and (2) a rotation # sin « about
a vertical axis. The latter rotation does not produce any lowering
of end B of the spring and so need not be considered here. The
discussion of the lowering of the end B of the spring due to the
rotation # cos « follows the same form as that for a close cotled
spring. Due to this rotation point B is displaced to B, (Fig. 178, ¢)
and we have BB; = AB ncosa. The vertical component of this

displacement is

. __ R
BB:=BBl-7§=Rncosa. ¢))

29 [f the diameter 4 of the wire is not very small in comparison with
t!‘le diameter 2R of the helix this value must be multiplied by the correc-
tion factor, which, for & < 20°, can be taken to be the same as for close
coiled springs (p. 272, Part I). A further discussion of this subject is
given by O. Gshner, V. D. L., Vol. 76, 1932, p. 269.
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The total deflection of the end B due to twist is the summation of
elements such as given by eq. (), or

c
6 = f R#n cos a, (e)
B

in which the summation is taken along the total length of the spring
from the lower end B to the upper fixed end C.

The deflection due to bending may be calculated in the same
manner. The angular deflection due to the bending of the element
ds by the moment M (eq. &) is

PR sin
doy = ——*E[—a ds. (f)

The corresponding rotation of the lower portion of the spring is
shown in the figure by the vector #;. In the same manner as above
it may be shown that only its horizontal component #; sin & con-
tributes to the vertical displacement of the end B and that the
magnitude of this displacement is

¢
5y = f Rwu, sin a. ()
B
By adding (¢) and (g), the total deflection of the end B becomes
c
=201+ 86 = Rf (n cos a + n; sin a).
B
Substituting equation (¢) for » and equation {f) for #;, we obtain
Cflcosta  sinta
— 2
8§ = PR j; ( GI, + il >d5,

or, noting that the expression in the parenthesis is constant and
denoting the length of the wire of the spring by s, wc have

costa  sin’a
— 2 f 2 22 2 ),
8 PR“( o1, T Er )
If the diameter 4 of the wire is not small in comparison with
2R, the torsional rigidity GI, in equation (273) must be multiplied

by the correction factor
d 2
s (32)

()]

(273)
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The same factor can be used also for a spring with a square cross
section.®

Equations (271), (272), and (273) give us the complete solution
to the problem of an open-coiled helical spring submitted to the
action of an axial force.®!

The extension of the spring is accompanied by rotation of the
end B with respect to the vertical axis of the helix. To determine
this rotation, let us again consider the deformation of the element
ds in Fig. 178 (4). Due to torsion of this element there will be
rotation of the lower portion of the spring by an angle:

Mtd.f .
G[p sin a.

nsina =

Due to bending of the same element producing the angular change
n1, Fig. 178 (a), the rotation of the lower portion of the spring with
respect to the vertical axis is

Mds
EI

— nmcosa = — COS «a.

Hence the total rotation about the axis of the helix of the lower
portion of the spring due to deformation of an element ds, is

M,sinae Mcosa
d"( GI, ~ EI ) *)

The sum of these elemental rotations equals the total angle of
rotation ¢ of the end B with respect to the fixed end C of the spring:

o M, sin « Mcosa)
¢=\ "¢, ET

. I I
= sPRsin acos a (E—]—p — E—I>’ (274)

where s is the total length of the spring wire.
In the case of other forms of cross section of the wire, the corre-

8 Q. Gahner, loc. cit., p. 305.

* The theory of helical springs was developed by St. Venant; see
C. R, Vol. 17, 1843, p. 1020. A series of particular cases was discussed
by Thompson and Tait, Nat. Phil., 2d part, p. 139; L. Perry, Applied
Mechanics, New York, 1907, p. 613; and G. W. Shearer, Engineering,
Vol. 93, 1912, p. 206.

# A circular cross section of the wire is assumed.
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sponding value of torsional rigidity C instead of GI, must be sub-
stituted in equation (274).

Axial Torsion.—Let the vector 4D represent

1o the torque M applied at the end B of the spring,
/> Fig. 179. The bending and the twisting mo-
<] ments acting on the element ds at 4 are
A M = M, cos a, M, = M,sin a.
S o

The rotation of the end B of the spring around
the z axis due to deformation of the element ds is

M, . M
ds (E-I—psma + Elcosa)

sinfa  cos?a
B> =dst(G[p +ﬁ)'

M, , : :
‘Sz The total rotation of the end B of the spring

with respect to the 2 axis produced by the torque
Fie. 179. M, is

(275)

sinfa  cos?a
o= (7 +5°)
Since the tensile force P prodﬁces rotation ¢ of the end B of
the spring, it can be concluded from the reciprocity theorem (p. 330,

Part I) that the torque M, will produce the elongation of the spring.
The magnitude & of this elongation is obtained from the equation:

Ps = M,p,
from which

)

I

%¢=M25R5inacosa(é—lﬁ—l%[>- (276)

Axial Bending—Sometimes we have to consider pure bending
of a helical spring in its axial plane, Fig. 180. Let M, represented
by vector 4B, Fig. 180 (4), be the magnitude of the bending couples
in yz plane. Considering an element ds of the spring at a point 4,
defined by the angle 8, we resolve the vector 4B into two com-
ponents: /C = M, cos 6, and 4D = M, sin8. The first component
represents a couple in the plane tangent to the cylindrical surface
of the radius R, which produces bending of the wire in that plane.
The second component represents 4 couple acting in the axial plane
of the spring, and can be resolved into torque, M; sin 6 cos a, and
bending moment in the plane of the coil, M, sin 8 sin «. Hence the
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element 45 undergoes bending by a combined bending moment
equal to

VM;? cos? § + M2 sin? 6 sin? a, ()
and twist by a torque equal to M, sin @ cos . The strain energy of
the element then, assuming a circular cross section, is

Mp?*(cos? 8 + sin? 6 sin? a) " My? sin? 0 cos? o
2ET 2GI, - B
Substituting 4s = Rdf/cos a, and integrating from 8 = oto§ = 27x,
where 7 is the number of coils, we obtain
anR [M;F(I + sin? ) M2 cos? o
2ET Y6, |

a’U=ds[

0

Cos

The angular deflection of one end of the spring with respect to the

N

other is //p, where / is the length of the spring, Fig. 180 (a), deter-
mined from the expression

27Rn

0S a

[=ssina = - sin a,
and p is the radius of curvature of the deflection curve. Equating

the work done by the bending couples M; to the strain energy (/),
we obtain

M1,
2 p
from which
1 I 1+ si@ cos? o
=M a[ 2T T aGT, ] ) (277)
Hence the quantity
B sin & ()

1+ sinfa  costa

2ET 2G1,
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must be taken as the flexural rigidity in the case of an axial bending
of helical springs of circular cross section. If the angle a is small, we
can assume with sufficient accuracy that sin? @« = o and cos?a = 1.

Substituting also sina = //s, we represent the
A P flexural rigidity of a helical spring by the formula:

T

== 2B 1
— B=—— (278)

<>———i—‘ K . + £
<1 I 2G

R
Ci In considering bending of a helical spring by
<J—_i  alateral load, Fig. 181, we have to take into ac-
<—_h  count not only deflections produced by bending
CDT moment but also deflections produced by shearing

(2

force. Assuming that the end O of the spring is

Fic. 181. fixed and that « is small, we obtain the deflection

81 of the upper end 4 of the spring produced by

the bending moment action from the usual cantilever formula by
substituting the value (278) for flexural rigidity. Hence

PE s E
n= i (14 36) &
In discussing the effect of shearing force on the deflections, let us
consider the distortion of one coil in its plane 3 produced by the

shearing force 7, Fig. 182. The bending mo-
ment produced by » at any point A is /R sin 6,

and the corresponding strain energy of one coil is R,
U - fﬁf MRd§ _ V*R'm o A
2EI ~ 2E] Vi e
. . . -
The relative displacement ¢ then is —7
U VR v
¢= oV =~ EI Fic. 182.

Dividing this displacement by the pitch % of the helix, we obtain
the additional slope v of the deflection curve produced by the
shearing force action:

% The angle « is assumed small in this discussion,
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This expression must be used instead of the expression a? /4G in *
the formulas for deflections produced by shear action in solid beams
(see art. 39, Part I), if it is required to adapt these formulas to the
calculation of lateral deflections of helical springs. In the case
shown in Fig. 181 the shearing force is constant along the length /
and equal to P; hence the deflection due to shear is

Tn PR3
8y = vl = T ()
Adding expressions (#) and (p) and assuming s = 27R#n, we obtain
7nPIER E 3R
6=61+52=%3E] ( +—+——)' (279)

The last term in the parenthesis represents the effect of shear action.
It is negligible if the radius R of the helix is small in comparison
with the length /3¢

3 Lateral buckling of helical springs under axial compression is dis-
cussed 1n “Theory of Elastic Stability,” p. 16s.



CHAPTER VII
STRESS CONCENTRATION

57. Stress Concentration in Tension or Compression
Members.—In discussing simple tension and compression it .
was assumed that the bar has a prismatical form. Then for
centrally applied forces the stress is uniformly distributed over
the cross section. A uniform stress distribution was also
assumed in the case of a bar of variable cross section (see Fig.
14, Part I), but this is an approximation which gives satisfac-
tory results only when the variation in the cross section is
gradual. Abrupt changes in cross section give rise to great ir-
regularities in stress distribution. These irregularities are of
particular importance in the design of machine parts subjected
to variable external forces and to reversal of stresses. Irregu-
larity of stress distribution at such places means that at certain
points the stress is far above the average and under the action
of reversal of stresses progressive cracks are likely to start
from such points. The majority of frac-
tures of machine parts in service can be
attributed to such progressive cracks.

To illustrate the stress distribution in a
bar of variable cross section under tension,
let us consider a symmetrical wedge of a
constant thickness % loaded as shown in Fig.
183. Anexact solution has been found for this Fic. 183.
case ! which shows that there is a pure radial .
stress distribution. An element in the radial direction at a point
A is in a condition of simple radial tension. The magnitude of this
radial tensile stress is given by the equation

P cos @
o =k hr
1 See paper by A. Mesnager, Anniles des Ponts et Chaussées, 1901.

See also 1. H. Michell, London Math. Soc. Proc., Vol. 32 (Igoc?)‘augi"
Vol. 34 (1902). The problem is discussed also in “Theory of Elasticity,

p. 93, 1934.

(a)
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in which 8 is the angle between the » axis and the radius O4, r is the
distance of the point 4 from O and ¥ = 1/(a + % sin 2a) is a factor
depending on the angle 2a of the wedge.

The distribution of normal stresses ¢, over any cross section m#
perpendicular to the axis of symmetry of the wedge is not uniform.
Using eq. (17) (see p. 36, Part I) and substituting r = a/cos 6 in

_eq. (@) above, we find

kP cost @
= 29 = — 2 7,
o, = o, cos? 0 Py )]

This shows that the normal stress is a maximum at the center of the
cross section (§ = o) and a minimum at § = «. The difference
between the maximum and minimum stress increases with the
angle . When o = 10°, this difference is about 6 per cent of the
average stress obtained by dividing the load P by the area of the
cross section mn. Analogous conclusions may be drawn for a
conical bar. It may be shown that the distribution of normal
stresses over a cross section approaches uniformity as the angle of
the cone diminishes.

This discussion shows that the assumption of uniform
distribution of normal stresses over a cross section of a non-
prismatical bar gives satisfactory results if the variation in
cross section along the bar is not rapid.

However the conditions are quite different when there are
abrupt changes in the cross section. Then the distribution
of stresses at the place of variation is very far from being
uniform and results obtained on the assumption of uniform
stress distribution are entirely misleading. Several examples
of abrupt change in cross section are discussed in the subse-
quent two articles.

58. Stressesin a Plate with a Circular Hole.—If a small circular
hole 2 is made in a plate submitted to a uniform tensile stress o, a
high stress concentration takes place at the points #z (Fig. 184, a).
The exact theory ® shows that the tensile stress at these points is
equal to 30. It shows also that this stress concentration is of a very
localized character and is confined to the immediate vicinity of the
hole. If a circle be drawn concentric with the hole and of com-

. 2 The diameter of the hole is less, say, than } of the width of the
plate.

3 This theory was given by Kirsch, V. D. I., 1898. See also “Theory

.of Elasticity,” p. 75, 1934.
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paratively large radius ¢, as shown in Fig. 184 (4) by the dotted
line, it can be assumed that the stress condition at the circum-
ference of this circle is not materially affected by the presence of
the hole. Let Fig. 184 (4) represent a circular ring cut out of the
plate by a circular cylindrical surface of radius ¢. At each point
of the outer surface of this ring we apply vertically directed stress
of magnitude o sin ¢, i.e., equal to the stress on the corresponding
elemental area A of the plate (see eq. 16, Part I); then the stresses
in the ring will be approximately the same as in the portion of
the plate bounded by the circle of radius ¢ (Fig. 184, @). In this

manner the problem of the stress

fttt e distribution near the hole in a plate
( p
A is reduced to that of an annular
[ Vo e ring of rectangular cross section
/ N A .

/ N A subjected to known vertical forces
NP =& : of intensity o sin ¢ continuously
N ,T: distributed along its outer bound-

S | ary. This latter problem may be
e solved by using the method dis-
T 711 cussed on p. 81. Considering one

{
Viallzg 1
(@ ._]%.. Lh,!vr quadrant of the ring, the stresses

"R La acting across the cross section mn
g S sec
b) <—c——l are reduced to a longitudinal ten-
Fic. 184. sile force Ny at the centroid of the

cross section and a bending couple
M,. The longitudinal force can be determined from the equation
of statics and is

No = 0o¢. (d)

The moment M, is statically indeterminate and is calculated by
use of the theorem of least work. Equation (88), p. 84, is used for
the potential energy, in which the longitudinal force and the bend-
ing moment at any cross section of the ring, determinzd by the angle
¢ (Fig. 184, 4), are

N=gccos? ¢ ; M= My+oc(1—cos w)[g(l—cos o)+ gcos go]

— oc (c— g) (1—cos ¢), (b)

where % is the depth of the rectangular cross section. Then

ﬂ_ r/ZMd‘p _—f”/ZNdQD_
My~ J, AEe  J, AE ~©

4 The thickness of the plate is assumed to be unity.
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from which, after integration,
20¢? 3 h 1 er R ]
=—|1—-S7r——\1——x —+—@—=2)] (
Mo 7r|: 87 ac 4 )+4c+25( ) )
Here, as before, R is the radius of the center line and ¢ the distance
of the neutral axis from the centroid of the cross section.

The stress at the point # of the cross section mn of the ring
consists of two parts: (1) the tensile stress produced by the longi-
tudinal force Ny and equal to

N(; (%
“=% =

and (2) the bending stress produced by M, which is, from eq. (66),

(@)

()

4]

V3
_Mo]ll_MO(E_e) _KO(I _3‘;’)
T Adea Aea " 2ea )

in which a is the radius of the hole.

The distance ¢ is calculated by use of eq. (70) for various
values of the ratio ¢/a and then the quantities ¢; and o3 are deter-
mined from eqs. (4) and (¢). The maximum stress is

Omax = 01 1 02

The results of these calculations are given in the table 22 below.

TasLE 22
cla = 3 4 11 6 ’ 8 ‘ 10
/bl 0.1796 | 0.2238 | o.2574 | 0.2838 | 0.3239 | 0.3536
afe.. i 1.50 1.33 1.2¢ 1.20 .14 1.11
ofo. 2.33 1.93 1.83 1.83 1.9§ 2.19
Omaxf[O. .. 3.83 3.26 3.08 3.03 3.09 3.30

Comparison of the figures of the last line of the above table with
the exact solution omex = 30 for a small hole shows that for
§ < ¢/a < 8 the results of approximate calculation agree closely with
the exact solution. When ¢/ < g, the hole cannot be considered
as very small, but has a perceptible effect on the distribution of
stresses along the circle of radius ¢ (Fig. 184, @), in which case our
assumption regarding the distribution of forces along the outer
boundary of the ring (Fig. 184, &) is not accurate enough. The



316 STRENGTH OF MATERIALS

deviation from the exact theory for ¢/fa > 8 is due to insufficient
accuracy in the elementary theory of curved bars for the case where
the inner radius is very small in comparison with the outer one.
Taking any point in the cross section mn, Fig. 184 (4), at a
distance 7 from the center of the hole the normal stress at that

point is
2 a4
(2 +5+%) ”)

72

where ¢ is the uniform tensile stress applied at the ends of the plate.
This stress distribution is shown in Fig. 184 (2) by the shaded areas.
It is seen that the stress concentration is highly localized in this
case. At points #, L.e., at 7 = 4, we
I l l ‘U‘l ‘ l ‘ ‘o-‘ have omex = 30. The stresses de-
crease rapidly as the distance from
this overstressed point increases; at
a distance from the edge of the hole
equal to the radius of the hole, i.e.,
i for » = 24, we obtain from expres-
sion (f) the normal stress equal to
1330. The stress decreases rapidly
i 1 F i1 1 also with the increase of the angle
@ (®) @ Fig. 184 (&), and. for ¢ = w/2,
Fic. 185. i.e., for the cross section parallel to
the applied tensile stresses ¢ we find
at the edge of the hole a compressive stress in the tangential direc-
tion of the magnitude equal to the tensile stress ¢ applied at the
ends of the plate.

If, instead of tension, we have compression of the plate, Fig.
185 (), we have only to change the sign of stresses obtained in our
preceding discussion, and we conclude that there will be a compressive
stress of the magnitude 3¢ at points #» and a tensile stress.of the
magnitude ¢ at points m. In the case of a brittle material such as
glass which is very strong in compression and weak in tension the
cracks usually start at points m as shown in Fig. 185 (5).

Having the stresses for simple tension or compression and using
the method of superposition, we readily obtain the stress concen-
tration for the cases of combined tension or compression in two per-
pendicular directions. For example, in the case shown in Fig. 186(2)
we find that the tangential stress at points # is 3o, — o, and at
points m the stress is 3¢ — o, In the particular case of pure shear
we have

Gz = — 0y =G
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and we obtain for points # the stress — 40 and for the points 7 the
stress + 40; thus in this case the maximum stress is four times larger
than the stresses applied at the edges of the plate. Such a condition
of high stress concentration we obtain in the torsion of a thin-walled
circular tube with a small circular hole in it, Fig. 186 (5). If the

Y
st ity
- im i
=
——] m ——
i | %
ERRE
Fic. 186a. Fic. 1864.

applied torque has the direction indicated in the figure, the maxi-
mum tensile stress, four times larger than the shearing stresses
applied at the ends, is produced at the edge of the hole at the points
marked by plus signs. At the points marked by the minus signs,
there will be a compressive stress of the same magnitude.

The approximate method of calculation stresses at a circular hole
described above can also be used for the case of a hole with a bead
(Fig. 187). ‘This calculation, worked out ® for 4/t = 11,#/2a = o.01,
gave the following values of the ratio ouex : o for various values of ¢/a:

cla = 4 6 .

Omax/o = 2.56 2.53 2.56 Pttty

In the range considered, the ratio om.x/o varies
but slightly with c/a, so further calculations
are made for the case ¢/a = 5 only. The
influence of the cross sectional area of the
bead on the gmax can be studied by varying the
dimension & of the bead. If 4, = 2tia denotes
the decrease in cross section of the plate due to !

}e

-

-
Q-
-]
-—]

the hole and 4, = (5 — #)¢ the cross sectional ¢ lale

area of the bead, the ratio om../o for several gﬂw__.%.
values of the ratio A4,/4, is given below: %% )
Asf A4y = o.10 0.20 0.30 0.40 0.50 +itle
Omax/0 = 2.53 2.17 1.90 1.69 1.53 Fic. 187.

% Discussion of this problem is given in the author’s paper, Journal
of the Franklin Institute, Vol. 197, p. 505, 1924. It is assumed that

the entire cross section of the bead is effective.
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The above figures can be used also in the case of other shapes of
bead cross section provided the dimension # of the bead in the radial
direction can be considered as small in comparison with the racius
a of the hole. Take, for instance, a wide plate in tension, 1% in.
thick, with a circular hole of 40 in. diameter. Let the edge of the
hole be stiffened with two angle irons 4 X 4 X 7% in. In such a
case Aa/41 = 0.40 and the above table gives opux : 0 = 1.69.

59. Other Cases of Stress Concentration in Tension
Members.—There are only a few cases in which, as in the
case of a circular hole, the problem on stress concentration is

solved theoretically. In most

{4 f"’f | f { cases our information regarding
maximum stresses at points of
sharp change in cross section
1s obtained from experiments.®
In our further discussion we
shall limit ourselves to the final
results of some theoretical and

b
i

ppal

i

[

i1 t ' 1ol ! experimental investigations,
o (b) which may be of practical
Fia. 188. ..
significance.

In the case of a small eliptical hole in a plate 7 (Fig. 1882)
the maximum stress is at the ends of the horizontal axis of
the hole, and is given by the equation:

amax=a<1-|—2%)- (@)

where o is the tensile stress applied at the ends of the plate.
This stress increases with the ratio 2/4, so that a Very narrow
hole perpendicular to the direction of tension produces a very
high stress concentration. This explains why cracks perpen-

§ Various experimental methods of determining maximum stress are
described in articles 63. See also E. Lehr, “Spannungsverteilung in
Konstructionelementen,” 1934.

" See G. Kolosoff, Dissertation, 1910, St. Petersburg; see also C. E.
Inglis, Engineering, Vol. 95, 1913, p. 415, and Trans. Inst. of Naval
Architects, 1913,
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dicular to the direction of forces tend to spread. This spread-
ing can be stopped by drilling holes at the ends of the crack
to eliminate the sharp corners at the ends of the crack which
produce high stress concentration.

Small semi-circular grooves in a plate subjected to tension
(Fig. 188/) also produce high stress concentration. Experi-
ments ® show that at points 7 and # the stresses are about
three times the stress applied at the ends of the plate, if
the radius 7 of the groove is very small in comparison with
the width 4 of the minimum section. In general the maximum

32
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Fic. 189.

stress at points m and # is a function of the ratio »/d. The
ratio of the maximum stress to the average stress in the
minimum section such, as the cross section 7, is usually called
the factor of stress concentration and denoted by k. The values
of k for various values of the ratio #/d are given in Fig. 189 by
the curve I1.° 1In the same figure are given also the factors
of stress concentration for the case of a circular hole (curve I)

8 See M. M. Frocht, Journal of Applied Mechanics, Vol. 2, p. 67, 1933.
®The curves given in the following discussion are taken from the
article by M. M. Frocht, Journal of Applied Mechanics, Vol. 2, 1935, p. 67.
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and for the case of fillets (curve III). In Fig. 190 more in-
formation regarding stress concentration at fillets is given.

In Fig. 191 the factors k are given for grooves of various
depth having a circular shape at the bottom. It is seen that
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for deep grooves the factors of stress concentration are larger
than those for semi-circular grooves with the same value of /d.

The case of a plate of a very large width with hyperbolic grooves,
Fig. 192, can be treated theoretically.’* The solution shows that

10 H, Neuber, Zeitsch. f. angew. Math. u. Mech., Vol. 13, 1933, p. 439-
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the factor of stress concentration, i.e., the ratio of the maximum
stress at the points m and 7 to the average tensile stress over the
cross section mn, can be represented by the following approximate
formula:!t

k= \/0.8 g + 1.2 — oI ()]

in which 4 is the width of the minimum section and r is the radius
of curvature at the bottom of the groove. It is interesting to note
the values of & obtained from this formula are in very good agree-
ment with experimental results obtained for deep grooves (Blr = 4)
semi-circular at the bottom, Fig. 191.

.

Fic. 192.

Assume now that Fig. 192 represents an axial section of a
circular cylinder of a large diameter with deep grooves of a hyper-
bolic profile under an axial tension. The maximum tensile stress
again occurs at the bottom of the groove and the value of the factor
of stress concentration is 2

k=03 ‘;{ + 0.85 + 0.08. G

The comparison of this formula with formula (&) shows that in the
case of a grooved cylinder the stress concentration is smaller than
in the case of a grooved plate. A further discussion of this com-
parison is given later (see art. 62).

In the case of a cylinder in tension with an ellipsoidal cavity
at the axis, for which Fig. 188 (4) can be considered as an axial

11 The Poisson ratio is taken equal to 0.3 in formulas (&), (¢) and (4).
12 H, Neuber, loc. cit., p. 320.
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section, the maximum tensile stress occurs at points m. Its value
is given by the following approximate formula

Omax = 0 (\/0.8; + o.05 + o.78) )

where ¢ is a uniform tensile stress applied at the ends of the cylinder
and 7 is the radius of curvature of the ellipse at points .

The standard tensile test specimen for concrete, Fig 193,
is another example of a tension member with sharp variation
in cross section. FExperiments show!® that the
maximum stress occurs at points 7 and # and
that this stress is about 1.75 times the average
A H‘m il stress over the cross section mn.

Figure 194 represents a dovetail joint which
is often used in electric machines to hold the
magnetic poles to the rim of the spider. The
centrifugal force acting on the pole produces

Fic. 193. large tensile stresses over the cross section mn.
The distribution of these stresses is shown in
Fig. 194 (4)."* Due to the abrupt change in cross section a
high stress concentration takes place at points 7 and n. The
tensile stresses o, are accompanied by stresses o, in a lateral
direction. The distribution of these stresses along mn is
shown in Fig. 194 (4), and their distribution along the verti-
cal plane of symmetry is shown in Fig. 194 (a).

All the conclusions regarding stress distribution gade
above assume that the maximum stresses are w:thin the pro-
portional limit of the material. Beyond the proportianal
limit stress distribution depends on the ductility of the ma-
terial. A ductile material can be subjected to considerable

1 See E. G. Coker, Proc. International Assoc. for Testing Materials,
New York Congress, 1913.

14 See paper by E. G. Coker, Journal of the Franklin Inst., Vol. 199
(1925%), p. 289. T-heads which also have frequent application in machine
design were tested by M. Hetényi, “Journal of Applied Mechanics,”
Vol. 6, 1939, p. 151.
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stretching beyond the yield point without great increase in
stress. Due to this fact, the stress distribution beyond the
yield point becomes more and more uniform as the material
stretches. This explains why, with ductile materials, holes
and notches do not lower the wultimate strength when the
notched piece is tested statically. Moreover, in testing mild
steel specimens with deep grooves, a certain increase in the
ultimate strength is usually obtained, due to the fact that the
grooves prevent necking of the specimen at the cross section
of fracture (see p. 421I).

(6)

(a)

Fic. 194.

However in the case of a brittle material, such as glass, the
high stress concentration remains right up to the point of
breaking. This causes a substantial weakening effect, as
demonstrated by the decrease in ultimate strength of any
notched bar of brittle material. It is interesting to note that
very fine scratches on the surface of a glass specimen do not
produce a weakening effect, although stress concentration at
the bottom of the scratch must be very high.’® In explanation

- of this, it is assumed that common glass in its natural condition

has many internal microscopic cracks, and small additional
scratches on the surface do not change the strength of the
specimen.

The above discussion shows, therefore, that the use of
notches and reéntrant corners in design is a matter of judg-

15 This phenomenon was investigated by A. A. Griffith, Phil. Trans.

© (A), Vol. 221 (1920), p. 163.
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ment. In the case of ductile structural steel high stress
concentration is not dangerous provided there is no alternating
stress. For instance, in the construction shown in Fig. 194,
the stresses are very often so high that yielding occurs at m
and 7, but this yielding is not considered dangerous because
the structure is subjected to the action of a constant force.
In the case of brittle material, points of stress concentration
may have a great weakening effect, and such places should be
eliminated or the stress concentration reduced by using
generous fillets.

In members subjected to reversal of stress the effect of
stress concentration must always be considered, as progressive
cracks are liable to start at such points even if the material is
ductile (see art. 80).

60. Stress Concentration in Torsion Members.—In dis-
cussing the twisting of bars of various cross sections (see arts.
50 and 51) it was mentioned that reéntrant corners or other
sharp irregularities in the boundary line of the cross section
cause high stress concentration. Longitudinal holes have a
similar effect.

As a first example let us consider the case of a smal/

circular hole in a twisted circular shaft 1
(Fig. 195). In discussing this problem the
hydrodynamical analogy is very useful.’” The
problem of the twisting of bars of uniform
cross section is mathematically identical to that
of the motion of a frictionless fluid moving with

Fic. 195. uniform angular velocity inside a cylindrical

shell having the same cross section as the bar.

16 This case was investigated by J. Larmour, Phil. Mag., Vol. 33,
1892, p. 76. '

17 This analogy was developed by Lord Kelvin and Tait, Natural
Philosophy, Vol. 2; J. Boussinesq, Journal de Mathématique (Liouville),
Vol. 16, 1871, and A. G. Greenhill, article “Hydromechanics,” Encycl.
Brit., gth ed. Regarding the application of the analogy in experiments
see the paper by J. P. Den Hartog and J. G. McGivern, “Journal of
Appl. Mech.,” Vol. 2, p. 46, 1935.
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The velocity of the circulating fluid at any point is taken as
representing the shearing stress at that point of the cross
section of the bar when twisted. The effectof a s.mall holc? ina
shaft of circular cross section is similar to that of 1ntrodu.c1ng a
stationary solid cylinder of the same §ize into the stream in the
hydrodynamical model. Such a cyl}nder gfeatly changes the
velocity of the fluid in its immediate neighborhood. The
velocities at the front and rear points are reduced to zero,
while those at the side points m and 7 are double.d. A hole' of
this kind therefore doubles the maximum stress in the‘: portion
of the shaft in which it is located. A small semz—czrcu{ar
groove on the surface parallel to the lgngth of tbe shaft (Fig.
195) has the same effect. The shear in Fhe neighborhood of
the point 7 will be nearly twice the shearing stress calculated
for points on the surface of the shaft far away from the groove.
The same hydrodynamical analogy explains the. eﬁ‘.ect. of
a hole of elliptical cross section or of a groove of semz—.ellzp.tzc.al
cross section. 1f one of the principal axes 4 of the ellipse 1s 1n
the radial direction and the other principal ax'is is b,. the stresses
at the edge of the hole at the ends of thea axis are increased in
the proportion [1 + (a/6)]: 1. The maximum stress pro-
duced in this case thus depends upon the magnitude of th.e
ratio a/b. The effect of an elliptical hok? on the stress 1s
reater when the major axis of the ellipse 1s in the rac%lal direc-
' on than when it runs circumferentially. This explains why a
radial crack has such a weakening effect on the strength of a
shaft. The above discussion applies also to the case of a semi-
elliptical groove on the surface parallel to the axis of the shaft.
In the case of a keyway with sharp corners
(Fig. 196), the hydrodynamical analogy in-
dicates a zero velocity of the circulating ﬂuld
at the corners projecting outwards (points
m-m); hence the shearing stress in the corre-
sponding torsion problem is equal to zero at Fre. 196.
such corners. At points 77, the vertices of o
the reéntrant angles, the velocity of the circulating fluid 1s
_ theoretically infinite. In the corresponding torsion problem

¢ v
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the shearing stress is also infinite at the points #-n, which
means that even a small torque will produce permanent set at
these points. Such stress concentration can be reduced by
rounding the corners #-7#.

Experiments made '8 on a hollow shaft of outer diameter 10
in., inner diameter 5.8 in., depth of keyway 1 in., width of
keyway 2.5 in., and radius of fillet in corner of keyway r,
showed that the maximum stress at the rounded corners is
equal to the maximum stress in a similar shaft without a
keyway multiplied by the factor % given in the table below:

TaBLE 23
rinches = o.1 0.2 0.3 0.4 0.5 0.6 0.7
k = 5.4 34 2.7 2.3 2.1 2.0 1.9

This shows that the stress concentration can be greatly
diminished by increasing the radius at the corners 7.

The weakening effect of stress concentration in shafts due
to holes and grooves depends on whether the material is
ductile or not and the conclusions made in the previous article
apply here as well.

If a tubular member has reéntrant corners, there is stress con-
centration at these corners and the magnitude of the maximum
stress depends on the radius of the corners.
The approximate value of this maximum stress®
can be obtained from the membrane analogy.
Let us consider the simple case of a tube of
constant thickness, and assume that the cagner
is bounded by two concentric circles (Fig. 197)
with center at O and radii »; and r,. The sur-
face of the membrane at the cross section mn
may be assumed to be a surface of revolution
with axis perpendicular to the plane of the figure at 0.9 We
have seen that the slope of the membrane surface at any point
M is numerically equal to the shearing stress 7. Referring to

Frc. 197.

8 See “The Mechanical Properties of Fluids,” a collective work,
p. 245, D. Van Nostrand Co., New York, 1924.

1 This assumption is satisfactory provided ; is not small in com.
parison with 7.

for the meridian (taking an element ds of
the meridian equal to dr), and

1 1 he me-
for the section perpendicular to tl
r(i)crlian. The equation of equilibrium of L.z,
the membrane, from eq. (157), is then

or, by using eq. (a), art. 50,

hearing
Let 7o denote the average s
stress, obtained from eq. (258). From eq.
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ich shows a meridional section through mn, the principal

Fig. 198, wh sectil
cu%va?u;es of the membrane at this point are
1 de dr . L .
——— = T =TT .
R, ds dr l*—--} ‘; R
|

-
4

L _
Ry

T
¥

dr v _ P .

arr S

dr

awm LT - 0
4 - = 2G8. (a)
dr r 2

F1c. 198.
(259) we then find

dr
j-l-

T ToS (5}
r r

=2G0="1‘{“3

in which s is the length of the center line of the section of the
tubular member. The general solution of eq. () 1s

_C, T, ©)
TT T ad

. N
The constant of integration C is obtained from the condition:

fam’r = To]l.

2 This cordition follows from the hydrodynamicalhanalogsysgc);igt2142).f
If a fluid circulates in a channel having the shape of the lc:lr(;sross tion of
the tubular member, the quantity of fluid passing eac

of the channel must remain constant.
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Substituting expression (¢) for 7, we find

1 — 4%{ (e + 13)

C=T0;l

b

Va
logn —
ri

and, from eq. (c),
+—- (280)

At the reéntrant corners r = 7;, and substituting this in the above
equation we can calculate the stress concentration at these corners.2
Take for example a square tube
with outer dimensions 4 X 4 in.,

~fad
'4 wall thickness 4 = o.4 in. and radii
at the corners »; = o.2in.; 7, = 0.6
in. (Fig. 199). Then
A4 =3.6X36— 044 — 7
\ | ta) =12.82 sq. in.,
[ — §=36X4—0.48—21)=14.40
Fia. 199. ~ 0.0 ='13.70 in.

The average stress 7o is given by eq. (258). The stress at the
reéntrant corners, from eq. (280), is

T = 1.§470.

The factor of stress concentration in this case is 1.54. It may be
seen that this factor increases with decrease in the inner radius 7.
Equation (280) can also be used for an approximate calculation of the
stress concentration when only the reéntrant corner is rounded (Fig.
199, 5). As the stresses are small at projecting corners we can take
*a = h + i, as indicated in the figure by the dotted line.

In the case of rolled profile sections such as shown in Fig.
159 (6) and 159 (¢), (p. 274), the maximum stress occurs at the
reéntrant corners. Its value is obtained by multiplying the
stress calculated from formulas (254) or (257) (see p. 275) by
the factor of stress concentration for which the following

2t Such an equation was given by’ C. Weber in his paper, loc. cit.,
p. 301.
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expression can be used *

k= 1.74\3/5 (281)

in which ¢ is the thickness of the flange and r the radius of
the fillet.

61. Circular Shaft of Variable Diameter.”—If the diam-
eter of a shaft varies gradually along its length, eq. (149) (see p.
264, Part 1) derived for a cylindrical shaft gives the maximum
stress with sufficient accuracy. But if the change in diameter
is abrupt, as shown in Fig. 200, there is a
high stress concentration at the points £
m-m at the beginning of fillets. The m
magnitude of the maximum stress depends
on the ratios p/d and D/d, where p is the
radius of the fillet and 4, D are the di- Fic. 200,
ameters of the two cylindrical portions of
the shaft. These high local stresses, although not dangerous
for constant loading of a ductile material, may have a pro-
nounced weakening effect when there are stress fluctuations,
which is usually the case in such constructions as propeller
shafts and crank shafts of Diesel engines. Many cases of
fractures in service can be attributed to this cause. The
theoretical qalculation of the maximum stress at the fillet is too
complicated % for engineering purposes and in the following an

2 B, Trefftz, Z. angew. Math. Mech., Vol. 2, 1922, p. 263. Equation
(281) is derived for an angle, Fig. 159 (4), with equal thickness of flanges.
In the case of two different thicknesses ¢; and ¢z, as in Fig. 159 (¢), the
larger thickness must be used in equation (281). A further discussion of
this question is given by H. M. Westergaard and R. D. Mindlin, Amer.
Soc. C. E. Proceedings, 1935, p. 509.

% The general solution of this problem is due to J. H. Michell, Proc.
London Math. Soc., Vol. 31 (1899), and A. Foppl, Sitzungsber. d. Bayer.
Akad. d. Wissensch., Vol. 35 (1905), p. 249. The case shown in Fig. 200
was considered first by A. Foppl; see V. D. 1., 1906, p. 1032. The litera-
ture on this subject is compiled in “Theory of Elasticity,” p. 276, 1934.

# Such calculations were made by F. A. Willers by use of an approxi-

" mate method of integration, Zeitschr. f. Math. u. Phys., Vol. 55 (1907),

P- 225. See also R. Sonntag, Dissertation, Miinchen, 1926.
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egperlment.al method of measuring the maximum stress is
given. :I‘hls uses an analogy between the Stress distribution
in a twisted shaft and the distribution of electric current

in a plate.®

Lc?t us begin with a circular shaft of constant diameter.
Imagine such a shaft divided into elemental tubes such that
each tube takes an equal portion of the total torque M.,.
I.n Fig. 201, for instance, the shaft is divided into five por-
tions each carrying :M,. These tubes will be called equimo-
mental tubes, and the corresponding lines in a diametral

Equimomentol

s Egquiongular
il 5:rface.s
L) f ¥ .;‘ — AN
AN iV
2, ™ 1, 2 )
1 le 2 | g -+ lt
Fic. 201.

section of the shaft equimomental lines. Let AM, denote the
torque per tube, and assume the thickness of each tube to be
small. The angle of twist per unit length is the same for all
tubes, and is

AM, AM,

o= Gl, = Garrh’ (2)

ir} which 7 1s the mean radius of the tube and 4 its thickness.
Since AM; and 6  are the same for all tubes, the thickness of
the tubes varies inversely as the cube of the mean radius.
The average shearing stress in a tube is, from eq. (258),

;= AM;T _ AMt
T, ~ 2mrth (@)

% This analogy was developed by L. S. Jacobsen; T A
Soc. Mech. Engrs., Vol. 47 (1926), p. 619. ! ens see Trans. Amer

269 is the angle of twist for a solid shaft.
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In Fig. 201 is shown a second system of lines in the dia-
metral section. These lines are perpendicular to the equimo-
mental lines and are called equiangular lines. They corre-
spond td“sections of the shaft which are called equiangular
surfaces and which are so taken that the angle of twist between
two consecutive equiangular surfaces is constant along the

‘length of the shaft. Let A¢ be this angle. In this case the

equiangular surfaces are equidistant planes, and let a be the
distance between them. Then at any radius r the shearing
strain is

_Aer
TT g
and the corresponding stress is
GAer
r= a‘” . ()

The two systems of perpendicular lines, equimomental and
equiangular, divide the diametral section of the shaft into
elemental rectangles, as indicated in the figure. The dimen-
sions of these rectangles may be used to compare the shear-
ing stresses at the corresponding points of the shaft. Using
eq. (4) and comparing the shearing stresses 71 and 73 at radii
7, and 7, respectively, we find

T _ 7oths
:I'—z B 7’\12}11. (d)
From eq. (¢) we find
' T Nde
T2 T (e)

In the case under consideration @, = 4s = 4, but eq. (¢) will be
used later for a more general case. It is evident that each
system of lines may be used in calculating the shearing stresses.
In one case (eq. 4) the ratio of stresses depends on the ratio of
the distances between equimomental lines Zs/4s, while in the

_other case (eq. ¢) it depends on the ratio of the distances

between equiangular lines asla-
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Let us consider a shaft of variable diameter as shown in
Fig. 200. The irregularities in stress distribution produced
at the fillets are of local character. At sufficient distance
from the junction of the two diameters the stress distribution
is practically the same as in a shaft of uniform cross section,
and the two systems of lines described above can be con-
structed in the diametral section (Fig. 202). Near the cross
section of discontinuity, the stress distribution is a more
complicated one and the equimomental and equiangular lines
become curved. Analysis of the problem shows? that,
although curved, these lines remain mutually orthogonal and
subdivide the diametral section into curvilinear rectangles as

indicated by the shaded areas.

7 Also egs. (d) and (e), which were

, derived for a uniform shaft, are

., shown to hold here, if we take for

5 % and a the dimensions measured

5§§§ > at the middle of each curvilinear
A

R — ¢ rectangle. Then the equimomen-
5| tal and equiangular lines give a
complete picture of the stress dis-
tribution in the shaft. Consider-
ing, for instance, the equimomental
lines and using eq. (4), we see that
the stresses increase with decrease
in the radius and thickness of the
equimomental tubes. It is evi-
dent from the figure that the stress is a maximum at the fillets,
where the thickness 4 of the outer equimomental tube is
the smallest. We come to the same conclusion also by con-
sidering the equiangular lines. It can be seen from the figure
that at the fillets the distance @ between these lines is very
small; hence, from eq. (¢), the stress is large. From eq. ()
or (¢) we can determine the ratio of the maximum stress at
the fillet to the stress at any other point provided the equi-
momental or equiangular lines are known.

Fic. 202.

% See the paper by F. A. Willers, loc. cit., p. 329.
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The electric analogy, mentioned above, provides a means
for measuring the distances & between the equiangular lines.
These distances are measured at the surface of the shaft of
smaller diameter 4, first at a point remote from the‘cross sec-
tion of discontinuity, and then at the fillet. The ratio of these
two distances gives [see eq. (¢)] the factor by which tl}e stress,
as calculated by the usual formula, must be multlphed to
obtain the maximum stress at the fillet. In discussing the
electric analogy, we begin with the case of a rectangular plate

Lguy @in/ Lines

L~V ¥
Linesof| / T
egual
fow RS (o r /b)
0 Lo,
F1c. 203. F1a. 204.

of uniform thickness (Fig. 203). If the ends of the plzixte are
maintained at a constant difference of potential, therf: W{ll flow
through the plate an electric current unifo.rmly d}strlbuted
over its cross section. By dividing the electric flow into equal
parts we obtain a system of equidist‘ant stream lines. ‘The
system of equipotential lines 1s perpendlculgr to these. W1th a
homogeneous plate of uniform cross section the drop 1n po-
tential will be uniform along the direction of the cul:rent-and
the equipotential lines are therefore equidistant vertical hnefs.
In order to get two systems of lines apalogous to those 1n
Fig. 201, the thickness of the plate is varied as the <.:ube of the
distance 7, as shown in Fig. 204 (#). Then the distance be-
tween the stream lines will be inversely proportiona} 28 to t.he
cube of 7, and the distance between the vertical equipotential
lines remains constant as before. In this manner we can qb-
tain the same system of mutually orthogonal lines as in Fig.
201. The edge 0-O of the plate corresponds to the axis of the
shaft. The equipotential lines correspond to the equiangular

28 Tt is assumed that the flow per unit area of cross section is uniform
over the cross section.
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lines, and the stream lines to the equimomental lines of the
torsional problem. Investigation shows* that this analogy
also holds in the case of a plate of two different widths and of
thickness varying as the cube of the distance r (Fig. 203).
This makes it possible to investigate the stress concentration
at the fillet of a twisted shaft by an electric method. We
maintain a constant difference in potential at the ends of the
plate and measure the drop in potential along the edge mnp.
The distances 4, and @, between equipotential lines at a remote
point 7z and at the fillet 7 respectively are thus obtained. The
ratio a;/a, of these distances gives the factor of stress concen-
tration for the fillet at #.

Actual measurements were made on a steel model 24 in.
long, 6 in. wide at the larger end and 1 in. maximum thickness
at the edge pg. The drop of potential along the edge mnpg
of the model was investigated by using a very sensitive
galvanometer, the terminals of which were connected to two

el 7]

Fie. 205. Fic. 206.

sharp needles fastened in a block at a distance 2 mm. apart.
By touching the plate with the needles the drop in poten-
tial over the distance between the needle points was indi-
cated by the galvanometer. By moving the needles along
the fillet it is possible to find the place of maximum voltage
gradient and to measure this maximum. The ratio of this
maximum to the voltage gradient at a remote point 7 (Fig.
205) gives the magnitude of the factor of stress concentration

k in the equation:

_ I6Mg
Tmax = k '7rd3 * (282)

? See above-mentioned paper by L. S. Jacobsen, loc. cit., p. 330.
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The results of such tests in one particular case are represented
in Fig. 206, in which the potential drop measured at each
point is indicated by the length on the normal to the edge of
the plate at this point. From this figure the fa:ctor of stress
concentration is found to be 1.54. The magnitudes f)f th'xs
factor obtained with various proportions of shafts are given in
Fig. 207, in which the abscissas represent the ratios of the
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radius of the fillet to the smaller radius of the shaft, 2p/d, and
the ordinates the factor & for various ratios of D/d.

62. Stress Concentration in Bending.———T.he fo.rmulas for
bending and shearing stresses derived for prismatical b§ams
are very often applied also to the cases of beams of variable
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cross section. To give some idea of the accuracy of this
method of calculation, the bending of a cantilever having the
form of a wedge (Fig. 208) will be considered. The exact
solution of this problem *° shows that the stress at any point
A of the beam is a simple
tension or compression in the
radial direction 40, and has
the magnitude

h j
P

Ty P cos o
FiG. 208. o =k rb ° ()

yvhere 7 is the distance 04, &4 is the thickness of the wedge, 6
is the angle between the radius 40 and the direction of the
force P, and

k = - 2- s

200 — SIn 2«

is a constant depending upon the magnitude of the angle of
the wedge. By using equations (17) and (18), Part I, p. 36,
the norrpal and tangential components of the stress on a plane
perpendicular to x are found to be

My 4 tan® asin*9

Oy — @ Sil’l20 = —_— v &
’ " I, 3(2a — sin 2q)°

. b
. =a—'sin20=£l6y2 tan® o sin* @ @)
ve 2 bk A 200 — sin 2’

in which
I.=—; M = — Px.
For the neutral plane of the wedge § = =/2 and the normal

and shearing stresses become zero. The maximum normal
and shearing stresses occur at 8 = (7/2) + «. They can be

( 3°)See I. H. Michell, Proceedings of the London Math. Soc., Vol. 32
1g0O0).
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calculated from expressions (#) which give
M#~ P
(o':u)ma.x = - 6'2—]'2; (Tyz)max = 36 ﬁl’ (C)
where
4 tan®*acos'a
- 3 2a— sin 2«

For a = §°, 10°% 15° and 20°, the factor 8 has the magnitudes
1.00, 0.970, 0.947 and 0.906, respectively. It is seen that the
maximum normal stress o, from the first of the formulas (¢),
is approximately the same as that obtained from the usual
beam formula provided the angle a be sufficiently small. For
o = 20° the error of the simple beam formula, as it is seen
from the value of the factor B, is about 10 per cent. The
maximum shearing stress, given by the second of the formulas
(c), is about three times the average shearing stress P/bh and
occurs at points most remote from the neutral axis. This
latter fact is in direct opposition to the results obtained for
prismatical bars (p. 109, Part D). In many cases the tan-
gential stresses are of no great importance and only normal
bending stresses are considered. Then the formula for max-
imum bending stress, derived for prismatical beams, can be
used with a sufficient accuracy also for bars of variable cross
section, provided the variation of the cross section is not
too rapid.

If the change in cross section is abrupt there is a consider-
able disturbance in stress distribution at the section of dis-
continuity and the maximum stress 1s usually much greater
than that given by the simple beam formula, and can be
represented by formula

Fmax = ko ()

in which o is the stress at the point under consideration as
obtained from the prismatical beam formula and & is the fac-
tor of stress concentration. In only a few cases is this factor
obtained by the use of the equations of the theory of elasticity.®

st 4. Neuber, Ingenieur-Archiv, Vol. 5, 1934, P. 238 and Vol. 6, 1935,
P. 133.
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The plate of large width with hyperbolic notches, Fig. 192, is
one of the cases where we have a rigorous solution for stress distri-
bution at the notches. This solution shows that in the case of pure
bending of the plate by the couples acting in its middle plane the
maximum stress occurs at points m, and # and the factor of stress
concentration in formula (4) can be represented by the following
approximate formula

/ d
k= 0.355;—{—0.85 + 0.08 (e)

where 4 is the minimum width of the plate and r the radius of
curvature at the bottom of the notch.

In the case of a circular shaft with a hyperbolic groove, for
which Fig. 192 represents an axial section, the factor of stress
concentration in the case of pure bending is

’d d d
k=4—:3]v( E;+I+I)[‘,i—,_—(1—2u)\/;+1+4+ﬂ:| (f)

where

I+ pu
B (&
1+ 2—r+1

d is the diameter of the minimum cross section and 7 the smallest
radius of the curvature at the bottom of the groove. For large
values of the ratio d/2r the expression (f) can be replaced with a
sufficient accuracy by the approximate formula

3 |4 <

k= . \/;r . ()

Most of the information regarding the magnitude of the
factor k£ in equation (d) is obtained experimentally by’ the
photoelastic method.®® The factors of stress concentration
for pure bending of plates with semi-circular grooves and
with fillets in the form of a quarter of acircleand D = 4 + 27
are given by the curves in Fig. 209. In Fig. 210 the factors
of stress concentration for fillets with various values of the

d d
N=3(2—r+1)+(1+4u) o i i

22 The curves given in the following discussion are taken from the
article by M. M. Frocht, loc. cit., p. 319.
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ratio D/d are given. In Fig. 211 are given the factors of stress
concentration for grooves of varying depth in pure bending.
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For comparison of factors of stress concentration in tension
and in bending for plates and for circular shafts the curves
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in Fig. 212 are given.®® The curves 1 and 2 giving the factors
of stress concentration for a hyperbolic notch in a plate and in
a circular shaft in tension are calculated from formulas (&)
and (¢) in article 59. The curves 3 and 4 showing similar
values for notches in pure bending are calculated from
formulas (¢) and (f), p. 338. It may be seen from these
curves that the factors of stress concentration are higher for
plates than for circular shafts, the difference being more pro-
nounced in the case of tension. In the case of pure bending
which is of greater practical importance, the difference be-
tween the two cases is small, around 6 to 8 per cent for
notches of practical dimensions. The dashed curves (5) and
(6) in Fig. 212 are obtained from the curves in Fig. 191
and 211 by extrapolating these curves to large values of the
ratio 4/r which corresponds to a deep notch semi-circular at
the bottom. It may be seen that the curves (§) and (6) agree
satisfactorily with the curves (1) and (3) for hyperbolic notch
for ratios r/d between 0.1§ and o.50. This indicates that in
the case of deep notches the magnitude of the factor of stress
concentration depends principally on the magnitude of the
ratio r/d and not on the shape of the notch.

The dashed curve (7) is obtained from the curves in Fig.
210 and represents the factors of stress concentration at the
fillets of a plate in pure bending with the ratio D/d = 2. It
is seen that for fillets the factors of stress concentration are
somewhat lower than for deep notches (curves 4 and 6) with
the same ratio r/d. _

To obtain the factors of stress concentration for fillets
in circular shafts the direct test on large steel shafts with the
diameter ratio D/d = 1.5 were made ® at the Westinghouse
research laboratories. The values of these factors obtained
by the direct measurement of strain at the fillets are given by
the points in Fig. 213. For comparison, the results of photo-

# This figure and the following are taken from the paper by R. E.
Peterson and A. M. Wahl, Journal of Applied Mechanics, Vol. 3, 1936,

. D1,

# R. E. Peterson and A. M. Wahl, loc. cit., reference 33.
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elastic expcriments on flat models with Djd = 2and Djd = 1.5
are given ¥ in the same figure by the curves 1 and 2. From
these experlments the very Il'Ilpf_)I'tcll]t conclusion can be made
that the stress concentration factors for the circular shafts
agrec well with the values obtained photoclastically on flat
specimens.
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63. The Investigation of Stress Concentration with Models.
1t was already stated that a complete theoretical solution
for the stress distribution at the section of discontinuity exists
in only a few of the simplest cases, such as that of a drcular
or elliptical hole and hyperbolic notch. 1In the majority of
cases, information regarding stress concentration is obtained
by experiment.  TFor this purpose strain measurements at the
section of discontinuity may sometimes be made with sensitive
extensometers. In this manner, for instance, the stress
concentration at grooves in tension specimens has been in-
vestigated.®  In using this method, difficulty arises from the
hlghh localized chdrdt.te,r of the stress distribution at the phtt.

% These curves were constructed from the data ffn en in Fm‘ 21C.

3 See I, Preuss, V. DL L, Vol. 56, 1912, p. 1349, Vol §7, 1915, P b,
and ].*Ul‘slhllﬂﬂ,’btl’!)&]f{‘n nr. 114, 1973. See also Th. Wyss, Proc. Intern.
(_,onmet,s for %ppl'cd Mechanies, Delft, 1524, D, 354, and his D¥sserti-
tion, Ziirich, 1923, Sce alse F. R(jtbChLI’ and J. CI‘UIHb]CL’,’C] V. DL,
Yol. 56, p. _;OQ 19J
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in question. A very small gauge length, and hence very high
magnification, is necessary to obtain satisfactory results.”

A rough estimate of the factor of stress concentration
may be obtained by loading the specimens or models of
structures with increasing loads untl vielding starts at the
points of maximum stress. This yielding can be seen clearly
in specimens of mild steel with polished surfaces.  bigure 214

.T- T_ #

TENSION

TENSION

L b

T, 214, Fra. 2ic

1s a photograph of the vield lines in a strip of mild stecl.
These yield lines (Lueders’ lines, see p. 415) first appear at the
places of maximum stress.  The distribution of these lines
gives valuable information regarding stresses at the places of
discontinuity.®

% Rubber models to increase the deformations at the section of
discontinuity have alse heen used in several cascs; sce paper hy A.
Stodoela, V. 1. L, Vol. 51, 1907, p. 1272: Humme!, Schweizerische Bau-
Zeitung, 1524, P- 14 1. L. Chitty and A, J. 8. Pippard, Proc. Roy. Soc,,
VOI I"6 1936, p. 518,

See paper by M. ALV aropaev, Bulletin of the Polytechnical 1nsti-
tute at Kiev, 1910, and writer’s paper in Proc. Intern. Congress for
Applied Mechanics, Ziirich, 1926, p. 414.
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Figure 215 shows a Lueders’ line at the fillet on a mild steel
model (Fig. 190), with the proportions 7r/d = o.157 and
D/d = 2.5. The line started from the point on the fillet
where previous photoelastic experiments showed the maximum
stress concentration was to be expected. The factor of stress
concentration given by the curve in Fig. 190 is 1.85. Accord-
ing to this, yielding at the weakest part should start when the
average tensile stress in the narrower portion of the model is
only 1/1.85 of that necessary to produce Lueders’ lines in

Fic. 216.

prismatical bars (Fig. 214) of the same material. Experiment
showed that the load necessary to produce yielding at the
fillet was 1/1.8 of that for the prismatical bar. Figure 216
represents the Lueders’ lines at the edge of the circular hole
in a strip of mild steel. Again these lines show accurately
the points of maximum stress concentration. The average
stress over the end cross section of the plate at which yielding
occurred was 1/2.3 of that necessary to produce yielding in the
prismatical bar.

In both cases the yielding at the place of maximum stress
occurred at an average stress which is higher than indicated
by the true factors of stress concentration. This can ]:Je
explained as follows: The small region of overstressed material
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1s surrounded by portions where the stress does not exceed
the proportional limit. This prevents the sort of sliding
shown in Fig. 214, along surfaces perpendicular to the plane
of the figure and inclined 45° to the direction of tension. In
the cases shown in Fig. 215 and Fig. 216, the Lueders’ lines
started on the polished surfaces of the plates as thin lines
perpendicular to the maximum tensile stress. This indicates
that in these cases the sliding occurred along planes through
these lines and inclined 45° to the plane of the plates. In
such a case the thickness of the plate is an important factor.
This thickness must be very small in comparison with the
radii of the holes or fillets in order to have the surface of sliding
totally within the region of highly overstressed material. The
fact that the surface of sliding, beginning at the points of
maximum stress, must cross a region with smaller stresses
explains # the retardation in the appearance of Lueders’ lines.
In the case of the circular hole above, the width of the plate
was 6 in. and the diameter of the hole 1 in., while the thickness
of the plate was only 1/8 in. When testing models in which
the thickness and the diameter of the hole are of the same
order, it was impossible to detect any substantial effect due
to stress concentration on the magnitude of the load producing
Lueders’ lines. Another reason for the Lueders’ lines being
retarded 1s the fact that a certain amount of permanent set
may occur before Lueders’ lines become visible.

The Lueders’ lines method of testing the weak points of
structures is not confined to any particular type of problem
and has an advantage over the photoelastic method, described
in the next article, in that it is applicable to three-dimensional
problems. To make the yielding of metal visible on a rough
surface the covering of the surface with a brittle paint has
been successfully used in investigating stresses in boiler
heads * and in built-up compression members.” By cutting

% This explanation was suggested to the writer by L. H. Donnell.
" See paper by F. Koerber u. E. Siebel, Mitteilungen K. W. Institute

for Steel Research, Diisseldorf, Vol. 8, 1926, p. 63, and Vol. g, 1627, p. 17,

“R. S. Johnston, Iron and Steel Institute, Vol. 112, 1925, p. 3471.
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specimens and models apart and using a special etching
process on the cut surfaces it is possible to reveal the interior
regions which have yielded and thus obtain information re-
garding the flow of metal at the points of stress concentration.*

64. Photoelastic Method of Stress Measurements.—
There are many stress analysis problems in which the de-
formation is essentially parallel to a plane. These are called
two-dimensional problems. Illustrations are the bending of
beams of a narrow rectangular cross section, bending of
girders, arches, gear teeth, or, more generally, plates of any
shape but of constant thickness acted on by forces or couples
in the plane of the plate. Their shapes may be such that the
stress distributions are very difficult to determine analytically
and for such cases the photoelastic method has proved very

useful. In this method models cut

out of a plate of an isotropic trans-
parent material such as glass, cellu-
loid or bakelite are used. It is well
known that under the action of
v stresses these materials become doubly
refracting and if a beam of polarized
light is passed through a transparent
model under stress, a colored picture
may be obtained from which the
stress distribution can be found.®
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The application of the method in investigating stresses in machine parts
was made by Dietrich and Lehr, V. D. L, Vol. 76, 1932. See also H.
Kayser, “ Bautechnik,” 1936, and A. V. de Forest and Greer Ellis, Journal
of the Aeronautical Sciences, Vol. 7, p. 205, 1940. ‘

2 See paper by A. Fry, Kruppsche Monatshefte, 1g21; also Stahl u.
Eisen, 1921.

43 The phenomenon of double refraction due to stressing was. dis-
covered by D. Brewster, Phil. Trans. Roy. Soc., 1816, It was further
studied by F. E. Neumann, Berlin Abh., 1841, and by J. C. Maxwell,
Edinburgh Roy. Soc. Trans., Vol. 20, 1853, and his Scientific Papers,
Vol. 1, p. 30. The application of this phenomenon to the solution of
engineering problems was started by C. Wilson, Phil. Mag. (Ser. 5),
Vol. 32 (1891), and further developed by A. Mesnager, Annales des
Ponts et Chaussées, 1901 and 1913, and E. G. Coker, General Electric
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In Fig. 217 abed represents a transparent plate of uniform
thickness and O the point of intersection with the plate of a
beam of polarized light perpendicular to the plate. Suppose
that OA represents the plane of vibration of the light and that
the length O4 = a represents the amplitude of this vibration.
If the vibration is considered to be simple harmonic, the
displacements may be represented by the equation:

§ = a cos Pt (@)

where p is proportional to the frequency of vibration, which
depends on the color of the light.

Imagine now that the stresses o and ¢,, different in
magnitude, are applied to the edges of the plate. Due to the
difference in stresses the optical properties of the plate also
become different in the two perpendicular directions. Let v,
and v, denote the velocities of light in the planes ox and oy
respectively. The simple vibration in the plane 04 is re-
solved into two components with amplitudes OB = a cosa
and OC = a sin « in the planes ox and oy respectively, and the
corresponding displacements are

X = a cos a cos Pt} y = asin « cos pt. %)

If 1 is the thickness of the plate, the intervals of time necessary
for the two component vibrations to cross the plate are

h V3
= Z}_I and ly = l)y’ (C)
and vibrations (8) after crossing the plate are given by the
equations:

x1 = acos acos p(t — 4); ¥, = asinacos p(t — t). ()

Co. Magazine, 1920, and Journal of Franklin Institute, 1925. For
further development of the photoelastic method see the paper by Henry
Favre, Schweizerische Bauzeitung, Vol. 20 (1927), p. 291; see also his
dissertation: Sur une nouvelle methode optique de determination des
tensions intérieures, Paris, 1929. The use of monochromatic light, so

- called “Fringe Method,” was introduced by Z. Tuzi, “Inst. Phys. and

Chem. Research,” Vol. 8, p. 247, 1928.
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These components have the phase difference p(#; — #1), due to
the difference in velocities. Experiments show that the
difference in the velocities of light is proportional to the
difference in the stresses; hence

b _h_ k. — 1)

v, U, .0,

/Z(Z),,—U,,)
2

; (approximately) = k(c. — a,), (e)

where v is the velocity of light when the stresses are zero, and
k is a numerical factor which depends ‘on the physical proper-
ties of the material of the plate. We see that the difference of
the two principal stresses can be found by measuring the
difference in phase of the two vibrations. This can be done by
bringing them into interference in the same plane. For this
purpose a Nicol prism (called the analyser) is placed behind
the plate in such a position as to permit the passage of
vibrations in the plane mn perpendicular to the plane 04
only. The components of the vibrations (d), which pass
through the prism, have the amplitudes OB, = OB sin «
= (a/2) sin 2a and OC; = OC cos a = (a/2) sin 2. The re-
sultant vibration in the plane mn is therefore

a . a .
5 Sin 2a cos p@t —t) — 5 sin 2a cos Pt — )

=(asinzasinptl:tz)sinp(t—@). (f)

This is a simple harmonic vibration, whose amplitude is
proportional to sin p[(#; — #)/2]; hence the intensity of the
light is a function of the difference in phase p(#; — #,). If the
stresses o, and o, are equal, # and # are also equal, the
amplitude of the resultant vibration (f) is zero and we have
darkness. There will be darkness also whenever the difference
in stresses is such that

h — bh

p—— = nm ®
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where 7 is an integer. The maximum intensity of light is
obtained when the difference in stresses is such that

H — L
2

sin p = &+ I.

Imagine that instead of the element abcd, Fig. 217, we
have a strip of a transparent material under simple tension.
By gradually increasing the tensile stress we obtain a dark
picture of the strip on the screen each time equation (g) is
fulfilled. In this manner we can establish experimentally for
a given material of a given thickness the stress corresponding
to the interval between two consecutive dark pictures of the
specimen. For instance, for one kind of “phenolite” plate,
1 mm. thick, this stress was found # to be 1,620 lbs. per sq. in.
Hence for a plate 1/4 in. thick, the corresponding stress will
be 1,620/6.35 = 255 lbs. per sq. in. With this information
we can determine the stress in a strip under tension by count-
ing the number of intervals between the consecutive dark
images occurring during the gradual loading of the specimen.
If we use a strip in pure bending, we obtain a picture such
as is shown in Fig. 218. The parallel dark fringes indicate

Fic. 218.

that in the portion of the strip at a considerable distance from
the points of application of the loads the stress distribution is
the same in all vertical cross sections. By counting the

. number of fringes we can determine the magnitudes of the

stresses, as the stress difference between two consecutive
fringes is the same as the stress difference between two con-

# 7. Tuzi, Sci. Papers, Inst. Phys. Chem. Research, Tokyo, Vol. 12,
1929, p. 247.
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secutive dark images in simple tension. By watching the
strip while the load is applied gradually, we may see how the
number of dark fringes increases with increase of load. The
new ones always appear at the top and the bottom of the
strip and gradually move toward the neutral plane so that the
fringes become more and more closely packed. The stress at
any point is then obtained by counting the number of fringes
which pass over the point.

The method of counting the number of dark fringes pass-
ing a chosen point can be used also for any plane stress distri-
bution. As it is seen from our previous discussion, this
number gives generally the difference between the two prin-
cipal stresses at the point. For a complete determination of
the stress at the point it remains then to find the directions of
the principal stresses and their sum. Equation (f) shows
that the intensity of the light passing through the analyzer is
proportional to sin 2, where a is the angle between the plane
of polarization and the plane of one of the principal stresses,
Fig. 217. If these two planes coincide, sin 2« is zero and we
obtain a dark spot on the screen. Hence in examining a
stressed transparent model in polarized light we observe not
merely the dark fringes discussed before but also dark lines
connecting the points at which one of the principal stress
directions coincides with the plane of polarization. By ro-
tating both Nicol prisms, polarizer and analyzer, and marking
dark lines on the image of the stressed plate for various direc-
tions of the plane of polarization, we obtain the system of so-
called isoclinic lines which join together points with the same
directions of principal stresses. Having these lines, we can
draw the lines which are tangential at each point to the prin-
cipal axes of stress. These latter lines are called the srajec-
tories of the principal stresses, see p. 123, Part I. Thus the
directions of the principal stresses at each point of the plate
can be obtained experimentally. '

The sum of the principal stresses can also be obtained
experimentally by measuring the change A% in the thickness
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% of the plate due to the stresses oz and o, ** and using the
known relation

Ah = %l- (062 + 04)- )

Having the difference of the two principal stresses from the
photo-elastic test and their sum from expression (k), we can
réadily calculate the magnitude of the prmcxpal stresses. The
fringes obtained in a plate with ﬁllets' submlt.ted to thfa action
of pure bending are shown as an illustration in Fig. 219.

Fic. 219.

From the fact that the fringes are crowded at the ﬁllefts it may
be concluded that a considerable stress concentration takes

place at those points.

4 This method was suggested by A. Mesnager, loc. cit., p. 346. The
necessary lateral extensometer was developed and successfully used by
A. M. Wahl, see paper by R. E. Peterson and A. M. Wahl, Journal of
Appl. Mech., Vol. 2, 1935, p. 1.
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In the previous discussion of the photo-elastic stress anal-
ysis it was always assumed that we were dealing with two-
dimensional problems. More recently considerable efforts
have been made to expand the photo-elastic method on three-

dimensional problems and some promising results have already
been obtained.*

65. Stresses at the Point of Load Application.—In dis-
cussing a symmetrical wedge under tension (see p. 312) it was
indicated that in each point of that wedge there is only a
simple tension in the radial direction. By making the angle
2a of the wedge equal to 7= and changing from tension to
compression we obtain the case in which a concentrated force
is pressing normally on a straight edge of a large plate, Fig.
220. An element such as shown at point 4 undergoes a

L
\
\
\\ d
\
\
\
]\\
m 7

.

%,

A

/

(2=

'~ ——
b
7

F1c. 220.

simple compression in the radial direction and the compressive
stress, from equation (@), p. 312, is

Pcos 8
o, = kT (a)

where 7 is the radial distance from the point of application
of the load and 4 the thickness of the plate. The factor & is

46 See paper by M. Hetényi, Journal of Appl. Mech., Vol. 5, p. 149,
1938. See also R. Weller, Journal Applied Phys., Vol. 10, p. 266, 1939-
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determined from the fact that the stresses o, distributed along
the length of the semi circle shown in the figure by the dotted
line keep in equilibrium the load P. Hence

/2
z}zf arcos 0 rd6 = P.
0

Substituting for o, its expression (4) we obtain

=2
™
and expression (2) becomes
2P cos @
= T (283)

If we consider a horizontal plane mn at a distance 4 from the
edge of the plate, Fig. 220, the normal compressive stress
acting on that plane is

2P cos’ 0 2_8 cost 6

- 20 — .
gy = o, cos?f = Ir — " 7d (284)

It is seen that the pressure rapidly diminishes as the angle 6
increases. It is seen also that the stresses increase with a
decrease of the distance 4. Knowing the stresses produced
by the action of one concentrated load P and using the method
of superposition we can readily discuss the cases in which
several loads are acting.¥

If a concentrated force is acting at the middle of a rec-
tangular beam of a narrow cross section of 2 depth 4 the highly
concentrated stresses given by expression (283) are superposed
on bending stresses in the beam and a complicated stress
distribution results near the point of the load application.
The photoelastic picture of this stress distribution is shown
in Fig. 221. It is seen that the perturbation in stress dis-
tribution produced by the concentrated load is of a localized
character and is of importance only in the close vicinity of

47 See “Theory of Elasticity,” p. 82.
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the point of application of the load. If we consider a cross
section of the beam at a distance from the load larger, say,
than one half the depth of the beam, the stress distribution
in that cross section is approximately that given by the simple
beam formula. The number of fringes diminishes as the dis-
tance of the cross section from the load increases as it should
be since the magnitude of the bending moment decreases as
we approach the beam supports.

By making the resultant of the horizontal components of
the radial pressures Ao,7d6 for each half of the dashed semi-

Fic. 221.

circle in Fig. 220 (a), it can be shown that the concentrated
force P produces a “wedging” action represented in Fig. 220
(&) by the two equal and opposite forces of the magnitude P/r.
In the case of the beam of a depth 4 and thickness 4, Fig. 221,
these forces acting at a distance d/2 from the axis of the beam
produce in the middle cross section not only tensile stresses

, P
o'z_m (b)

but also bending stresses given by the expression

Pd y .
o _ 2L
0 = o 1.’ (C)

in which Pd/2r is the bending moment produced by the hori-
zontal forces P/w, y is the distance from the axis of the beam,
taken positive downwards, and 7, = A4%/12 is the moment of
inertia of the cross section. Superposing the stresses (4)
and (¢) upon the bending stresses given by the ordinary beam
formula, we find that the tensile stress in the most remote fiber
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of the beam in the loaded cross section is
Pl 6 P 3P
0otz = = 3+ 22k ~ 7k

=Zil._6_(1 _i‘_l). (d)
4 hd? 3w/

The second term in the parenthesis represents the “wedging
action” of the load P. It is seen that in the case of short
beams this action is of a considerable magnitude. The photo-
elastic experiments are in a very satisfactory agreement with
expression (d).

The discussion of stress distribution at the point of appli-
cation of a concentrated load can be expanded on the case in
which instead of a plate, Fig. 220, we have a large body with
a plane surface on which a concentrated load is acting. It
can be shown that in this case the stresses are inversely
proportional to the square of the distance from the point of
application of the load.*

66. Contact Stresses in Balls and Rol-
lers.—If two elastic bodies, say two balls, are
pressing on each other, a small surface of
contact is formed as a result of local de-
formation. The pressures distributed over
this surface are called contact pressures.
The magnitude of these pressures and the
stresses produced in the bodies can be cal-
culated by using equations of the theory
of elasticity.®® We will give here only the Fic. 222
final results of such investigation. In the
case of two balls compressed by forces P (Fig. 222) the pressures
are distributed over a small circle of contact mn, the radius of which

48 See experiments by Carus Wilson, loc. cit., p. 346.

4 This problem was discussed by J. Boussinesq, see his book, “ Appli-
cation des Potentiels,” Paris, 1885. See also “Theory of Elasticity,”
P- 328, 1934.

% This problem was solved by H. Herz, Gesammelte Werke, Vol. 1,
1895. The discussion of the problem and the bibliography are given
in “Theory of Elasticity,” p. 339.
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is given by the equation:

I
PE T
T (385)

v

a=o0.88°

In this E; and E; are the moduli of the two balls and d; and 4, the
corresponding diameters. The maximum pressure occurs at the
center of the circle of contact and is given by the equation:

P
Pmax = 1.5 ;E . (286)

Due to local deformation the centers of the balls approach one
another by the distance

3 1 1 \2/ 1 1
e (E i Grd) e

When the diameters of the balls and the moduli of elasticity are
equal, the above equations become

_ S/Pd 3/4PE2 32 P2
a = 0.88 25 Pmax = 0.62 s A= 154 B (288)

When a ball of diameter 4 is forced against an elastic body having a
plane surface, the required formulae are obtained by substituting
di=d, d, = = in eqs. (285)—(287). Assuming E; = E, = E, we
find for this case

3[Pd 3[PE? 3 P?
a = 0.88 \/—; Pmax = 0.62 s A= I1.54 a" (289)

In the case of a éall in a spherical seat (Fig. 223), the sign of s
in eqs. (285)—(287) must be changed. Then for
the case Ey = E; = E, we find

a = 0.88 \3/}) dids

Ed, —dv’
- 2

Fic. 223. ' Pmax = 0.62 \3/PE2(£{%2—1;’_@) - (290)
201

It is interesting to note that in the cases represented by eqs. (288)
and (289) the maximum compressive stress at the center of the
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surface of contact depends on the magnitude of the ratio P/d? i.e.,
the maximum stress remains constant if the above ratio is kept
constant. This justifies the usual practice of determining the safe
diameter of the ball by taking a definite magnitude of load per
square inch of the diametral section of the ball. Since the material
at the center of the surface of contact is prevented from lateral
expansion, it is in a condition of compression from all sides and may
sustain very high pressures (see art. 83). In experiments 5 with
hardened crucible steel the allowable compressive force .P in the
case of a ball pressed against a plane surface may be expressed by
the equation:
Prax = 70042,

in which 4is in inches and P in pounds. Substituting in the second
of eqs. (289), we find pmax equal to approximately 530,000 lbs. per
sq. in.

In the general case of compression of two bodies having the

_ same modulus E, let 1/r; and 1/’ denote the principal curvatures at

the point of contact of one of the bodies, and 1/r; and 1/, of the
other,® ¢ the angle between the normal planes containing curvatures
t/ry and 1/r.. The surface of contact for the general case is an
ellipse, the semi-axes of which are given by the equations

3|Pm 3/Pm
a=a\}—n—; é=[3\fn > (291)

in which P is the compressive force and

4 ___4E
m=YT 1 1 10 n_3(1—,u2).
—+—=+-+=
n o n re T2

The constants e and 8 are taken from the table 24 below for each
particular case. The angle @ in the first column of the table is
calculated from the equation

cos§ = v ()

it See Stribeck, V. D. 1., 1901, p. 73; Schwinning, V. D. L., 1901, p.
332, and A. Bauschlicher, V. D. 1., 1908, p. 1185.

% The principal curvatures are the maximum and the minimum
curvatures and these are in planes at right angles. The curvature of a
body is considered as positive if the corresponding center of curvature is
within the body.
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I 1y 1y’ 11 I 1
2\/(7‘1 7,1/) + (7‘2 _7”2/) + 2 (; - 7'_1—,) (;2 — 7_—27) cos 2¢. (&)

TasLE 24.—ConsTaNTs FOR CALCULATING THE SEMI-AXES OF THE ELLIPSE
or Conracr

[ [}
degrees “ P degrees “ 8
20 3.778 0.408 6o 1.486 0.717
30 2.731 0.493 65 1.378 ©.759
35 2.397 0.530 70 1.284 o.802
40 2.136 o.567 75 1.202 0.846
45 1.926 0.604 8o 1.128 0.893
50 1754 0.641 85 1.061 0.944
55 1.611 0.678 90 1.000 1.000

The expression for the maximum pressure at the center of the surface

of contact is then

Pmax =

P
I.§

rab

(292)
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In the particular case in which the moduli for both rollers are equal

P'did; B \/ ,di+ ds
E(d, + o)’ Pmax = 0.59 P E—d1d2 « (295)

If one of the diameters be taken as infinitely large as in the case of a
roller in contact with a plane surface, eqs. (293) and (294) reduce to

[Pd P'E
b= 2.1§ f"; Pmax = 0-59\/ d ) (296)

It will be seen that the maximum stress remains constant if P’
varies in the same proportion as 4. This justifies the practice of
determining the safe dimensions on the basis of the diametral
cross sectional area of the roller. The allowable compressive force
P’ in the case of ordinary steel rollers in bridges, for instance, is
obtained from the equation:

P’ = 4ood.

b = 2.15

Substituting this into eq. (296), we find the maximum pressure is
about 85,000 Ibs. per sq. in.*

Problems

1. Determine the maximum pressure at the surface of contact C
in a single row ball bearing, shown in Fig. 225. The ball diameter
is 4 = 1.5 in., the radius of the grooves 1 in., the diameter of the
outer race 8 in. and the greatest compressive force on one ball

In the case of rollers in compression, Fig. 224, the contact area is a
narrow rectangle whose width & is given by
the equation: %

PR L Sy T
BN, L\ TE) @9

in which P’ denotes the compressive force
per unit length of the roller. The maximum
unit pressure at the middle of the rectangle of
contact 1s

dl + dz 1’
= ’ .
Pmex = ©:59 \/2P ddy 11 (204)

- E, Ez
% See A. Foppl, Technische Mechanik, Vol. 5, 1907, p. 351.

\ P = 5,000 lbs.
-
d Solution. Using the notation of page 357,
1. . .
r1=r1’=—2—5=%1n.; g = — 110
& rd = — 4in.;
2 2 11
1.5 + 1.5 1 4
-t 4 X 30 X 108
R
Fic. 225. 3249

8 For testing of steel rollers see W. M. Wilson, Univ. of Illinois,
Engr. Exp. Sta. Bull. 162, 1927; 191, 1929; 263, 1934. See also V. P.
Jensen, Iowa Engr. Exp. Sta., Bull. 138, 1937. Fatigue test of rollers
discussed in art. 8o.
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4 4 I
21{—;=M_I4I7; 2B=;—;=o.75o
Substituting in eq. (4) (p. 357),
cos 8 = 2152 - 0.529; 0 = 58°

1.417
Then from the table, by interpolation,
a = 1.536, B = o.701.

The semi-axes of the ellipse of contact are, from eqs. (291),

4= 1.536 \3/5,000 X 2.823 X 3 X 0.91

2 X 30 X 10° = 0.10§ in.,
3/c,000 X 2.823 X 3 X 0.91 ]
b = o.701I \/5 2 X 3o3>< 1306 L 0.048 in.
Then, from eq. (292),
§,000 .
Pmax = 1.5 wah = 475,000 lbs. per sq. in.

Such high stresses can be sustained by hardened steel due to the
fact that at the center of the ellipse of contact the material is
compressed not only in the direction of the force P but also in
the lateral directions.

2, Determine the surface of contact and the maximum pressure
between two circular cylinders whose axes are mutually perpendicu-
lar. We have such a problem, for instance, in contact pressures at
the point of contact of a wheel with cylindrical boundary and a rail.®®

Solution. Denoting by r1 and r; the radii of the cylinders and
using the notation of page 357,

I
=0

n 7
[ S o
I I I 'I I 2 I I I
A:— -—+— 3 B= —Z—l—-—z———:i— —_—— - .
2\ o) 7 7y [S12) 2 71 72

5 The problem of contact pressures becomes more and more im-
portant as the axial load of modern locomotives is increased. For
discussion of this problem, see the paper by H. Fromm, V. D. L., Vol. 73,

1929, p- 957,

I T4 ___4E
AR T A D

[ SRR
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The sign must be chosen so as to make B positive. From eq. (@)

1 1
n_n
c030=:!:1——;'
—7'_1 re

Knowing 8, we get the semi-axes of the ellipse of contact from egs.
(291) and the maximum pressure from eq. (292).

In the particular case of two cylinders of equal radii, cos 8§ = o,
and from the table on p. 358 it can be concluded that the surface of
contact has a circular boundary.

3. Find the maximum pressure between the wheel with a cylin-
drical rim of radius ry = 15.8 in. and the rail with the radius of the
head 7, = 12 in. if P = 1000 lbs. and Poisson’s ratio u = 0.25.

Answer. The semi-axes of the ellipse of contact are

a = 0.0946 in. and & = 0.0792 in.
Pmax = %—7% = 63,600 lbs. per sq. in.



CHAPTER VIII
DEFORMATIONS BEYOND ELASTIC LIMIT

67. Pure Bending of Beams the Material of Which Does
Not Follow Hooke’s Law.—The experiments with beams the
material of which does not follow Hooke’s law indicate that
during pure bending the cross sections of the beam remain
plane; hence elongations and contractions of longitudinal
fibers are proportional to their distances from the neutral
surface. Taking this as a basis of our further discussion and
assuming that during bending there exists the same relation
between stress and strain as in the case of simple tension and
compression, we can find without difficulty the stresses pro-
duced in the beam by a bending moment of a given magni-
tude.! Let us begin with a beam of rectangular cross section,
Fig. 226, and assume that the radius of curvature of the neu-

—b—

il

Fic. 226.

o1

tral surface produced by the moments M is equal to . In

such a case the unit elongation of a fiber a distance y from
the neutral surface is

=7
€ , (a)
{This theory has been developed by Saint Venant in his notes to the
Navier’s book: ““Résumé des legons. . . .” 3d ed., p. 173, 1864. See also

paper by Eugen Mayer, Physik. Zeitsehr., 1907 and Dissertation by H.
Herbert, Géttingen, 1909.
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Denoting by 4, and 4. the distances from the lower and the
upper surfaces of the beam respectively to the neutral axis,
we find that the elongations in the utmost fibers are

€1 = —» € =
7 r r

Ay -_}E. )

It is seen that the elongation or contraction of any fiber is
readily obtained provided we know the position of the neutral
axis, say ratio %i/hs, and the radius of curvature r. These
two quantities can be found from the two equations of statics:

hy
fwa:& ody = o, ©

hy

f@M=b oydy = M. @)
4 —bhy
The first of these equations states that the sum of normal
forces acting on a cross section of the beam vanishes, since
these forces represent a couple. The second equation states
that the moment of the same forces with respect to the neutral
axis is equal to the bending moment M.

Equation (¢) is now used for determining the position of
the neutral axis. From equation (a) we have

y = re, dy = rde. (e)

Substituting into equation (¢) we obtain

By €
f ady=rf ode = O. (f)
«/ —=hy €

Hence the position of the neutral axis is such that the integral

el . 3 .
f ode vanishes. To determine this position we use the
e

curve AOB in Fig. 227, which represents the tension-compres-
sion test diagram for the material of the beam, and we denote
by A the sum of the absolute values of the maximum elonga-
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tion and the maximum contraction, which is

hy  he A

A—€1—62=7+7=;' (2)
To solve equation (f), we have only to mark the length A
on the horizontal axis in Fig. 227 in such a way as to make
equal the two areas shaded in
the figure. In this manner we
obtain the strain ¢ and ¢ in the
utmost fibers; equations (4) then
give
&

b
e : (%)
/ This determines the position of

the neutral axis. Observing that
elongations e are proportional to
g // the distance from the neutral
A axis, we conclude that the curve
AOB also represents the distri-
bution of bending stresses along
the depth of the beam, if % is substituted for A. In calculating
the radius » we use equation (d). Substituting for y and dy
their expressions (¢), we represent equation (4) in the follow-
ing form:

€1
€2

Fre. 227.

or? felaede = M. (7)

By observing that r = #/A from equation (g), the equation
(), after a simple transformation, can be written as follows:

bR 1 12 (™ .
I_Q—;Ef O'Gd€=M. (])

Comparing this result with the known equation
Er{ =M . (k)

for bending of beams following Hooke’s law, we conclﬁde that
beyond the proportional limit the curvature produced by a
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moment M can be calculated from the equation:

E.1
r

= M, (297)
in which E, is the reduced modulus defined by the expression:

12 4

E. =— f oede. (298)

A%,

The integral in this expression represents the moment with
respect to the vertical axis through the origin O of the shaded
area shown in Fig. 227. Since the ordinates of the curve in
the figure represent stresses, and the abscissas, strain, the
integral and also E, have the dimension of lb. in.™? i.e., the
same dimension as the modulus E. The magnitude of E, for
a given material, i.e., for a given curve in Fig. 227, is a function
of A or of hfr. Taking several values of A and using each
time the curve in Fig. 227 as was previously explained, we de-

ib
E, i

30.10*

20.10°

10a10*

6" —5605 0010 omo_“_“‘—dbgols_ﬁ_,o.ozo 5
r

Fic. 228.

termine for each value of A the corresponding utmost elonga-
tions €; and e, and from expression (298) the corresponding
value of E,. In this way a curve representing E, as a function
of A = k/ris obtained. In Fig. 228 such a curve is shown for
structural steel with E = 30.10° lbs. per square inch and the
proportional limit 30,000 lbs. per square inch. In such a
case, for A < 0.002, E, remains constant and equal to E.
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With such a curve the moment corresponding to any assumed
curvature can be readily calculated from equation (297), and
we can plot a curve, Fig. 229, giving the moment M as a
function of A. For small values of A the material follows
Hooke’s law, and the curvature is proportional to the bending
moment M, as shown in the figure by the straight line OC.
Beyond the proportional limit the rate of change of the curva-
ture i1s always increasing as the moment increases.

M /
/
/ e
c I F
8 h h,
0 i 1 1 —é_ h.
A ooo¥ 0.010 h 0.015 J_L t
arr — 5 —
Fi. 229. Fic. 230.

If instead of a rectangle we have any other symmetrical
shape of the cross section, the width & of the cross section is

variable, and equations (¢) and (4) must be written in the
following form:

By o i
body = r f bode = o, %
—~hy &
hl El
baydy = r? f boede = M. (m)
—hy €

Take as an example the case of a L section, Fig. 230. If we
denote by ¢ the longitudinal strain at the junction of the web

:'ctnd of the flange, the equations (/) and () can be written
in the following form:

f o’de—i—fq% de = o, ()
€ (4 )

brz(f gede —i—fl’%l aede) = M. (0)
€ 4
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We see that in this case the ordinates of the tensile test curve
in that portion corresponding to the flange of the cross section
must be magnified in the ratio #/6. In determining the
position of the neutral axis we proceed as in the preceding

~case: use the tension-compression test diagram, Fig. 231, and

mark on the horizontal axis such a position of the assumed
length A = A/r that the two shaded areas become numerically
equal. In this manner the strains & and e in the utmost
fibers are obtained. The strain € at the junction of the web
and the flange is obtained from the equation

’
€ — € A

A R

in which ¢ is the thickness of the flange, Fig. 230. Having
determined the position of the neu-

tral axis and observing that the iy
expression in the parentheses of /
equation (o) represents the mo- {
ment of the shaded areas in Fig. +
231 with respect to the vertical |
axis through the origin O, we can 4
readily calculate from equation (o)
the moment M, corresponding to
the assumed value of A = Afr.
In this manner a curve similar

T
to that shown in Fig. 229 can be /I_ a—
-

o

constructed for a beam of L sec-
tion. An I beam can also be
treated in a similar manner. Fic. 231

In the previous examples the tension-compression test diagram
AOB was used for determining the position of the neutral axis and
the magnitude of the radius of curvature, r. If there exists an
analytical expression for the curve 4OB, the above quantities can
be obtained by calculation alone without using the graphical method
shown in Fig. 227 and Fig. 231. A very general equation for stress-
strain curves was used by Saint Venant? He assumed that for

% Loc. cit., p. 362.
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bending beyond the proportional limit the distribution of tensile
and compressive stresses along the depth of the beam can be repre-
sented by the following equations:

o=l i-(-0)]
v=eil-(-3)]

’

(»

in which a9 and oo’ and also @ and 4 are certain constants which,
together with the exponents 7 and #, define the stress distribution
curves shown in Fig. 232. For very small distances y and y; we
can assume that

SR WU 5 _ _m
(I a)NI o and (1 /}>~I 3’

and equations (p) give

oy  ggmre ,  odnyr oy nre
g=—"=—, and o= 5= =—-:
Hence
somr oo’ nr

a = El, and b = Eg, (q)

where E; and E; are the moduli of the material for very small tension
and compression respectively. If these two moduli of the material
are equal, the two curves given by

’, equations (p) have a common tan-
T 0 % gent at the neutral axis and we have

M ! 1 M )

6 BTnlN o _ oon.

x ()

} ( / a b

= | M

By using expressions (p) in equations
{ i of equilibrium (¢) and (d), the posi-
= tion of the neutral axis and the
y radius of curvature can be calcu-
Fio. 232 lated in each particular case. Taking,

for example, m = n = 1 and using
expressions (g) we obtain, from equations (p),

a—@, 0'=E—2y1' : ()
r r

This is the case in which the mater'ial of the beam follows Hooke’s
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law but has a modulus in tension different from its modulus in
compression. Substituting expressions (s) into equation (¢) and
assuming that the beam has a rectangular cross section, we obtain

E\h? = Eqho?,
which, together with the equation 4, 4 %, = 4, gives

WE, WE,
TVEAE MY T ntm
From equation (4) we then find
Edhy b 2, BB 1 4EE,

ro2 3t (VB + VR

It is seen that in this case the curva-
ture is obtained from equation (297)
by using for the reduced modulus the T

value

4E1E2 .
(VE, + VEu)
This modulus is sometimes used in cal-
culating the buckling load for a column
compressed beyond the proportional
limit of the material.?

As another example let us assurhe
that the stress-strain curves in tension
and compression are identical; then
m = n,a = b and 6o = o in equations
(). Assuming also that a =4 = 4/2
we find, from equation (d), for a rectan- |
gular beam:

(299)

r =

N>

e

Fie. 233.

o gm(m + 3)

6 Amtnmta (300)
The neutral axis in this case goes through the centroid of the cross
section. The curves giving the stress distribution for various values

of the exponent 7 are shown in Fig. 233. With increasing values
of m the moment approaches the value:

_3 i
M'— 2 a'max 6

3 “Theory of Elastic Stability,” p. 156.

M = oumax *
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In the case of structural steel with a pronounced yield
point the stretching of the material during' yielding (thfa hori-
zontal portion at B in the tensile test diagram of Fig. 24,
p. 6, Part I) may be many times larger than the elastic
elongation, say from 10 to 15 times larger. It may also l')e
assumed for steel that the yield point stress is the same in
tension and compression. Then the tension-compression test

diagram can be represented with
o sufficient accuracy by the
"‘rr" straight lines shown in Fig. 234.
With a rectangular beam as an
example, the strains ¢, and e
in the outermost fibers during
bending beyond yield point are

z always equal, and equation (7)
€ a gives:

57'20'1'.1’.(612 - ?lg‘eY.P.z) = M, (t)

-—‘e N where ey.p. = ov.p./E is the elas-
” tic elongation at the yield-point
stress. If ey.p, is small in com-
parison with e, the second term
in the parentheses of equation (¢) can be neglected, and we
obtain

m‘—ﬁq

Fic. 234.

briedoy.p. = M. (”)

The distribution of stresses over the cross section of the befxm
is then represented by two rectangles, and the corresponding
bending moment has the magnitude

2
M, = b—h“G'Y.P., (v)

4
which is obtained by substituting e, = A/2r into equation (-u).
Denoting by My.p, the magnitude of bending moment at wl}lch
the stress in the most remote fibers first arrives at the yield

point, we have oy.p. = 6My.p./6A* and equation (v) becomes

M. = $My.p. ’ (301)

At the value Mu, of the bending moment all fibers of the
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beam are in the condition of yielding and this yielding con-
tinues without increase in resisting moment as long as the
stress-strain relation is as given by the diagram in Fig. 234.
It will stop only when hardening of the material due to
stretching becomes noticeable, but at '

that time the curvature of the beam ko]

due to plastic deformation becomes so T

large that it cannot be allowed in per- a5,

manent structures; hence the value (v) rlj ¢

of the bending moment must be con- ‘;‘

sidered as its ultimate value. —
Applying the same reasoning in

the case of an I-beam, Fig. 23¢, and
assuming that at the ultimate values of the bending moment

the stress in all fibers has the value oy.p., we obtain

My, = "1”" [tk + 62 — h2)]. (302)

The moment at which yielding begins is obtained if we multi-
ply ov.r. by the section modulus, which gives

__ 0Ov.p. 261h3 b(h* — h®)(h + hy)
My p = 4 [ 3% + Y ] (w)

Since in usual cases the difference between 4 and 4; is com-
paratively small, we see from expressions (302) and (w) that
the ratio M., : My.p. is much smaller for I-beams than for
rectangular beams. Hence a comparatively small increase

in the moment above the value My.». may bring the beam to a
critical condition.*

68. Bending of Beams by Transverse Loads Beyond
Elastic Limit.—In the case of bending of beams by transverse
loads we neglect the action of shear on deflection * and assume

*It was assumed in the above discussion that the beam is bent in
the plane of its maximum rigidity and that lateral buckling of the
compressed flange is prevented.

5The effect of shear has been discussed by A. Eichinger, Final

Report, Second Congress International Assoc. Bridge and Structur.
Engng., Berlin, 1938.
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that the relation between the bending moment and the
curvature is represented by equation (297) derived for pure
bending. Then the area-moment method (see p. 144, Part I)
can be applied in calculating deflections beyond the propor-
tional limit. It is only necessary
to observe that the flexural rigid-
ity in this case 1s not constant

e but varies with the magnitude of
osr the bending moment. To estab-
B lish the relation between these
o2} two quantities for rectangular

beams, we use the curve in Fig.
m=EI2 909, For any value of A = Afr

Fic. 236. the ordinate 4B gives the corre-

sponding value of the bending

moment, and the ordinate 4C represents the moment which

we would have if the material followed Hooke’s law. Hence

AB: AC = E, : E.
In this way we obtain for each assumed value of the bending

moment the ratio E.I/EI of the reduced ﬂexur:al rigifiity to
the initial flexural rigidity of the beam. Denoting this ratio

E
c
D F .
Mo
%A m n %7
Fia. 237,

by 8 we represent it as a function of the bending moment M
by the curve shown in Fig. 236. To illustrate how this curve
can be used in the calculation of deflections, let us cor}s1der
the case of a simply supported beam load'ed at the m}ddle,
Fig. 237. The bending moment diagram in this case is the
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triangle #/CB. Let M, be the magnitude of that bending
moment up to which the material follows Hooke’s law. In
such a case the portion m# of the beam is stressed beyond its
proportional limit and the reduced flexural rigidity, which
varies along this portion of the beam, instead of the initial
flexural rigidity, must be used in calculating deflections.
Proceeding as in the case of beams of variable cross section
(see p. 211, Part I), we divide the ordinates of the bending
moment diagram by the corresponding values of 8, taken from
Fig. 236. In this manner the modified bending moment
diagram A4DEFB is obtained. Considering the modified
bending mement area as a fictitious load and proceeding in
the usual way, we obtain the deflection at any cross section of
the beam by dividing by EI the bending moment produced
at that cross section by the fictitious load.

We have discussed here only the case of a rectangular
beam, but the same method is applicable in other cases pro-
vided the curve for the factor B, similar to that shown in
Fig. 236, is obtained. Such a curve can be constructed by
using the method illustrated in Fig. 231, or its ordinates can
be calculated if the stress-strain relation beyond the propor-
tional limit of the material is given analytically as by equations
(p) in the preceding article.

In the case of a material such as steel, which has a pro-
nounced yield point, Fig. 234, the bending of a rectangular
beam beyond the yield point does not mean immediate failure
of the beam. The yielding starts in the outermost fibers of
the cross section with the maximum bending moment while
the rest of the beam continues to work elastically. By -
plotting a load-deflection diagram for such a beam, we find
that the shape of this diagram is quite different from the
stress-strain diagram for the simple tension test of steel.
When yielding of the material begins, we obtain in the load-
deflection diagram only a slight deviation from a straight line,
and a considerable flattening of the curve occurs only at a
much higher load when yielding spreads over a large portion
of the material of the beam. The amount of this flattening
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of the load-deflection diagram and the magnitude of the corre-
sponding permanent deflection of the beam depend upon the
percentage of plastic flow at the yield point in the tension-
compression test curve for the material. Assume, for ex-
ample, that plastic flow at the yield point is 13 per cent, i.e.,
about fifteen times larger than the elastic elongation at the
proportional limit of structural steel. If the outermost fibers
of the beam undergo this much plastic flow, the stress dis-
tribution will approach that represented by two rectangles,
and the corresponding bending moment is then seen (equation
301) to approach the value one and one-half times greater than
the moment My p. at which yielding first begins. *The curva-
ture in this case, from equation (g) of the preceding article, is
1 A 003
r ko ko

This large curvature will occur only in those portions of the
beam where the bending moment approaches the above high
value of 1My p.. Thisindicates that there will be a tendency
for the bending to concentrate at the section of the maximum
bending moment, and the deflection curve beyond the yield
point will have a different shape from that below the elastic
limit. In the case of bending of a beam by a force at the
middle, Fig. 237, the yielding will occur principally at the
middle, where a considerable curvature will result, while the
remaining portions of the beam will be only slightly bent.

If, instead of a solid rectangular cross section, we take an
I-section, the effect of plastic flow at the yield-point stress on
the load-deflection diagram will be much more pronounced.
This is obvious since most of the material is concentrated at
the flanges of the beam, and consequently most of the fibers
at the cross section of maxinum bending moment begin to
yield at about the same time. This yielding of material
results finally in lateral buckling of the flanges.® Hence the
maximum load that an I-beam may carry is only slightly

§ “Theory of Elastic Stability,” p. 273.
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larger than the load that first produces yield-point stress in
the flanges. From this discussion it may be seen that when
we take the loading which first produces a yield-point stress
as the basis for determining the allowable stress in a beam,
the factor of safety for the loading which produces unper-
missible damage depends on the shape of the cross section.
In the case of a rectangular beam, this extra safety factor is
considerably higher than in the case of an I-beam. In struc-
tural design this difference is usually disregarded, and beams
of any cross section are designed on the basis of yield-point
stress.” It 1s also usually assumed that up to this point our
elementary formulas for calculating stresses, based on Hooke’s
law, are sufficiently accurate.

In our discussion of bending of beams by transverse loads
it was assumed that the problem was statically determinate
so that the construction of the bending moment diagram did
not require any discussion of the deflection curve. In the
statically indeterminate cases the problem becomes more in-
volved, since beyond the proportional limit redundant forces
and moments are no longer proportional to the acting loads,
and the principle of superposition does not hold. Sometimes,
however, the problem can be simplified by using a symmetry
consideration. Assuming, for instance, that the ends of the
beam in Fig. 237 are builtin, we conclude, from symmetry,
that the bending moment vanishes at the quarter points, and
the deflection curve consists of four identical portions which
can be obtained in the same way as for a cantilever loaded at
the end. In the case of a uniformly loaded beam with built-in
ends we conclude from symmetry that the moments at the
ends are equal. The magnitude of these moments can be
obtained by trial and error method. It is necessary to assume
some value for these moments and construct the modified
bending moment diagram, as explained for the case shown in
Fig. 237. The correct value of the moments is evidently that
value at which the total fictitious load, represented by the
modified bending moment area, vanishes.

" Another way of beam design is discussed on p. 376.
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It may be seen from the above discussion that in the case
of bending beyond the proportional limit the calculation of
redundant forces and redundant moments requires usually a
complicated investigation. In the case of such materials,
however, as structural steel, which has a pronounced yield
point, the analysis of statically indeterminate structures can
be simplified very much if we limit our consideration to that
stage of loading at which the structure reaches the critical
condition and begins to yield without a further increase in the
load. Take again, as an example, the uniformly loaded beam
with built-in ends, and assume that the intensity of the load
is gradually increasing. At a certain magnitude of this load
the redundant moments at the ends reach the value My p., and
the material begins to yield. The corresponding bending
moment diagram, calculated on the assumption that Hooke’s
law holds up to the yield point, is shown in Fig. 238, a. Pro-
ceeding further with the increasing load, we observe that a
stage will be reached at which the redundant moments become
equal to M,;. This loading condition is not yet critical for
our beam, since the moment at the middle remains smaller
than the My value, and the beam can withstand the load
action. With a further increase in load, owing to yielding of
the material, the moments at the ends do not change their
magnitude, and further deflection occurs as in the case of a
simply supported beam.® The critical condition is finally
reached when the bending moment at the middle becomes
equal to My The corresponding bending moment diagram
is shown in Fig. 238, 4. At this load the local bending at the
ends and at the center proceeds without any further increase
in load, and a considerable plastic deformation will be pro-
duced before the hardening of material begins to counteract
the yielding.

It was already shown (see p. 371) how the magnitude of
M. can be calculated for a beam of a given cross section.
Knowing My, we can readily construct the bending moment

8 Any hardening of material is entirely neglected in this discussion.
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diagram for the critical condition, and determine the critical
vqlue of the load. For instance, in the case of a uniform load
Fig. 238, 4, we find the critical value of load intensity frorr:
the equation:

M

8 = Q-Mult-

AF the same'time, the load intensity at which yielding begins,
Fig. 238, 4, is defined by the equation:

qv. .12

——; = I%MY.P.-
Hence

Ger _ 4 Mult .

gv.P. 3 My p.

It is seen that the ratio ¢ge/gv.r. depends on the shape of the

cross section of the beam. For rectangular beams this ratio
is equal to 2.
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A s%milar discussion can be repeated for any other kind
of: loading of a beam with built-in ends and also for beams
with other end conditions or for continuous beams: in each
case the magnitude of the critical load can be readi,ly estab-
!lshed. For example, in Fig. 239 the bending moment diagram
1s shown for the critical condition of the beam built-in at the
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left end, simply supported at the right end, and loaded at the
third point C. This diagram is readily cor}structed if we
observe that at the critical condition the bending moments at
A and C are equal to Mu. The critical value of the. load at
which yielding at A and C proceeds without a further increase
in the load is given by the equation:

2p.J = 1tMa.
9

In Fig. 240 the bending moment diagram for the critical con-
dition of a uniformly loaded continuous beam is shown. The
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magnitude of ¢., and the distance ¢ defining the position (?f
the critical cross section C are obtained frorp the two con('il—
tions: 1) the bending moment at C is a maximum, and 2) its
magnitude, as also the magnitude of the moment at B, is

equal to My, which give

q;'[ _ A4’[u1t - qcrf — O,

2
gol | _ g _ Muwc
2 2 /

From these equations we find
QMul(: .
¢ =IN2=1),  Go =pG = a4m)

From these examples it can be appreciated that't,he ca.lcu—
lation of the critical loads can be readl.ly made in var&ﬂo}gs
particular cases of statically indeterminate beams. 18
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calculation is usually simpler than that required in determin-
ing the values of the loads at which yielding begins, since we
do not need to go into analysis of the statically indeterminate
systems.®

It was already indicated that under the action of the
critical loads the steel structures undergo considerable defor-
mation which is not permissible under normal service condi-
tions; hence it is important to consider those critical loads in
the design and to determine the safe load on the structure
dividing the magnitude of the critical load by a proper factor
of safety. Such a procedure appears logical in the cases of
steel structures submitted to the action of stationary loads,
since in such cases a failure owing to the fatigue of metal is
excluded, and only failure due to yielding of metal has to be
considered.®

69. Residual Stresses Produced by Inelastic Bending.—
If a beam is bent beyond the elastic limit, some permanent
set is produced, and the deformation does not vanish after
the load is removed. The fibers which suffered a permanent
set prevent the elastically stressed fibers from recovering their
initial length after unloading, and in this way some residual
stresses are produced. To determine the distribution of these
stresses over the cross section, let us begin with the simplest
case of a rectangular beam in which the stress distribution in
bending beyond the yield point can be represented by two
rectangles, ok/m and oprn, shown in Fig. 241, 2. We assume
also that the material, if stretched beyond the yield point and

® M. Griining, Handbuch f. Bauing. Bd. IV, Der Eisenbau, 1929,
Griining-Kulka, “ Die Bautechnik,” 1928, p. 274.

10 Such a method of determining safe dimensions of steel structures
was proposed by N. C. Kist, “Der Eisenbau,” vol. 11, 1920. The
experiments for determining critical loads were made by Maier-Leibnitz,
“Die Bautechnik,” 1928, and by K. Girkmann, “ Die Bautechnik,” 1932.
A theoretical discussion of the bending of beams beyond the yield point
was given by J. Fritsche, Bauingenieur, 1930 and 1931. The combina-
tion of bending with compression was discussed by K. Girkmann,
Sitzungsber. Akad. Wiss. Wien, Abt. IIa, vol. 140, 1931. In this country

the question of design on basis of the critical loading has been discussed
by J. A. Van den Broek, Trans. A. S. C. E. Vol. 105, 1940, p. 638.
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then unloaded, follows Hooke’s law during unloading, as
shown in Fig. 241, 4 by the dotted line. As a result of this
assumption it can be concluded that the bending stresses
which are subtracted while unloading the beam follow the
linear law indicated in Fig. 241, @ by the line min;. The
difference between the two stress distributions, rectangular

while loading and triangular

™ o;'i ™ - while unloading, shown by the
7+ 1 shaded areas in Fig. 241, a,
P - | represents the stresses which
0 k h o ‘ . .
+ }_L *» | remain in the beam after un-
‘—A | loading. These are the resid-
ar " (o) (b) 3

ual stresses produced in the
beam by plastic deformation.
The signs of these stresses, shown in the figure, are obtained
by assuming that the initial bending produced the curvature
convex downward. Since the rectangular and the triangular
stress distributions both represent the bending moment of the
same magnitude, it can be concluded that the moment with
respect to the axis pok of the triangle omm, is equal to the
moment of the rectangle ok/m about the same axis. Hence
the stress represented in the figure by the length mm; must
be equal to Ticy.p., and the maximum tension and compression
which remain in the most remote fibers after unloading the
beamisequal to ov.p.. Theresidual stresses in the fibers near
the neutral surface are as high as oy p.. Itmay be seen that
the stress distribution represented in the figure by the shaded
areas reduces to two equal and opposite couples, with the
value oy.p.bh%/27, which are in equilibrium. The existence of
these residual stresses can be shown experimentally by sawing
the beam along the neutral plane. Then each half of the beam
obtains a certain curvature. If a beam with such residual
stresses as indicated in Fig. 241, @ is bent again by moments of
the same magnitude and in the same direction as in the previous
experiment, the stresses produced by these moments and
represented by the straight line m.7,, will be superposed on
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the residual stresses, given by the shaded areas, so that the
resultant stress distribution will be that represented by the
rectangles ok/m and onrp. The maximum resultant stress is
ov.r., and no yielding will occur during this second bending.
Hence the residual stresses produced by the first bending are
of such a nature as to increase the bending moment which can
be sustained by the bar elastically provided the direction of
bending is unchanged. This phenomenon of improving the
elastic capacity of a structure by a preliminary loading and
creation of suitable residual stresses is sometimes used in
practice. Some particular cases will be discussed later (see
art. 74).

In a more general case of inelastic bending of a rectangular
beam the stress distribution is given by a curve such as the
curve niomy in Fig. 242, a. Assuming again that during

m m,

noon (a) b

- s

m nl @
h

42z

T -

(b) obA

Fic. 242.

unloading the material of the beam follows Hooke’s law, we
find that the residual stresses produced by plastic flow are
distributed as shown in the figure by the shaded areas. If
the curve #,0m; is determined as explained in article 67, the
magnitude of the residual stress can be readily obtained for
each fiber. If the curve #,0m,; is unknown, the residual stress
distribution can be investigated experimentally by taking off
from the beam, one after the other, thin layers parallel to the
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neutral plane and by measuring after each cut the elastic
deformation which ensues in the beam.

Assume that the residual stress at the lower side of the beam is
tension of a magnitude . Then the removal of a thin layer of a
thickness A, indicated in Fig. 242, 4, evidently produces the same
deformation in the rest of the beam as would be produced by the
application of the two equal and opposite forces ¢4A, shown in the
figure by the dotted arrows. We shall find that after cutting off
the thin layer the axis of the beam acquires an elongation and a
curvature given by the formulas:

4 = obA d(l) _abA(h — A)12  obAh

Ebh> r) T 2Eb(h — AP 2El (@)
It is seen that if the curvature 4(1/r) is measured, o, the magnitude
of the residual tensile stress in the most remote fiber, is readily
calculated from the equation (2). The determination of the residual
stress g, in a fiber mn at a distance & from the upper side of the
beam, Fig. 242, &, is more involved. By taking off one layer after
the other we finally reach the layer m», and we can determine the
stress in it by using an equation similar to equation (#). This
stress, however, will have a magnitude o,” different from the residual
stress da, since ‘the cutting off layer after layer produces changes of
stresses in the remaining portion of the beam. It is evident that
only after investigation of these changes will the determination of
the required residual stress o, be possible. Let us assume that by
taking off layer after layer we reached the fibers indicated by the
dotted line in Fig. 242, 4, at a distance 2z from the upper side of
the beam. If a new thin layer of thickness A is now taken off, the
stress ¢, in this layer is obtained from the equation:

I o, b2A b(22)
d(r) =gl where I, = -

from which
d(1/r)EI,
bzA )

[—
0, =

®

The removing of this layer will produce in the fiber m#z a direct
stress of the magnitude

) o, A

26z’

()
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and a bending stress of the magnitude

o/ b2 (a — 2)
L @

Formulas (¢) and () give us the changes in the stress of the fiber
mn owing to the removal of one layer. Taking now into consider-
ation all thin layers by varying 2z from % to 4, we obtain the total
change in the stress of the fiber m# as follows:

+ e ézA}:z — 3 > (e)

where ¢, for each step is calculated from formula (&) by using in it
the measured values of 4(1/r). The required residual stress ¢, in
the fiber mn is now obtained by subtracting the quantity (¢) from
the stress ¢,’, which is found by substituting 4 for 2z in formula (&).
Hence

/A o/ b2A(a — 2)

aa=aa—2*£;—2—“‘—jz N

This method of experimental determination of longitudinal residual
stresses can be applied not only in the case of bending but also in
other cases of prismatical bars submitted to longitudinal plastic
deformation (see art. 71). It was, for example, successfully applied
in measuring residual stresses in cold drawn brass tubes.!! To take
off thin layers of metal a special chemical solution was used in that
work. The changes in curvature were measured optically. In this
way complete information regarding residual stresses in cold drawn
tubes can be obtained. Such information is of great practical
importance in developing the proper technique in manufacturing
tubes.

70. Torsion Beyond the Elastic Limit.—Let us begin with
the torsion of circular shafts and assume that beyond the
elastic limit the cross sections of the twisted shaft continue to

' This method was developed by N. N. Dawidenkow, Journal of
Techn. Phys., Vol. 1, 1931, Leningrad, and Zeitschrift fiir Metallkunde,
Vol. 24, 1932, p. 25. See also the doctor’s thesis by C. G. Anderson, Uni-
versity of Michigan, 1935. Another method suitable for measuring
residual stresses in rolled sections such as I-beams and channels was
developed by J. Mathar, Archiv fiir das Eisenhiittenwesen, Vol. 6
1932-33, p. 277.

b
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remain plane and their radii remain straight.? In such a
case the shearing strain v at a distance 7 from the axis of the
shaft is determined by the same formula as in the case of
torsion within the elastic limit (see p. 261, Part I):

v = 10, (d)

where 6 is the angle of twist per unit length of the shaft. To
determine the magnitude of the torque which 1s required for
producing the twist 8, it is necessary to know the relation
between shearing strain vy and shearing stress = beyond the
proportional limit. Assume that the
P diagx:am in Fig. 243 gives the required
7 relation. If 4 is the outer radius of
*  the shaft, the maximum shearing strain
0 zdf is @9 and the corresponding maximum
shearing stress is given by the ordinate
mn in the diagram of Fig. 243. In the
ool ar ™ ¥ same way the shearing stress at any dis-
ad—= tance 7 from the axis can be readily ob-
tained from the diagram. The torque
M, which must be applied to produce
the assumed magnitude 8 of the twist is now obtained from
the equation of statics:

Fi1c. 243.

[[omidrr = Mo ?)
0
Substituting in this equation from equation (a)
v dy
r = 6) dr = "0_' >

12 This theory was developed by Saint Venant, Journal de Mathe-
matiques, Vol. 16, 1871, p. 373. See also I. Todhunter and K. Pearson,
History of the Theory of Elasticity, Vol. 2, Part I, p. 170. Fora further
discussion of this subject see A. Nadai, “Plasticity,” 1931, p. 126.

13 Syuch a diagram can be obtained experimentally by making a torsion
test on thin tubes. To eliminate the possibility of buckling, the wall
thickness can be only locally reduced to a small value by making 2
circumferential groove of a rectangular shape in a thicker tube.
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we obtain

2 a8
e fo Yrdy = M. ©

The integral on the left side of this equation has a simple
geometrical meaning; namely, it represents the moment of
inertia with respect to the vertical axis or of the area omno in
Fig. 243. After calculating this moment of inertia for any
assumed value of 46, the corresponding torque is readily.ob-
tained from the equation (¢). Hence a curve representing the
relation between M, and 6 can be plotted if the diagram in
Fig. 243 is given. Since the abscissas in Fig. 243 are pro-
portional to the radial distances, the curve o also represents
to a certain scale the shearing stress distribution along a
radius of the shaft. If during the twist the material follows
Hooke’s law at all times, we have 1 = yG = r6G, and equation
(6) gives

270G f rdr = 6GI, = M, d)
0

which is the known equation for torsion within the elastic
limit.

If the material of the shaft has a very pronounced yield
point, the curvilinear portion of the diagram in Fig. 243 can
be replaced by the horizontal line with the abscissa 7v.p..
Hence, for a considerable angle of twist the distribution of
shearing stresses along a radius of the shaft approaches uni-
form distribution. The corresponding magnitude of torque
we call by (Mp)ui. Its value is obtained by substituting 7y p.
for r in equation (&), which gives

27ad

3

When the torque reaches this value, a further twist of the
Shz.lft proceeds without a further increase in torque up to the
point at which the hardening of the material becomes notice-
able. For comparison we calculate also the value of the
torque (M )y.p. at which yielding begins. For this purpose we

(Mt)ult =

TY.P.. (e)
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use equation (4) and substitute in it the value of 6 at which
yielding begins. This latter value is obtained from equation
(@) by taking » = @ and v = yr.r., which gives

9 _ Yv.p. _ Tr.p.
Y.P. a ﬂG
Hence, from equation (4),
ad
(Mt)Y.P. = 9Y.P.[p = TTTY.P.- (f)

It is seen, from equations (¢) and (f), that

(Mare s (M. =7
If, after applying the torque (M})u1, we unload the shaft,
some residual stresses will remain in it. The magnitude of
these stresses can be obtained by repeating the same reason-
ing which was applied in the case
e of bending (p. 379). Let the ordi-
m J nates of the horizontal line mn
T J,U’V T... in Fig. 244 represent the shearing
ah stress 7y.p. produced by the moment
JF-,, B M.y, and uniformly distributed along
|‘—_° — the radius of the shaft. During
FiG. 244. unloading of the shaft the ma-
terial follows Hooke’s law, and
the torsional stresses which are to be subtracted while un-
loading the shaft follow the linear law indicated in Fig. 244
by the line mn;. The difference between the two stress
distributions, rectangular while loading and triangular while
unloading, represents the stresses which remain in the shaft
after unloading. The distribution of these stresses along 2
radius of the shaft is shown in Fig. 244 by the shaded areas.
The magnitude of the ordinate #;p, denoted by 7max, is found
from the fact that the rectangular and the triangular stress
distributions both represent a torque of the same magnitude
M,.. For the rectangular stress distribution this torque 15

o

“Plasticity,
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given by the formula (¢). The formula for the same torque
and for the triangular stress distribution is obtained by sub-
Stituting Tmax for 7y.p. in the formula (f):

orad ra®
3 Ty.P. — 2 Tmaxy
— 1
Tmax = I§TY.P.-

It is seen that the residual torsional stress at the surface of
the shaft is equal to 3ry.». Near the center that stress is
equal to Ty.p..

The distribution of residual torsional stresses can be in-
vestigated experimentally. For this purpose it is necessary
to machine off successive thin layers of metal from the shaft
and measure, after removing each layer, the change in the
angle of twist of the shaft.!*

If the material of the shaft has a pronounced yield point, the
membrane analogy (see p. 267) can be used to advantage in studying
torsion beyond the yield point. When the

magnitude of the torque is somewhat larger
than (M/)y.r., the outer portion of the shaft m n
is in the condition of yielding while the inner A B

portion continues to deform elastically. To L lg—.
extend the membrane analogy to this case, |
it is necessary to use, together with the !
membrane, a rigid cone ACB, Fig. 245, |
the slope of which represents the yield
point stress 7y.p. to the proper scale. If a
small pressure p is acting on the membrane,
the deflections are also small, and the conical
surface does not interfere with the free de-
flection of the membrane. Hence its surface
defines the stress distribution for the case of an elastic torsion, such
as was previously discussed (see p. 268). With an increase in
pressure the deflections of the membrane alse increase, and finally
the outer portion of the membrane comes into contact with the
rigid cone as shown in Fig. 245. This condition represents torsion

F1c. 245.

14 A further discussion of this subject can be found in A. Nadai’s
” 1931, p. 266.
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beyond the yield point. The outer portion of the membrane,
coinciding with the cone, has the constant slope corresponding to
the yield point stress 7y.p.. The inner portion m# of the membrane
corresponds to the inner portion of the shaft, which is in an elastic
condition. The double volume between the membrane and the
plane of the boundary 4B continues to represent the torque. From
this we conclude that the double volume of the cone must give us
the value of M. Since the slope of the cone is 7v.p., its height is
equal to ary.p., and its double volume is §w4%ary.p. which coincides
with the expression (e).

The same method can also be used in the case of non-circular
cross sections of shafts, and is very useful in determining these
portions of the shaft in which yielding begins. Consider as an
example a rectangular shaft. In investigating torsion of this shaft
beyond its yield point the membrane must be used together with a
rigid roof surface, Fig. 246, which has a constant slope at all points
representing to a certain scale the yield point stress rv.p.. It is
evident that the membrane, deflecting under
increasing uniform pressure, touches the roof
first at points ¢ and 4, the middle points of
the longer sides of the rectangle. At these
T points the yielding begins and at a higher
pressure some portions of the membrane will
coincide with the roof as indicated in the
figure by the shaded areas. These areas de-
fine the regions where the material yields.
In the rest of the shaft we have only elastic
deformation. A further increase in pressure
on the membrane increases the portions of
contact with the roof, as well as the regions
of plastic deformation. The double volume
between the roof and the plane 4B evidently gives the magnitude
of My for the rectangular shaft.

If a rectangular bar of wrought iron is twisted beyond the yield
point, the regions of plastic flow can be revealed by a proper etching
of the cross section. After etching, there appears in plastic regions
of the cross section dark parallel lines of such directions as shown
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Fic. 246.

in Fig. 246. These lines indicate the layers parallel to the axis of .

the shaft along which the sliding of the metal, produced by the
yield point stress, occurs.'®

15 Interesting photographs of these lines, obtained for various shapes
of twisted bars, are shown in the paper by A. Nadai, Trans. A. S. M. E.,

Vol. 53, p. 29, 1931.
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71. Plastic Deformation of Thick Cylinders under the
Action of Internal Pressure.’*—Discussing an elastic deforma-
tion of a thick-walled cylinder under the action of internal
pressure p, we found (see p. 239) that the radial and the
tangential stresses at a radial distance 7 from the axis of the
cylinder are represented by the formulas:

42 b2 612 b2
0’,:22%;2(1—;5), o't=b2—_£?(1 +;2), (ﬂ)

where @ and & are the inner and the outer radii of the
cylinder respectively. The maximum tangential tension and
the maximum radial compression occur at the inner surface
of the cylinder. At that surface also the maximum shearing
stress acts. The magnitude of it is

— o, 22
—_— (22—6>r=a = pr——a?' (%)

"By gradually increasing the internal pressure, we finally reach

a point when the material at the inner surface begins to yield.
This occurs when the maximum shearing stress (4) becomes
equal to the yield point stress 7y.p..}" Substituting this value
into formula (4), we find that the pressure at which yielding
begins is

bt — a?

Pr.p. = Ty.p. Tz ()

Assuming, for example, & = 24, we find that in this particular
case py.p. = 0.7507y.p.. With a further increase in pressure the
plastic deformation penetrates deeper and deeper into the
wall of the cylinder and finally at a certain pressure, which we

16 An investigation of plastic flow in thick cylinders submitted to
inner pressure was made by Saint-Venant; see C. R., Vol. 74, 1872, p.
100g; see also Todhunter and Pearson, History of the Theory of Elasticity,
Vol. 2, part I, p. 172, and the paper by L. B. Turner, Cambridge_ Phil.
Soc. Trans., Vol. 21, 1913, p. 377.

17 The question of yielding of a material under various stress con-
ditions is discussed in article 83. We assume here that 7y p. has the sam:

value as in the case of torsion (see p. 385).
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shall call puy, the entire wall of the cylinder is brought into
the state of yielding. The distribution of stresses in the wall
at this yielding condition can be investigated without much
difficulty if we assume that the material has a very pronounced
yield point, which means that the yielding proceeds under the
action of a constant shearing stress equal to 7v.p.. This gives
us for every point in the region of plastic deformation the
equation:

oy — O

2

= Ty.P.. (d)

Another equation for determining the principal stresses or
and o, is obtained by considering the equilibrium of an ele-
ment of the wall, shown in Fig. 142. From our previous dis-
cussion (see p. 236) the equation of equilibrium is

do,
oy — o — 7= =0 (e)

Substituting for the difference of the principal stresses its
value from equation (4), we obtain

do, 27y.p.

& - r )

The integration of this equation gives
o, = 21y.p. logr + C. (9

The constant of integration C is obtained from the condition
that at the outer surface of the cylinder, i.e., at 7 = &, the
radial stress o, vanishes. This gives

O = 2Ty.P. lOg b + C, = — 27Ty.P. 10g b.

Substituting this value of the constant of integration C into
equation (g), we obtain

or = 27Tv.P. log—z- (303)
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This gives for the inner surface of the cylinder

(3:)rm0 = 27r.0. 108 (304)

and the pressure which is required to bring the entire wall of
the cylinder into the state of plastic flow is

pult = - (Ur)r=a = — 2Ty.p. lOg % .

Taking again b = 24, we find puie = 27v.r. log 2= 0.693(27v.p.)-

Having expression (303) for radial stresses, we obtain tan-
gential stresses from equation (d), which gives

0. = 27v.p. ( 1 + log g) . (305)

If 4 = 24, this expression becomes

(Ut)r=a = 2Ty.p. ( 1+ IOg %) = 0‘307(2TY'P')’

(Ut)r:b = 2Ty.p..

— f
1552 Typ - : 2Tye
T

32
oWT2Z; O“f-ZTn
I f "
06932 Ty, 1
: i
L
Fic. 247.

The distribution of stresses o, and o, along the thickness of
the wall for the particular case 4 = 24 is shown in Fig. 247
by the curves mln and st respectively. If, after bringing the

‘material of the cylinder to the condition of yielding, we remove
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the internal pressure, some residual stresses remain in the
wall of the cylinder. These stresses can be readily calculated
if we assume that during unloading the material of the cylinder
follows Hooke’s law. In such a case the stresses which are
to be subtracted while unloading the cylinder are given by
the expressions (@) if we substitute in these expressions pui
instead of p. These stresses for the particular case 4 = 24
are shown in Fig. 247 by the curves sifi and mkn. The
shaded areas then give us the residual stresses in the wall of
the cylinder. It is seen that owing to the plastic deformation,
considerable compressive tangential stresses are produced in
the portion of the cylinder wall.’® If a cylinder with such
residual stresses is again loaded by the internal pressure equal
to puis the tangential stresses produced by this pressure and
given by the curve s, will be superposed on the residual
stresses, given by the shaded areas, so that the resultant stress
distribution will be that represented by the curve sz. The
maximum resultant stress is 27v.p., and no yielding will occur
during this second application of the internal pressure.
Hence the residual stresses produced by the plastic expansion
of the cylinder are of such a nature as to increase the pressure
which can be sustained by the cylinder elastically. This fact
is sometimes used in manufacturing guns which must with-
stand high internal gas pressures.'?

It was assumed in our discussion that the applied inner
pressure is such as to bring the entire cylinder to the condition
of yielding, but the method can also be applied without any
difficulty to cases in which only the inner portion of the cylin-
der wall is in the state of yielding while the outer portion js in
the elastic state. Assume that a pressure p’, larger than py.p.
but smaller than puw, is applied, and let ¢ be the radius of the

18 Tt is assumed that this compressive stress is less than yield point-

stress and that no yielding occurs during unloading. The case of
yielding during unloading was studied by L. B. Turner, loc. cit., p. 389.

19 The description of this use of the initial plastic deformation can be
found in the book by L. Jacob, * Résistance et Construction des Bouches
3 Feu. Autofretage,” Paris. See also S. J. Brown, United States Naval
Institute Proceedings, Vol. 46, 1920, p. 1941.
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cylindrical surface separating the plastic region of the wall
from the elastic. There will be a radial pressure acting
between these two regions which we shall call X. The mag-
nitude of this pressure can be found from a consideration of
the outer, elastic, portion of the wall. The maximum shearing
stress Tmax in this portion is found from equation (#) by sub-
stituting ¢ instead of 4 and X instead of p in that equation
which gives

Xb

Tmex =

Since the cylindrical surface r = ¢ separates the elastic and
the plastic zones, the material at that surface just reaches the
yield point. Hence 7max = 7r.p.. Theequation for determin-
ing the pressure X is then
2

Ty.p. = bT-X;b?> (}1)
and we obtain
ty.p. (0% — ?) .

X = 7 (i)
Having this pressure, we can readily calculate the stresses at
any point in the elastic region of the wall by using equations
similar to equations ().2

For calculating stresses in the plastic region of the wall
we use equation (g). The constant of integration C is found
from the condition that for » = ¢, ¢, = — X, which gives

— X = 2ry.p. logc + C, C=— X —2ryp.loge.

Substituting this value of C in equation (g) and using expres-
sion (7) we obtain

o, = 2Ty.P. logz - —7—- . (306)

Taking r equal to the inner radius « of the cylinder, we obtain

20 The radius ¢ instead of ¢ and X instead of » must be used in these
equations.
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the magnitude p’ of the pressure which must be used to pro-
duce the plastic flow in the wall up to the depth corresponding
to the radius » = ¢. This pressure is

’ TY.P.(b2 - 6'2) .

p = — 2ry.p. log 6—; + (307)

Taking our previous example where 4 = 24 and assuming
¢ = 1.5a, we find from equation (307) that p’ = 0.624(27y.r.).

The distribution of tangential stresses ¢, is obtained from
equation (d), which gives

B2 2
o; = 2Ty.p. + 0 = 2Ty.p. logg + Trop. —2_2—6 - (308)

For » = ¢ the first term on the right side vanishes and the
value of ¢, becomes equal to the value of the tangential stress
produced by pressure X in the adjacent elastic zone of the
wall. Equations (307) and (308) give us the stresses pro-
duced in the inner portion of the cylinder wall, which under-
goes plastic deformation. For the outer portion, which re-
mains elastic, equations similar to equations (2) must be used.
In this way the problem of stress distribution for the case of
a cylinder which undergoes only a partial plastic deformation
is completely solved.

If, after partial yielding of the cylinder wall, the inner
pressure p’ is removed, some residual stresses will remain in
the wall of the cylinder. The inner portion of the wall, in
which plastic deformation occurred, does not return to its
initial diameter and undergoes a pressure from the side of the
outer elastic portion of the wall. The stress distribution
produced in this way is similar to that produced by shrink-fit
pressures in built-up cylinders (see art. 45). To calculate
these stresses we proceed in exactly the same way as was
explained before and illustrated in Fig. 247.

All these calculations are based on the assumption that
beyond the yield point the material yields without an increase
in stress. If this is not the case, the residual stresses cannot
be calculated as explained above, and recourse must be made
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to an experimental determination of residual stresses. In
such cases a method similar to that used in determining
residual bending stresses can be applied. We machine off
thin layers of the metal one after the other beginning from
the inner surface of the cylinder, and after each cut measure
the strain produced in the axial and the circumferential
directions at the outer surface of the cylinder. Such measure-
ments furnish sufficient information for calculating residual
stresses.

Residual stresses in cylinders can be produced not only by
the plastic deformation described above, but also by non-
uniform cooling and by volume changes of metals during
recrystalization in various processes of heat treatment. Some-
times these stresses become of primary importance as, for
instance, in big forgings, and several methods of their deter-
mination have been developed.2

2 The first investigation of this kind was made by N. Kalakoutzky,
St. Petersburg, 1887. See also N. Kalakoutzky, Investigation into the
Internal Stress in Cast Iron and Steel, London, 1888. The complete
solution of the problem was given by G. Sachs, Zeitschr. f. Metallkunde,
Vol. 19, 1927, p. 352 and Zeitschr. Ver. Deutsch. Ing., Vol. 71, 1927,
p- 1511. These two papers contain a complete bibliography of the
subject. Further improvements in the methods of measuring residual
stresses in tubes were made by N. N. Dawidenkow, Journal of Technical
Physics, Vol. 1, 1931, S. Petersburg. See also G. Sachs, Trans. of the
A. S. M. E,, 1939, p. 821. The bibliography on plastic deformation of
metals and on residual stresses is given in “Handbuch der Metallphysik,”
Vol. 3, part I, by G. Sachs, Leipzig, 1937.



CHAPTER IX
MECHANICAL PROPERTIES OF MATERIALS

v2. Tension Test.—The most common method of investi-
gating mechanical properties of metals is by the tension
test.! For this test circular cylindrical specimens and some-
times specimens of rectangular cross section are used. To
make the results of test comparable, certain proportions for
tensile test specimens have been established, which are
recognized as standard proportions. In this country, for
instance, the standard tensile test specimen is circular, with
L in. diameter and 2 in. gage length, so that

7= 4 or ! = 4.51 VA,

where 4 = wd?[4 is the cross sectional area of the specimen.
In central Europe two different proportions of circular
specimens are in use: (1) a long specimen for which / = 10d
= 11.3VA4 and (2) a short specimen for which / = 5d = 5.65 V4.
In the case of rectangular specimens it is preferable to take the
same relation between the length and the cross sectional area
as for circular specimens? The length of the cylindrical
portion of the specimen is always somewhat greater than the
gage length and is usually at least / + 4. The ends of the
specimen are generally made of heavier section to prevent the
specimen from breaking in the grips of the testing machine,
where the stress conditions are more severe, due to local
irregularities in stress distribution. The long type of cylin-

1A description of the procedure of testing and of testing machines
can be found in the book by Batson and Hyde, Mechanical Testing,
1922. See also O. Wawrziniok, Handbuch d. Materialpriifungswesens,
Berlin, 1923, K. Memmler, Das Materialpriifungswesen, Stuttgart, 1924,
and “Handbuch d. Werkstoffpriifung,” E. Siebel, 1940.
2 The British Engineering Standards Assn. recommends 8-in. gage
length for rectangular specimens of plate material for boilers.
396 ’
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drical specimen is represented in Fig. 248 (4), which shows also
the spherical seats in the grips of the machine, used to insure
central application of the load. Figure 248 (#) shows a flat

. — 1

Yl
._ -—@] (v) l@'

\ -

Fic. 248.

rectangular specimen. Tensile test machines are usually
provided with a device which automatically draws a tensile
test diagram representing the relation between the load P and
the elongation & of the specimen. Such a diagram exhibits
very important characteristics of the ,
material. Figure 249, for instance,
shows a series of diagrams for carbon

146 %C

. . L20%¢C
steel with various contents of carbon.
These indicate that as the carbon con- s7He
tent increases the strength of the steel
increases but at the same time the 70%C
elongation before fracture decreases,
i.e., the material loses ductility. 55%

The strength and the ductility are
the twoimportant characteristics usu- '/\ i
ally obtained from the tensile test.? m‘
For defining the strength of a mate-
rial the proportional limit, the yield
point and the ultimate strength are usu-
ally determined (see p. 6, Part I). Fre. 249.

In determining the proportional limit sensitive exten-
someters are necessary to detect the slightest deviation from

(-]

3 A complete bibliography on tensile tests is given in the books by
G. Sachs, “Der Zugversuch,” Leipzig, 1926, and “Mechanische Tech-
nologie der Metalle,” Leipzig, 1925. These books present modern de-
velopments in investigating mechanical properties of materials. See also
C. W. MacGregot’s paper presented at the Annual Meeting of Am. Soc.
Test. Mat. 1940.
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proportionality in the tensile test diagram. Obviously the
position found for this limit depends a good deal on the
sensitivity of the instruments. In order to get a greater
uniformity in results, a certain amount of permanent set or a
certain deviation from proportionality is often taken as the
basis for determining the proportional limit. The Inter-
national Congress for Testing Materials at Brussels (1906)
defined the proportional limit, which experiments show to be
the same as the elastic limit for steel, as that tensile stress at
which the permanent setis 0.0o1 per cent. Recently there has
been a tendency to increase this limiting magnitude of perma-
nent set to 0.0I per cent.?
The yield point is a very important characteristic for such
a material as structural steel. At this stress the specimen elon-
gates a considerable amount
(in the case of mild steel some-
< times more than 1 per cent)
without increase in load.
a.. o Sometimes the yielding 1s ac-
companied by an abrupt de-
crease in load and the tensile
ello test diagram has a shape such
Fic. 250. " as is represented in Fig. 250.
In such a case the upper and
lower limits of the load at 2 and 4, divided by the initial cross
sectional area, are called the wupper and lower yield points
respectively. The position of the upper yield point 1s affected
very much by the speed of testing, the form of the specimen
and by the shape of the cross section.® The lower yield point
is usually considered as a true characteristic of the material,
which can be used as a basis for determining working stresses.’

P

4See paper by P. Ludwik, “Bruchgefahr und Materialpriifung,”
Schweiz. Verband fiir die Materialpriifungen der Technik, Bericht, nr.
13, 1928, Ziirich.

5 See paper by Kiihnel, V. D. 1., Vol. 72, 1928, p. 1226, and paper by
M. Moser, Forschungsarbeiten, nr. 295, Berlin, 1927. See also C. W.
MacGregor, Trans. A. S. M. E., Vol 53, 1931, p. 187.

6 C. Bach first indicated the importance of determining the lower
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Due to the relatively large stretching of the material at the
yield point it is not necessary to use sensitive extensometers to
determine this point. It can be determined with the simplest
instruments or can be taken directly from the tensile test
diagram. For structural carbon steel the stress at yield point
is about §5—60 per cent of the ultimate strength. Structural
steel with about 1 per cent Si has a stress at yield point about
70-80 per cent of the ultimate which may be the same as for
carbon steel. Such a high value for the yield point justifies
the usual practice of taking higher working stresses for this
kind of steel.

There are materials which do not have a pronounced
yield point; in such cases the stress at which the permanent set
(plastic elongation) reaches the value 0.2 per cent is sometimes
considered as the yield point. It must be kept in mind that
the yield point defined in this manner does not represent a
definite physical characteristic of the material and its position
depends upon the arbitrarily chosen permanent set. In the
case of structural steel with a pronounced yield point the
amount of stretching at yield point is usually greater than o.2
per cent and the actual yield point coincides with that defined
by the above 0.2 per cent permanent set limit.

The wultimate strength is usually defined as the stress
obtained by dividing the maximum load reached before
breaking the specimen, point ¢ in Fig. 250, by the initial cross
sectional area. This quantity is very often taken as a basis
for determining working stresses.

The area under the tensile test diagram Oacde (Fig. 250)
represents the work required to produce fracture. This
quantity is also sometimes used as a characteristic property
of the material. It depends on not only the strength but also
the ductility of the material.

The ductility of metals is usually considered to be charac-
terized by the elomgation of the gage length of the specimen
during a tensile test and by the reduction in area of the cross
section at the fracture.

yvield point. See V. D. I, Vol. 58, 1904, p. 1040, and V. D. L., Vol. 5g,
1905, p. 613.
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In the first stage of plastic elongation, from a to ¢ in the
diagram, Fig. 250, the specimen elongates uniformly along
its length and this uniform elongation is accompanied by a
uniform lateral contraction so that the volume of the specimen
remains practically constant.” At the point ¢ the tensile force
reaches a maximum; further extension of the specimen is
accompanied by diminishing of the load. At this stage of
plastic elongation the deformation becomes localized, necking
begins, and the specimen takes the shape shown in Fig. 251.

It is difficult to determine with accuracy the mo-
=]  ment when necking begins and to establish separ-
ately the magnitude of the uniform stretching and
the magnitude of the elongations due to necking.
m—{n It is customary, therefore, to measure the total in-
crease in the gage length when the specimen is frac-
tured. The elongation is then defined as the ratio of
this total elongation of the gage length to its initial
length. In practice the elongation at fracture is
usually given in per cent. If /is the original gage
length and & the total elongation, the elongation at failure
in per cent is

LD

Fic. 251.

€ = ; + 100. (ﬂ)

This elongation is usually taken as the measure of the ductility
of a material. Elongation obtained in this manner depends on
the proportions of the specimen. The increase in the gage
length, due to necking, is a large part of the total increase and
is practically the same for a short gage length as it is for a long
one. Hence the elongation as defined by eq. (4) becomes
larger the shorter the gage length. For steel the elongation
obtained for specimens with / = 54 is usually 1.22 as large
as obtained for a specimen of the same material with / = 10d.
Experiments show also that local deformation at the neck
depends very much on the shape of the cross section; hence

T The small elastic deformation in which the volume does change
can be neglected in comparison with the comparatively large plastic
deformation.

MECHANICAL PROPERTIES OF MATERIALS 401

this shape affects the elongation of the specimen. This shows
that comparable results with respect to elongation can be
obtained only by using geometrically similar specimens.

The reduction in area at the cross section of fracture is
usually expressed in per cent of the original cross sectional
area as follows:

¢9="7 "1 (%)

in which 4, is the initial cross sectional area and A4, the final
cross sectional area at the fracture.

If we assume that longitudinal strain is uniformly distrib-
uted over the cross section of fracture and that the volume

of the material is constant, the unit elongation € at this cross
section is determined by the equation

/{1(1 -+ 61) = /fo,

from which
_ Ao _
. “ Al
or, using eq. (),
_ q
“ = lo—¢ ©

This quantity is sometimes called ® the effective elongation.
It is wsually much larger than

the elongation € = §// deter- [& Z
mined from the total elongation A
& of the gage length. Some re- e

sults in static tests of certain
steels are given in the table on
PP- 497-498.

In defining the yield point and
the ultimate strength the area used o e
in calculating the stress was taken
as the original cross sectional area.
The curve Oabed in Fig. 250 and Fig. 252 was obtained in this
manner. This curve represents the frue stress only so long as

Fic. 252.

. 8 See P. Ludwik, Elemente der Technologischen Mechanik, Berlin
909. ’
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the elongation is small. For larger elongations the reduction in
cross sectional area must be considered in order to get the true
stress. The curve &¢'d” in Fig. 252 was obtained by multiplying the
ordinates of the Oaded curve by the ratio A4o/4 of the original cross-
sectional area to the varying cross sectionlal arca A as it was at each
instant during the tensile test.  From thls‘ curve 1t 18 evident that,
although the load decreases from the point ¢ on, the true stress
continues to increase and has its maximum value at the moment of
fracture. '

The relation between ¢ and e represented by a frue lensile test
curve, such as curve 4¢’d’, has a definite physical meaning so long as
the bar continues to stretch uniformly., After the beginning of
necking the elongation is not uniformly distributed along the length
of the bar and the quantity e = §// no longer has a simple physical
meaning. In investigating this portion of.a tensile test it has
proved very useful to construct curves in which the true stress o is
plotted against the reduction in area ¢ (eq. £).* A curve of this kind

i
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obtained with mild steel (0.059, carbon) is shown in Fig. 253.1° _T}E

9 See paper by F. Korber and W. Rohland, Mitteilungen K. W.

Institut, Vol. g, 1924, p. 37. ) ) .
1o Séc pape,r by P. Ludwik, “ Bruchgefa_hr und Matermlpruf}:r}g
Diskussions, Bericnt nr. 35 der Eidg. Materialpriifungsanstalt, Ziirich,

1g28.
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point A of this curve corresponds to the beginning of necking, and
the portion 4B of the curve rep-
resents the process of necking. It
can be seen that the true stress
increases up to the moment of
fracture. Some applications of
this type of curve are given later.2

73. Compression  Test—
The compression test is prin-
cipally used for testing brittle
materials such as stone, concrete
and cast iron. In testing stone
and concrete, cubic specimens are
often used. In compressing them between the plane sur-
faces of the testing machine it is usually assumed that the
compressive force is uniformly distributed over the cross
section. The actual stress distribution is much more compli-
cated, even if the surfaces are in perfect contact. Due to
friction on the surfaces of contact between the specimen and
the compressinghead of the machine, the lateral expansion which
accompanies compression is prevented at these surfaces and the
material in this region is in a more favorable stress condition.
As a result of this the type of fracture obtained in a compres-
sion test of cubic specimens of concrete is of the sort shown in
the photograph, Fig. 254. The material in contact with the
machine remains unaffected while the material at the sides is
crushed out. In order to obtain the true resistance to
compression of a material such as concrete, the influence of
friction at the surfaces of contact must be eliminated or
minimized. For this purpose A. Féppl covered the surfaces
of contact with paraffin.® The ultimate strength obtained
in such a manner was greatly reduced and the type of failure

Fia. 254,

It can be shown that in such diagrams as O4B the tangent AC,
at the point 4, representing the beginning of necking, cuts the ordinate
at ¢ = Ioo per cent at a height of 20y,

2 The Bibliography related to the analysis of tensile test diagrams is
given in the paper by C. W. MacGregor, The Annual Meeting, A. S. T. M.,
1940.

¥ A. Foppl, Mitteilungen aus dem Mech. Techn. Laboratorium in
Miinchen, nr. 27, 1900.
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was completely different; a cubic specimen fails by subdividing
into plates parallel to one of the lateral sides. Another method
of eliminating the effect of friction forces is to use specimens in
the form of prisms having the height in the direction of
compression several times larger than the lateral dimensions.
The middle portion of the prism then approaches a condition
of uniform compression.* A very interesting method of
producing a uniform compression on cylindiicc1 specimens
used in Kaiser Wilhelm Institute ¥ is shown ir. Fig. 255. The
portions of the testing machine in contact with the cylindrical

Y

Fic. 254. Fic. 256.

specimen and the ends of the specimen are machined to conical
surfaces with the angle o equal to the angle of friction. Thus
the effect of friction is compensated for by the wedge action
and uniform compression results.

Compression tests of materials such as concrete, stone and
cast iron show that these materials have a very low pro-
portional limit.!* Beyond the proportional limit the de-
formation increases at a faster rate relative to the load and the
compression test diagram has a shape such as shown in Fig.
256. Sometimes it is desirable to have an analytical expres-
tion for such a diagram. For these cases C. Bach proposed

14 See L. Prandtl and Rinne, Neues Jahrbuch fiir Mineralogie, 1907.
See also W. Gehler, Der Bauingenieur, Vol. g, 1928, p. 21.  Cylindrical

specimens with height twice the diameter are sometimes used in testing

concrete.

15 Mitteilungen K. W. Institut, Diisseldorf, Vol. 9, 1927, p. 157.

16 The proportional limit for cast iron in tension was determined by
Griineisen, Berichte d. Deutschen Phys. Gesellschaft, 1406.

17 See C. Bach, Elasticitit u. Festigkeit, V ed. 1905, Berlin, p. 67.
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the exponential law given by the equation:

o.n

€='E> (a)

in which # is a number depending on the properties of the
material. Bach found the values » = 1.09 for pure cement
and # = 1.13 for granite.

Compression tests of ductile materials show that the shape
of the diagram depends very much on the proportions of the
specimen. As the dimension in the direction of the compres-
ston decreases, the effect of friction at the ends becomes more
and more pronounced and the compression test diagram be-
comes steeper. For instance Fig. 257 shows the results of

o tbs,
100,000 a / // / / ,
80,000 d,;i "y \?y\p//j

’ NG
60,000 % — //// //1/ /‘)y
40,000 P =
Gz
/
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€

30 %
Fie. 257.

compression tests ' on copper cylinders with various ratios
d|% of the diameter to the height of the specimen. In com-
pression tests of such ductile materials as copper, fracture is
seldom obtained. Compression is accompanied by lateral

expansion and a compressed cylinder ultimately assumes the
shape of a flat disc.

8 See G. Sachs, Grundbegriffe der Mechanischen Tech i
Metalle, Leipzig, 1923, p. 36. schen Technologie der
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74. Strain Hardening.—It is well known that plastic
deformation causes ductile materials such as mild steel, copper,
and aluminum to become harder. Their strength increases
and at the same time their ductility, as given by elongation or
lateral contraction in the simple tensile test, decreases. This
hardening effect of plastic deformation is also shown by t.he
phenomenon of the increase of the yield point of the duct}le
material when subjected to stretching beyond the initial
yield point. Figure 258 shows a tensile test diagram for mild
steel.’® After stretching the bar to the point C'it was unloaded.
During this unloading the material followed an approximately
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straight line law as shown by the line CD on the diagx:am.
Repeating the loading of the bar, the line DF was obtained
along which the material approximately followed Hooke’.s law.
At the point F, which corresponds to the previous loading at
C, the curve abruptly changed character and traced the por-
tion FG, which can be considered as a prolongation of the
curve BC. This is the raising of the yield point produced by
stretching the material. If an interval of time, say several

19 See Ewing, ““Strength of Materials,” 1914, p. 35.
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days, is allowed to elapse after unloading, then upon reloading
a still higher yield point may be obtained, as indicated by
the dotted lineat /. In Fig. 259 are shown the results of a ten-
sile test of die cast aluminum.?

The initial proportional limit |& A

of the material was 5,600 Ibs.
per sq. in. After stretching the
specimen 2 per cent, the propor-
tional limit upon reloading was
found to be 20,000 lbs. per sq. in.

More complete investiga-
tions show that the time which
elapses between unloading and
reloading is of great influence ¢
on the stress strain curve dur-
ing reloading. If reloading be-
gins immediately after unloading, accurate measurements
show that there are deviations from the straight line law at
very low stress, and the proportional limit is greatly lowered.
But if a considerable interval of time elapses between unload-
ing and reloading, the material recovers its elastic properties
completely. Figure 260 shows the curves obtained by Ewing
with mild steel which show that, if reloading follows in ten
minutes after overstrain, the material does not follow Hooke’s
law, but after 5 days it has partially recovered its elasticity and
after 21 days it has almost completely recovered it.

The experiments show that if the material is submitted to
mild heat treatment after unloading, say in a bath of 100°
Centigrade, the recovery of elastic properties occurs in 2 much
shorter interval of time. Figure 261 shows the results of such
a test made on a steel bar by I. Muir.2t The initial tensile
test is represented by the curve 4. Curve B represents the
reloading of the same bar ten minutes after unloading. A

2/ Days
70 y.
M inuty $0Days

F1c. 260.

~ considerable deviation from Hooke’s law is noticeable. Curve

C is the diagram obtained with the same bar after a second

?» Westinghouse Elec. Mfg. Co. Research Laboratory.
2 1. Muir, Phil. Trans. Roy. Soc., 1894.
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unloading and after keeping it at a temperature of IOO.°
Centigrade for 4 minutes. It may be seen that after th}s
treatment the material completely recovered its elastic
properties. .
The phenomenon of hardening due to plastic deformat}on
is encountered in many technological processes such as rolling
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of bars or drawing tubes and wires at low temperature, cutting
sheet metals by shears, and drawing and punching holes. In
all these cases the part of the material which undergoes
plastic deformation becomes harder and its ductility 1s great}y
reduced.? To eliminate this undesirable effect of strain
hardening it is customary to anneal the material, which
reestablishes the initial ductility.®

Sometimes the strain hardening of ductile materials finds a
practical application in manufacturing. It is common prac-
tice to submit the chains and cables of hoisting machines to a
certain amount of overstrain to eliminate undesirable stretc}}i
ing of these parts in service. The cylinders of hydraulic

22 For a general discussion of the properties of cold worked meFals
see the paper by Z. Jeffries and R. S. Archer, Qhemlcal and Metal_lurglcal
Eng., Vol. 27, 1922, p. 747. Se€ also G._Masmg and M. Polanyi, Kalt-
reckung und Verfestigung, Springer, Berlin, 1923.

2 See paper by Rees, Iron and Steel Inst. Journal, 1923.
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presses are sometimes submitted to an initial internal pressure
sufficient to produce a permanent deformation in the walls.
The strain hardening and the residual stresses produced by
this prevent any permanent set in service. The overstraining
of metal is sometimes used in the manufacture of guns (see p.
243). By stretching the metal in the wall of a gun beyond the
initial yield point and afterwards submitting it to a mild heat
treatment, the elastic properties of the material are improved;
at the same time initial stresses are produced which combine
with the stresses produced by the explosion to give a more
favorable stress distribution. Turbine discs and rotors are
sometimes given an analogous treatment. By running these
parts at overspeed, a permanent set is obtained around the
central hole, which raises the yield point of the material there
and produces initial stresses, which are in a favorable direc-
tion. Die cast aluminum fans are sometimes submitted to
overstrain at the bore to prevent any possibility of their
loosening on the shaft in service. A considerable plastic flow
of metal is sometimes produced in pressing the hub of loco-
motive wheels onto their axles and this has proved to have a
favorable effect. Copper bars in the commutators of electric
machinery are submitted to considerable cold work by
drawing to give them the required strength.

In using overstrain in this manner to raise the yield point
and improve the elastic properties of a structure, it is necessary
to keep in mind (1) that the hardening disappears if the
structure is submitted to annealing temperatures and (2) that
the stretching of metal in a certain direction, while making it
stronger with respect to tension in this direction, does not
proportionately improve the mechanical properties with re-
spect to compression in the same direction.® This phe-
nomenon is clearly shown in Fig. 262, which represents tests
b % See A. Nadai and L. H. Donnell, Trans. A. S. M. E., Vol. 51, 1929,

. 173.
Zs3This phenomenon was discovered by J. Bauschinger, Mitteilungen

aus dem Mech. Techn. Laboratorium in Miinchen, 1886, See also
Dinglers, Polytech. Journal, Vol. 266, 1886.
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made with electrolytic copper.® Curve (4) shows the
mechanical properties of the copper in the annealed condition.
The proportional limit and yield point #* in this condition are
very low. Such material cannot be used in structures which
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are submitted to the action of appreciable stresses. Curve
(b) represents tensile and compression tests of the same
material after giving the bar an elongation of 15 per cent.
The proportional limit and yield point have been raised
considerably, especially in tension. Curves (¢) and (d) show
the results of tests after a stretching of 20 per cent and 25 per
cent. The additional stretching produces still further ‘im-
provement of the mechanical properties, especially in tension.
At the same time the proportional limit in compression 1s
somewhat lowered. Curve (¢) represents tensile and com-
pressive tests on a bar, which had been drawn through a die,

26 Westinghouse Elec. Mfg. Co. Research Laboratory. )
27 The yield point is defined as the point where unit elongation or
unit compression is 0.2 per cent.
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reducing the cross sectional area of the bar by 15 per cent.
In the drawing process the material is submitted not only to
longitudinal tension but also to lateral compression. To this
fact must be attributed the difference between curves (4) and
(¢). Although in both cases the bar received about the same
reduction in cross sectional area, the material drawn through a
die showed better mechanical properties with respect to
compression than the material which was subjected to a
uniform longitudinal stretching in a testing machine.

This fact that stretching a metal in a certain direction does
not improve the mechanical properties in compression in the
same proportion as it does in tension must not be over-
looked in cases in which the material is submitted to reversal
of stresses (see article 78).

It must also be kept in mind that strain hardening, while
raising the yield point of a material, does not affect the ultimate
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strength of the material in the same proportion, and the true stress at
fracture is probably unchanged. At the same time the elongation
and reduction in area at fracture are considerably reduced due to
strain hardening. Curves representing the true stress as a function
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of the reduction in area ¢ (p. 402) are especially useful in investigat-
ing the effect of strain hardening. Several curves of this kind ob-
tained with drawn copper # are shown in Tfig. 263. The lowest line
represents a tensile test of the copper wire in its initial condition.
The other curves represent tensile tests of the same copper wire
after various degrees of drawing. The amount of cold work is
indicated by the reduction in the diameter, the magnitude of which
is given on each curve in millimcters. Points 4 indicate the
beginning of necking and points B the moment of fracture. Be-
tween £ and B the diagrams are straight lines which intersect, when
prolonged, at a common point €. These curves indicate that cold
work does not affect the true stress at fracture and affects only
slightly the true stress at the beginning of necking. At the same
time it affects considerably the elongations and the lateral con-
traction of the materials,

In concluding this discussion it should be mentioned that
there are indications?® that material which has suffered
yielding at a certain place is more sensitive at this place to
chemical actions and there is a tendency for corrosion to enter
the metal along the surfaces of sliding. This phenomenon is
of particular importance in the case of boilers and other
containers submitted simultaneously to stresses and to
chemical action.

75. Strain Hardening and Residual Stresses.—In dis-
cussing the causes of strain hardening of metals it is necessary
to consider the crystalline structure of the metals. A metallic
test specimen 1s a conglomerate of crystals so small in size that
a cubic inch usually contains millions of them. In studying
the plastic deformation of such crystalline materials it has
proved very useful to investigate the mechanical properties
of a single crystal. Methods of preparing large single crystals
have been developed in recent years so that it is now possible
to have tensile test specimens of considerable size consisting

28 See paper by W. Miiller, Forschungsarbeiten, nr. 211 (1918). Sce
also G. Sachs, lec. cit, p. 397.

29 See paper by . Kérber and A. Pomp, Mitteilungen K. W. In-
stitut, Vol. 8, 1926, p. 135. Sce also S. W. Parr and F. G. Straub,
Engineering, Vol. 124, 1927, p. 216.
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of a single crystal.®® Tensile tests of such specimens show
that the mechanical properties of crystals depend greatly on
the direction of the tension with respect to the directions of the
axes of the crystal. In the case of copper, for instance, the
ratio of the maximum tensile strength to its minimum value is
3 : 1% The plastic deformation of these specimens consists in
sliding in certain direction along certain crystallographic

Fic. 264.

planes, as schematically indicated in Fig. 264.2 The be-
ginning of sliding depends upon the magnitude of the shearing
stress along these planes in the direction of sliding and is
independent of the normal stress acting on the same plane.
As the elongation of the specimen is continued the number of
planes along which thé sliding occurs increases and likewise

% The development of methods for producing large crystals of metals
is due to the work of H. C. Carpenter and C. F. Elam, Proc. Roy. Soc.,
Vol. 1004, 1921, p. 329; P. W. Bridgman, Proc. Amer. Acad. Sc., Vol. 60,
1925, p. 306; C. A, Edwards and Pfeil, Jour. Tron and Steel Inst., Vol
109, 1924, p. 129. The first large crystals of copper were obtained by
J. Czochralski, V. D. 1, 1923, p. 536.

8 See J. Czochralski, “Moderne Metallkunde,” Berlin, 1924, p. 206.

# See H. Mark, M. Polanyi and E. Schmid, Zeitschrift f. Phys.,
Vol. 12, 1922, p. 58; see also G. I. Taylor and C. K. Elam, Proc. Roy.
Soc., Vol. 1024, 1923, p. 643, Val. 1084, 1925, p. 28. G. L. Taylor, Proc.

Roy. Soc., A, Vol. 143, p. 362, 1934.
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the magnitude of the shearing stress acting on these planes.
This increase in stress necessary to continue the stretching of
the specimen represents the strain hardening of a single crystal.
Due to the type of sliding indicated in Fig. 264 (&) an originally
circular, single crystal specimen of ductile material becomes
elliptical in cross section and, if stretched to destruction, be-
comes wedge-shaped instead of cone-shaped at the cross
section of fracture. In the case of single crystals of brittle
materials, such as rock salt, stretching due to the sliding action
described above is very small and fracture occurs as the result
of the overcoming of cohesion over a plane having a certain
crystallographic direction, when the normal tensile stresses on
this plane reach a certain critical limit.

Crystalline materials, such as the metals used in industry,
are conglomerates of very small crystals, which can be seen
only with a special microscope on a plane surface, finely
polished and etched in a special manner. In an ordinary
tensile test specimen these crystals are located at random, and
the mechanical characteristics given by a tensile test represent
an average of the mechanical properties in various directions
of an individual crystal.®® Due to the small size and large
number of crystals these average values are usually inde-
pendent of the direction in which a specimen is cut from a
block of material,** and such a material can be considered as
isotropic in calculating stresses and deflections in large
structures.

Observations with a microscope of the deformation of the
small individual crystals in a specimen during a tensile test
show that the deformation of these crystals in conglomerate is

3 Intercrystalline material is neglected in this discussion. Experi-
ments show that planes of slidings and fractures always go through the,
crystals and not between them. »

# Cold work may produce some differentiation in the orientation of
crystals along certain directions. The mechanical properties of a tensile
test specimen will then depend on the orientation of the specimen with
respect to the direction of the cold working. Bibliography on this sub-
ject can be found in the paper by G. Sachs, O. Bauer and F. Géler,
Zeitschr. f. Metallkunde, Vol. 20, 1928, p. 202. See also paper by W.
Koster, Bericht nr. 23, d. Eidg. Materialpriifungsanstalt, 1927, Ziirich.
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of the same nature as in the case of a single crystal specimen.
In each individual crystal sliding of the sort shown in Fig. 264
begins when the tensile stress in the specimen reaches a
certain value, depending upon the orientation of that crystal
with respect to the direction of the tension. On the polished
surface this sliding is indicated by microscopic lines, called
slip bands. ‘This sliding stops at the boundary of the crystal;
in the neighboring crystals the planes of sliding may have
another direction and sliding may start when the stress in the
specimen reaches a different value. It is generally believed
that such slidings in individual small crystals unfavorably
situated with respect to the tensile stress in the specimen are
the cause of small deviations from Hooke’s law and a small
permanent sets at a comparatively low tensile stress in
materials which, in general, follow Hooke’s law.

When the material has a pronounced yield point and the
tensile stress in the specimen reaches this point, a large plastic
deformation takes place, which consists in the sliding of
considerable portions of the specimen along planes inclined
about 45° to the axis of the specimen, i.e., along the planes in
which the shearing stress 1s a maximum. These planes of
sliding usually begin at points of stress concentration, for
instance, near the fillets at the ends of the specimen, and
gradually spread over the length of the specimen.®® If the
surface of a specimen has been polished, these planes of sliding
are revealed on the surface by easily discernible lines (see Fig.
214). These lines were first noticed by Lueders and are called
Lueders’ lines.®® Due to the described deformation the in-
dividual crystals become strain hardened and if the specimen
is unloaded and loaded again it will be found that the yield
point is raised.

There is another point of importance. Since some indi-
vidual crystals may receive a permanent set during a tensile
test, while neighboring crystals, more favorably orientated,

% See paper by C. W. MacGregor, loc. cit., p. 398.
% An investigation of these lines in various cases was made by
Hartman; see his book, “Phénomeénes qui accompagnent la déformation

‘permanente,” 1900,
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may only deform elastically, it follows that after unloading
there may remain in the stretched specimen some residual
stresses in the individual crystals. The crystals which received
a permanent set do not return completely to their initial shape,
and as a result of this there will be some “wedging effect” on
the neighboring crystals. The possibility of such stresses
can be demonstrated by the system of three bars shown in
Fig. 265. Assume that all three bars are of the same material
and the same cross-sectional area. We know that under the
action of the load P the stress in the middle bar is larger than
in theinclined bars (see p. 19, Part I); i.e., like the crystals men-
tioned above, this element of the system is less favorably situ-
ated than the others. If the load is gradually increased, this
bar will reach the yield point first. Let the straight line 04
(Fig. 265, &) represent the load deflection diagram for this sys-

% % 7

Fic. 26s.

tem under elastic conditions. At 4 the vertical bar begins to
yield and any further increase in the load will be taken by the
inclined bars only.®” Hence beyond the point . an increase in
the load produces a greater increase in the deflection than,
when all three bars were in the elastic state, and the load
deflection diagram follows some such line as A4B. If, on
reaching B, the system is gradually unloaded, the deformation
in the reverse direction, due to the elastic behavior of all

37Tt is assumed that the material -has a pronounced yield point and
that after yielding a considerable stretching can occur without increase
in stress. -

P

MECHANICAL PROPERTIES OF MATERIALS 417

three bars, follows the linear law represented by the straight
line BC, parallel to O4. When the load is entirely removed
the deflection OC still remains and there will therefore be
tensile stresses in the inclined bars and a compressive stress in
the vertical bar, even after unloading. These are residual
stresses due to the plastic deformation of the middle bar. If
the system 1s reloaded, the load deflection diagram will be the
same straight line CB as during unloading and the yield point
of the system will have been raised to the point B, corre-
sponding to the initial loading. If, after unloading, the
system is reloaded with a vertical force in the upward direc-
tion, compressive stresses will be produced in the bars, which
superpose on the residual stresses. Since the vertical bar
already has an initial compression, a force at D (Fig. 265, 4)
smaller than that corresponding to the point A4 will be suffi-
cient to bring the middle bar to the yield point, if we assume
that the yield point of the material in compression is the same
as in tension. Hence the original loading raised the yield
point of the system in the direction of this loading but lowered
the yield point in the opposite direction. This discussion
shows that the presence of residual stresses may explain why
a bar strain hardened by stretching has a higher yield point
in tension than in compression (see p. 410).

The residual stresses produced by uniform stretching of a
bar of a crystaline material are of an extremely localized type.
They are confined to microscopical regions around the crystals
which suffered plastic deformation at a comparatvely low
average stress 1n the specimen. In the process of drawing or
rolling, residual stresses of a less localized type are sometimes
produced. In drawing a bar through a die, for instance, the
metal at the outside is stretched more than the metal at the
middle. Hence drawn bars have considerable residual stresses
in tension at the surface and in compression at the middle.
In drawn copper bars of narrow rectangular cross section the
distribution of these stresses at a distance from the ends is
approximately as shown in Fig. 266 (4). If the bar is cut
llengthwise, there will be bending such as shown in Fig. 266 (&).
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Measurement of this bending shows that the maximum re-
sidual stresses produced in drawing the copper bars are of the
same order as the yield point of the material.3® These stresses

T

£
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are of great practical importance. They cause undesirable
warping in the process of machining *° and to them must be
attributed also season cracking in various copper alloys which
have been cold worked and not properly annealed afterwards.*

76. Types of Failures.”"—In the previous article two
kinds of fracture of a single crystal specimen were mentioned.
In a crystal of a ductile material there is a plastic deformation
preceding fracture which consists of sliding along certain
planes and there is a considerable reduction in cross-sectional
area before fracture occurs. In this case the strength depends
principally upon the resistance to sliding. In the case of a
crystal of brittle material fracture occurs without appreciable
reduction in the cross section and is due to overcoming the
cohesive forces on a certain crystallographic plane. Here the
strength depends principally upon the resistance to separation.
These two types of failure, sliding failure and separation failure,

% Direct measurements made on commutator bar eopper in the re-
search laboratory of the Westinghouse Elec. and Mfg. Co. showed stresses
of 22,000 lbs. per sq. in. in bars which were reduced 1§ per cent in area
by drawing.

3 The first systematic investigation of these stresses was made by
E. Heun. See Zeitschr. f. Metallographie, Vol. 1, 1910, p. 16; Stahl
u. Eisen, Vol. 31, 1911, p. 760; Mitteilungen Materialpriif. Amt, Vol. 35,
1917, p. 13 Naturwiss., Vol. 9, 1921, p. 321. For further discussion see’
art. 69, p. 379. :

1 See “The Failure of Metals under Internal and Prolonged Stress,”
published by Faraday Soc., London, 1921. See also G. Masing, Zeitschr.
f. Metallkunde, 1924, p. 257.

“ A complete bibliography on this subject is given in the paper by
P. Ludwik, “Bruchgefahr und Materialpriifung,” Diskussionsbericht
nr. 35, der Eidg. Materialpriifungsanstalt, Ziirich, 1928. See also P.
Ludwik, Forschungsarbeiten, nr. 295, 1927, Berlin. .
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are encountered also in crystalline materials which consist of
an aggregate of small crystals. In the case of brittle materials
such as cast iron, fracture occurs without appreciable plastic
deformation and on a cross section perpendicular to the
direction of tension. This is a separation failure. A specimen
of a ductile material such as mild steel undergoes considerable
plastic deformation and reduction in cross sectional area due
to sliding along planes inclined 45° to the axis of the specimen
before fracture occurs. This is sliding failure. In studying
these two distinct kinds of fracture the theory has been
forwarded # that the strength of a material can be described
by two characteristics, the resistance of the material to
separation and the resistance to s/iding. If the resistance to
sliding is greater than the resistance to separation, we have a
brittle material and fracture will occur as a result of over-
coming cohesive forces without appreciable deformation. If
the resistance to separation is larger than resistance to sliding,
we have a ductile material. The sliding over inclined planes
begins first and fracture occurs only after a considerable
reduction in the cross sectional area, after which, due to strain
hardening, the resistance to sliding may become larger than
the resistance to separation.

The relation between the resistance to separation and the
resistance to sliding does not remain constant for the same
material. It depends very much upon the velocity of de-
formation and upon the temperature at which a test is made.
There are evidences that the resistance to sliding increases as
the velocity of deformation increases and as the temperature
is lowered. At the same time the resistance to separation is
not affected to the same degree by these two factors. This
would explain why a bar of a metal such as zinc can be bent
like a ductile material under slow loading while the same bar
fractures without plastic deformation if the loading is applied
suddenly.®® Another example of this is asphalt. It may flow
under the action of its own weight if the forces act a long

2 See P. Ludwik, loc. cit., p. 418.
4 P. Ludwik, Stahl u. Eisen, Vol. 43 (1923), p. 1427.
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time, but it proves to be brittle under the action of suddenly
applied forces. In both of these cases the resistance to
sliding was less than the resistance to separation under slow
deformation and the materials behaved in a ductile manner.
At high speed the ratio between the two kinds of resistance
was reversed and they behaved like brittle materials.

The type of fracture depends also on the manner of testing.
If the loading is of such a nature that fracture due to separa-
tion 1s prevented, a considerable plastic deformation may be
obtained in a material usually considered brittle. This
phenomenon is illustrated by the plastic deformation of rocks
submitted to large pressures on all sides.®* Likewise a ductile
material may have a fracture of the brittle type if the form of
the specimen or the type of stress distribution is such that
plastic deformations, due to sliding, are prevented. This
latter case is of great practical importance and it is worth while
to examine in more detail the conditions under which such a
brittle fracture may occur. Experience shows that these
fractures sometimes occur under the action of residual stresses
due to cold work or under the action of thermali stresses, and
that they can be attributed to one of the following two causes:
(1) a three-dimensional stress condition; (2) a form preventing
sliding.

The ductility of materials such as structural steel is
usually determined from a simple tensile test. In such a
test there is a constant ratio between the maximum tensile
stress and the maximum shearing stress equal to two. Under
such conditions the resistance to sliding is overcome first and
the sliding type of failure results. Imagine now a three-
dimensional stress condition such as that represented in Fig. ¢1,
Part I, by Mohr’s circles. The maximum shearing stress in this
case is equal to (o — ¢.)/2 and if o, is nearly the same as o the
maximum tensile stress may be many times larger than the
maximum shearing stress. In this case fracture due to
‘overcoming the cobesive forces on the plane on which the
maximum tensile stress is acting may occur before there can

# See Th. v. Karman, Forschungsarbeiten, nr. 118, 1912, Berlin.
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be any sliding. Such a fracture is not accompanied by
appreciable plastic deformation and has the type of a brittle
failure, although the material may be very ductile under a
simple tensile test. Figure 267
represents the beginning of frac-
ture at the neck of a tensile
test specimen of a ductile ma-
terial.*® In the middle portion
of the cross section at the neck
there is a three-dimensional
stress condition. Due to the
necking, elements here undergo
tension in not only the axial
direction, but also in the radial
direction. This causes a crack
of a brittle type at the center
of the cross section, as shown in
the figure. At the same time material near the surface con-
tinues to yield by sliding, and a sliding fracture finally takes
place near the boundary.

The effect of the form on the type of fracture may be
shown by making tensile tests on grooved specimens of the
shape shown in Fig. 268. Due to the presence of
the portions of larger diameter D, sliding along
45° planes at the groove is inhibited, and reduc-
i tion of the cross-sectional area at the groove dur-

ing a tensile test is partially prevented. Itis nat-

¢ ural that this action should increase as the width
8 of the groove decreases. In the following table
are given some results of such tests obtained with
two different materials: ® (1) carbon sieel with a

- proportional limit 56,000 Ibs. per sq. in., yield point
Fie. 268. 64,500 lbs. per sq. in., ultimate strength 102,000,

Fre. 267.

N

=
B i I

.

% In this case the material was aluminum; see P. Ludwik, V. D. L,
Vol. 71, 1927.

# These tests were made at the Westinghouse Elec. and Mfg. Co.
Research Laboratory; see also the tests by P. Ludwik u. R. Scheuy,
Stahl u. Eisen, Vol. 43, 1923, . 999.
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lbs. per sq. in., elongation 263 per cent, reduction in area ¢
per cent; (2) wickel chrome steel with a proportional limit
80,000 lbs. per sq. in., yield point 85,000 lbs. per sq. in.,
ultimate strength 108,000 lbs. per sq. in., elongation 27 per
cent, reduction in area 69 per cent. These figures were
obtained from ordinary tensile tests on normal cylindrical
specimens 3 in. in diameter and with 2-in. gage length; the
original cross-sectional area was used in calculating the stresses.
The specimens of the type shown in Fig. 268 had 4 = 1 in.,
D = 1}tin.and § = %1in., i in., & in.

TaBLE 25.—ULTIMATE STRENGTH OF CYLINDRICAL AND GROOVED SPECIMENS

Ultimate Strength Ultimate Strength
= 8 _ 8
b2
A Orig. Area [Red. Area 3‘% Orig. Area |Red. Area
§ 5 -
'g = in. 163,000 | 176,000 = 3z in. 193,000 | 237,000
Ol & « 164,000 | 177,000 % 184,000 | 232,000
g 143,000 158,000 P 154,000 199,000
Norm. spec. 102,000 | 227,000 Norm. spec. 108,000 | 348,000

The table shows that in all cases the breaking load for the
grooved specimens was larger than for cylindrical specimens.
With the grooved specimens only a small reduction in area
took place and the appearance of the fracture was like that of
brittle materials. The true ultimate strength of the cylin-
drical specimens was larger than that of the grooved speci-
mens, because the fracture of the cylindrical specimens
occurred after considerable plastic flow; this caused strain
hardening and increased not only the resistance to sliding but
also the resistance to separation.
An effect analogous to that of the narrow groove in Fig:
. 268 may be produced by internal cavities in forgings and
castings. Thermal stresses and residual stresses may combine
with the effect of stress concentration at the cavity to produce
a crack and the resulting fracture will have the characteristics
of a brittle failure without appreciable plastic low, although
the material may prove ductile in simple tensile tests. ]

MECHANICAL PROPERTIES OF MATERIALS 423

The combination of a grooved or notched form of specimen
with great velocity of application of the load may Prf)duce a
still more pronounced “groove effect.” These conditions are
realized in impact tests of notched bars. Another type of
fracture of ductile materials without appreciable plas.tlc. de-
formation is that caused by reversal of. stresses. This is of
great practical importance and will be discussed in the article
on fatigue of metals (see p. 428). ' .

77. Time Effect and Hysteresxs.—Ol.)servanon shows
that when a tensile load is applied to a bar it does' not produ.ce
the complete elongation immediately. There 1s a certain
creep, that is, the bar continues to elongate slowly for a
considerable length of time. This time ‘eﬁect depends on the
material of the bar and on the magnitude of‘ the stresses
involved. In the case of a single crystal specimen, loaded
within the proportional limit, the .time effect 1s very s.mall and
can be explained by considering the.rmodynamlc-al and
clectrical effects. Assume that the bar is lqaded qmc‘kly as
represented by the portion 0A of- the tensile test diagram
(Fig. 269). This process of elongation may be
considered to be adiabatic; it is accompanied by
a lowering of the temperature of the bar due to
increase in its volume. The bar gradually
warms up to the initial temperature and t}}ereby
elongates an additional amount dB-Wlth.Out
change of load. Then a quick }Jnloadlng gives
the straight line BC on the diagram. 'At G,
due to the decrease in the volume, 1n the .
process of unloading the bar has a temperature higher than the
initial; after a time, cooling causes 1t to shorten the amount
CO. Although the deformations 4B and CO are very small,
this discussion shows how there may be a certain time effect
due to thermal causes in the case of an ideal elastic substance
within the proportional limit.*” An analogous effect.due to
electrical causes may also be observed under certain con-
ditions4® In the case of non-homogeneous materials, such as

7 W. Thomson, Quarterly Journal of Math.,”1855.
1 See A. F. Joffe, “ The Physics of Crystals,” New York, 1928.
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commercial metals, the time effect is much larger. It cannot
be explained by thermal causes alone and is usually attributed
to the continuation of sliding deformation within unfavorably
orientated crystals after the load has been applied. The time
effect after unloading is explained by residual stresses, which
continue to produce sliding within unfavorably orientated
crystals and thus cause creep in the material for some time
after the removal of the load.

In discussing the time effect on tensile and compressive
test diagrams, we must distinguish between metals having a
comparatively low melting point such as lead or zinc and
metals having much higher melting temperatures such as steel
or copper.’® Experiments show that tensile and compressive
test diagrams of metals of the first group depend very much
upon the speed with which the experiments are made. Figure
270, for instance, represents compression test diagrams for lead
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at different speeds of loading.® In these diagrams the true
compressive stress is used, plotted against compressive strain:

The speeds of shortening in per cent per second are indicated

49 These metals when at temperatures nearer their own melting points
show the characteristics of the first class of metals at room tempera-
ture (see p. 462). ’

50 See paper by E. Siebel and A. Pomp, Mitteilungen K. W. Institut,
Vol. 10, 1928, p. 63.
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on the curves. If the speed of unit compression is 0.0003 per
cent per second, the load remains practically constant after
reaching a unit compression of 10 per cent. This large effect
of speed with such metals is explained by the fact that they
recrystallize at room temperature. Hence the hardening
effect of plastic deformation may be removed by recrystalliza-
tion if the loading process goes slowly enough.

In the case of metals with a high melting point the speed
has much less effect. Figure 271 represents compression test
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diagrams at different speeds of loading for steel. Again the
true compressive stresses are plotted against unit compression
in per cent. It will be seen that the most important effect of
speed is that on the position of the lower yield point. At a
high speed of loading the yield point of mild steel is about 30
per cent higher than its value with a low speed of testing.
This phenomenon is important in the impact testing of
metals and explains why fracture in dynamical tests requires
more work than in static tests on specimens of the same
material.

This discussion of the time effect shows that even under the
most ideal conditions, when the specimen is a single crystal
(Fig. 269), there may be some difference between the curve

‘which represents loading of the specimen and the curve which
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represents unloading. This means that a certain amount of
energy is dissipated during a loading-unloading cycle. In Fig.
269 the area 04 BD represents the work done during the process
of loading (see p. 281, Part I), the area BCD, the work restored
during unloading, and hence the area O4BC represents the
energy dissipated per cycle. This quantity is very small and
can be eliminated if the process of loading and unloading is
carried out so quickly that no appreciable exchange in heat
takes place. We have such conditions, for instance, in high-
frequency vibrations produced in a single crystal specimen.
The dissipation of energy, due to electrical causes, as in a
quartz crystal, can be eliminated by choosing a certain crystal-
lographic direction for the tension and compression. This
property has found wide application in the generation of
sustained electric vibrations. Due to very small energy
losses, quartz oscillators show a very sharp resonance effect at
high frequencies.

If a single crystal specimen is stretched beyond the
proportional limit until sliding takes place in the crystal, and
it is then unloaded and loaded again, a stress-strain diagram
like that in Fig. 272 will be obtained. After repeated loading
and unloading we may arrive 2 at a condition in which there is
no noticeable change in the permanent set at C. The cycle
ABCD will then be “elastic.” The energy dissipated during
each cycle represented by the area ABCD is usually larger
than that discussed in connection with Fig. 269 and cannot be
entirely explained by the thermal or electrical causes men-
tioned. Such Jlooping may also be obtained with multi-
crystalline materials, such as the commercial metals, and with
amorphous materials such as glass. This phenomenon is
called elastic hysteresis. In multicrystalline materials it can be
partially explained as described before (see p. 424), but the
complete explanation is still unknown.®

51 See the book by A. Joffe, loc. cit., p. 423-

52 [t is assumed that the stress is not very large, so that a large
number of loadings and unloadings will not produce a fatigue fracture.

% See the theory of hysteresis by Bennewitz, Physikal. Zeitschr.,
Vol. 21, 1920, p. 703, and Vol. 25, 1924, p. 417. A very interesting
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The areas of these Aysteresis loops, representing the energy
dissipated per cycle, are of practical interest, as the amount of
this energy determines the damping properties of the material.
Measurements made by Rowett 3 with B
steel showed that this energy increases as T
the cube of the maximum stress during
each cycle. This subject has also been
studied by B. Hopkinson * and more re- 8
cently by O. Foppl.® Hysteresis loops
may be demonstrated by using the model
shown in Fig. 273.57 It consists of a fixed
base A and two movable wooden blocks B
and C, which can slide along the steel rod
fixed in 4. The block B can slide freely while the block C,
attached to B by the helical spring, moves against an adjust-
able friction. Figure 273 (4) represents the relation between
the force P applied to block B and the displacement of this
block. At m the friction of the block € is overcome and sliding
continues without increase in the load. Figure 273 (¢) shows
the cycle obtained by applying a load first in one direction and
then in the other. Other phenomena in tension and compres-
sion, such as deviation from the straight line law at the propor-
tional limit, sudden yielding at the yield point, hysteresis
loops, residual stresses, etc., may be demonstrated with a
model consisting of several units similar to that in Fig. 273, put
side by side with all the blocks B clamped together. Each
unit represents a crystal in a multicrystalline specimen. The

Q c
Fic. 272.

mechanical model illustrating time effect and hysteresis was developed
by L. Prandtl; see Zeitschr. f. Angew. Math. u. Mechanik, Vol. 8, 1928,
p- 85.

5t Rowett, Proc. Roy. Soc., Vol. 89, 1913, p. 528.

s B. Hopkinson and G. T. Williams, Proc. Roy. Soc. (A), Vol. 87,
1912,

56 O, Foppl und E. Becker, Forschungsarbeiten, nr. 304, 1928. See
also Reports of the International Congress of Applied Mechanics, Ziirich,
1926, and Mitteilungen des Wohler-Instituts, Braunschweig, Heft 30,
1937. For bibliography on hysteresis see H. Fromm, Handbuch Phys.
and Techn. Mech., Vol. 4, 1, p. 436, 1931.

57 Such a model was used for demonstrations by C. F. Jenkin. See

_ Engineering, Vol. 114, 1922, p. 603.
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b.egin'ning of sliding of the individual blocks C represents
yielding in individual crystals. By adjusting the friction in
the blocks C, diagrams of various types can be obtained.
When the friction of the individual blocks differs greatly
there will be a large difference between the proportional limi;

<)

-P

Fia. 273.

a.nd the yield point, as in Fig. 273 (4). By making the fric-
tions equal, a diagram such as in Fig. 273 (4) is obtained repre-
senting a well-defined yield point. If the friction of individual
blo?ks C differs, then they will begin to slide at different
positions of B and, after unloading, certain forces will remain

in the-springs, representing residual stresses produced by
stretching multicrystalline specimens.

78. T1‘1e Fatigue of Metals.*—Machine parts are very
often subjected to varying stresses and it is very important to

. 58 Thi_s subject is very completely discussed in the two recent books:
The Fatigue of Metals,” by H. J. Gough, 1924, London; “The Fatigue
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know the strength of materials under such conditions.®® It s
well known that, under repeated loading and unloading or
reversed stresses, failure can be produced by stresses smaller
than the ultimate strength of the material obtained in the
static test and that the magnitude of these stresses required to
produce failure decreases as the number of cycles of stresses
increases. This phenomenon of the decreased resistance of a
material to varying stresses is called fasigue, and the testing of
a material by such stresses is called an endurance test.

If 0mex and omin are respectively the maximum and
minimum values of the varying stress, then the algebraic
difference

R = Omax — Omin (ﬂ)

is called the range of stress. The cycle is completely defined
if the range and the maximum stress are given. 'The average
stress 1s

O;m — %(Umax + Umin)- (b)

In the particular case of reversed stress Omin = = Omax
R = 20mux, 0m = 0. Any cycle of varying stresses can be
obtained by superposing a cycle of reversed stress on the steady
average stress. The maximum and minimum values of the
varying stress are then given by the following formulas:

R

O'max=0'm+?; o'min=0'm_?' (C')
There are various methods of applying the load in an endur-
ance test. The specimen can be subjected to direct tension
and compression, to bending, to torsion or to some combi-

of Metal,” by H. F. Moore and J. B. Kommers, 1927, New York.
Both these books contain a very complete bibliography on the subject.
For additional information see the mimeographed lectures of H. J.
Gough given at Mass. Inst. of Techn. during summer school, June 21 to
July 16, 1937.

% J. O. Roos found from examination of a large number of fractures
of machine parts that 8o per cent could be attributed to fatigue, Proc.

Intern. Assoc. Testing Mat., 1912.
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nation of these. The simplest way is by reversed bending.s
A common cantilever form of fatigue test bar © is shown in
Fig. 274. The cross section of the specimen is varied along
the length in such a manner that the maximum stress occurs
between cross sections m# and myz; and is practically constant
within that region. The effect of stress concentration is
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eliminated by using a large fillet radius and by increasing the
diameter of the bar near the fillet. The load P is always
downward, while the specimen rotates. The stress therefore
changes sign every half revolution and the number of cycles of
stress is equal to the number of revolutions of the machine.
The stress is a completely reversed stress, the average stress
being zero and the range of stress twice omax. By taking
several specimens and testing them at various loads P, a
curve such as shown in Fig. 275 can be obtained. Here o,,.
is represented as a function of the number of cycles # neces-
sary to produce fracture. The curve shown was obtained
with mild steel. At the beginning o.m.x decreases rapidly as
increases but after 4~ millions of cycles there is no longer any
appreciable change in ¢ .z and the curve approaches asymptot-
ically the horizontal line ¢, = 27,000 lbs. per sq. in. The
stress corresponding to such an asymptote is called the
endurance limit of the material tested for reversed stresses. 1t

% There are evidences that the endurance limit obtained from bend-
ing tests coincides with that obtained by testing under direct stress.
See paper by P. L. Irwin, Proc. Amer. Soc. Test. Mat., Vol. 23, 1923,
and Vol. 26, 1926, A further discussion of this subject is given by R. D.
France, Proc. Amer. Soc. Test. Mat., Vol. 31, 1931. .

1 See McAdam, Chemical and Met. Engr., 1921. The same type
of specimen is used also by the Research Laboratory of the Westinghouse

Elec. and Mfg. Co.
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is now a usual practice in endurance tests to plot the curve
¢ against log #. In this manner a de.ﬁmte mark of discon-
tinuity in the curve, defining the magnitude of the endurance
limit, has been disclosed. .

There is a great difference between the fractures of mild st.eel
specimens tested statically and those tested by alternating
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stresses. In the first case a considerable plast.ic flow prec.edes
fracture, and the surfaces at the ruptured section show a silky,
fibrous structure due to the great stretching of the crystals. A
fatigue crack, however, looks entirely dlf.ferent. A ct:ack starts
at a certain place, due to a local defect in the material, or due
to stress concentration produced by an abrupt change in the
cross section. Once formed, it spreads due to stress concen-
tration at its ends under the action of alternating stresses, and
this spreading progresses until the cross section becomes so re-
duced that the remaining portion fractures sudden.ly under. the
load. Two zones can usually be distinguished in a fatigue
fracture, one due to the gradual development of a crack and
the other due to sudden fracture. The latter resembles the
fracture of a tensile test specimen with a narrow deep groove
(see p. 421) in which the form prevents sliding and ft:acture
occurs as a result of overcoming the cohesive forces; thls.frac-
ture is of the &rittle type, such as occurs in cast iron, even.lf the
material is ductile. In the case of cantilever test specimens
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(Fig. 274)- the maximum stresses are at the outer fibers; the
fatigue crack is usually started at the circumference and
spreads towards the center. Where there is stress concentra-
tion due to fillets, grooves or holes, the crack usually starts at
the most highly stressed portion and spreads from this point
as a center; in such cases fracture reveals concentric rings with
respect to this starting point. This is a very familiar type of
fracture in machine parts which have been submitted to alter-
nating stresses. It is thus evident that the “brittle” type of a
fatigue fracture is due to the peculiar mechanism of fracture
and not to “crystallization.”

W. Fairbairn was the first to state, on the basis of experi-
ments on a full size, wrought iron girder,®? that there is a
limiting stress, which can be applied safely an infinite number
of times. Although it cannot be proved by direct test, all
experimental evidence % supports the statement, now gener-
ally accepted, that for most metals there is a definite limiting
range of stress which can be withstood for an infinite number of
cycles without fracture.

It is of great practical importance to know how quickly the
o—n curve approaches the asymptote as the number of
cycles necessary to establish the endurance limit depends
upon this. Experiments show that for ferrous metals the
endurance limit can be established with sufficient accuracy on
the basis of from 6 to 10 millions of cycles. In the case of non-
ferrous metals a much larger number of cycles is needed.

It is evident from the above discussion that the determi-
nation of the endurance limit for a definite material requires a
considerable number of tests and considerable time; hence it
would be of practical interest to establish relations between
the endurance limit and other mechanical properties which can
be determined by static tests. The large amount of experi-

62 See W. Fairbairn, Phil. Trans. Roy. Soc., 1864.

% A large number of endurance test curves were analyzed by O. H.
Basquin, Proc. Amer. Soc. for Test. Mat., Vol. 10, 1910.

¢ See H. F. Moore and J. B..Kommers, Bulletin No. 124, Eng.
Expt. Stat., University of Illinois, U. S. A.
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mental data accumulated has not made it possible to establish
cuch a correlation.®® As a rough estimate in the case of
ferrous metals the endurance limit for reversal of stresses can
be taken equal to from 0.40 to 0.5§ ultimate strength obtained
in the vsual way from tensile tests. When we are working
with materials belonging to a group, such as carbon steels,
whose mechanical characteristics are very well known, such
estimates can be considered reliable. Otherwise estimates of
this type are likely to be misleading and recourse must be made
to direct endurance test. Some results in endurance tests of
certain steels are given in the table on pp. 497, 498.

In the majority of cases the arrangement of endurance
tests is such that only the endurance limit for reversed
stresses (0max = — Omin) 1s determined, while in many cases in
machine design we have varying stresses which are not
completely reversed. It is necessary to know the endurance
limits under these varying stresses. A. Wohler was the first
experimenter who studied the phenomenon of fatigue system-
atically.®® He showed that the range of stresses R, neces-
sary to produce fracture, decreases as the mean stress on
increases. On the basis of these tests and of Bauschinger’s
work 67 W. Gerber proposed ¢ a parabolic law relating the
range of stress R with the mean stress o,.. This 1s illustrated
by several parabolic curves in Fig. 276, in which the mean
stress and the range of stress are expressed as fractions of the
ultimate strength. The range is a maximum when the stress is
completely reversed (s, = 0) and it approaches zero when the
mean stress approaches the ultimate strength. If the endur-

8 See book by H.'J. Gough, loc. cit., p. 428. See also his lectures,
loc. cit., p. 429.

% A, Wohler, Zeitschrift fiir Bauwesen, Vols. 8, 10, 13, 16'and‘20,
1860/70. An account of this work in English is given in Engineering,
Vol. 11, 1871; see also Unwin’s book, “The Testing of Materials of
Construction,” 3d ed., 1910. )

67 J. Bauschinger, Mitteilungen d. Mechanischtechnischen Labora-
toriums in Miinchen, nr. 13 und 2s.

%8 W. Gerber, Zeitschr. d. Bayerischen Arch.- und Ing.-Vereins, 1874.
See also Unwin’s book, ““ Elements of Machine Design,” Vol. 1, Chap. 2.
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ance limit for reversed stress and the ultimate strength are
known, the endurance limit for any varying stress can be ob-
tained from such curves. More recent investigations show that
there is no fixed general law connecting the mean stress and
the range of stress.®® For instance, there are materials 7 for
which the straight lines indicated in dots in Fig. 276 represent
the actual relation between R and o, better than parabolas.
The straight lines O4 and OB shown in Fig. 276 and having
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slope equal to 2 determine the region 4OB in which the
stress changes sign during a cycle. Outside of this region the
stress always remains tension or compression. Experimental
results in the region 4OB usually lie between the parabolas
and the corresponding straight lines.™ When the stress is
always tension or always compression, the ranges R, obtained
by tests, are sometimes not only below Gerber’s parabolas but
also below the corresponding straight lines.

All the results discussed up to now were obtained from ten-
slon-compression or from bending tests, in which cases we have
a uniaxial stress condition. Inpractical problemswe veryoften
encounter a combined stress condition, and it is important to
know the endurance limit for such conditions. The simplést

8 An extensive discussion of this question is to be found in the book
by H. J. Gough, loc. cit., p. 428. See also his lectures, loc. cit., p. 429.

7 See paper by B. P. Haigh, Journal Inst. Metals, Vol. 18, 1927.

"t Some recent expe-iments with mild steel do not show that there is
any appreciable influence of mean stress om on the magnitude of the
range R. See H. J. Gough lectures, loc. cit., p. 429.
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case of this kind is pure shear, which we encounter in shafts
under torsion. A good many torsion fatigue tests have been
made from which the endurance limit can be determined.
These tests show that the ratio between the endurance limit
in shear and that in tension-compression is not far from o.50,
being usually somewhat above this value.™

By combining reversed torsion with constant axial tension
it was found " that the endurance limit in shear 7 is obtained
from the equation:

7.2 0.2

2=t (4)
in which 7, is the endurance limit for the reversed torsion
without axial tension, ¢ is the applied axial tensile stress, and
o1 1s the ultimate strength of the material in tension.

The combination of reversed bending and reversed torsion
acting in phase was investigated by H. J. Gough and H. V.
Pollard.” By varying the ratio of the maximum bending
moment to the maximum torsion moment, it was found that
in the case of mild carbon steel and of nickel-chromium steel
the limiting values of the bending stress ¢ and of the shearing
stress are found from the equation:

. 0—2 7.2
U'—e2 + ;6_2 =1, (b)

in which ¢, is the endurance limit for bending and 7, is the
endurance limit for torsion.

In the case of brittle materials, such as cast iron, the same
experiments showed that the fatigue action depends only on

2 In the case of mild steel, W. Mason found this ratio equal to o.50,
Proc. Inst. Mech. Engrs., London, 1917, p. 121. H. F. Moore and T. M.
Jasper found the average value of this ratio equal to o.56, Bulletin No.
136, Eng. Expt. Sta., University of Illinois. McAdam found this ratio
to vary between o.55 and 0.68 over a wide range of materials, Proc. Amer.
Soc. Test. Mat., Vol. 23, 1923.

% K. Hohenemser and W. Prager, “ Metallwirtschaft,” Vol. 12, p. 342,
1933; for the description of the machine used for this experiment see
paper by E. Lehr and W. Prager in “Forschung,” Vol. 4, 1933.

" The Institution of Mechanical Engineers, 1935 and 1936.
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the magnitude of the maximum principal stress, and that the
failure occurs when this maximum approaches the value of
the endurance limit found from the usual rotating cantilever
tests.

79. Various Factors Affecting Endurance Limit.—After
a general discussion of the preceding article let us consider
various factors which may affect the results obtained by
endurance tests.

Effect of cold work on the endurance limit. 1In discussing
stretching, drawing, and rolling of ductile metals at room
temperature it was pointed out (see art. 74) that due to such
cold work the material becomes stronger, the yield point is
raised and the ultimate strength is somewhat increased.
Hence we must expect that cold work will also affect the
endurance limit of the material. The experiments made with
steel specimens submitted to cold stretching ™ showed that
a moderate degree of stretching produces some increase in the
endurance limit. With a further increase in cold working a
point may be reached at which some drop in the endurance
limit may occur due to overworking.’”® A further improve-
ment of a cold worked material can be obtained by submitting
it, after cold work, to a mild heat treatment—say by leaving
the material in boiling water for some time.

Overstressing and understressing. Experiments have been
made in which cycles of stress above the endurance limit were
applied a number of times before starting a normal endurance
test. Such overstressing of specimens showed that there is a
limiting number of cycles of overstress, depending on the
magnitude of overstress, below which the endurance limit is

™ H. F. Moore and J. B. Kommers, Bull. No. 124, Univ. of Illinois,
Eng. Exper. Sta., 1921 and O. J. Horger, Trans. A. S. M. E., Vol. 574,
p- 128, 1935. In Moore’s experiments carbon steel, 0.18 per cent C, and
the stretching 8 per cent and 18 per cent were used. In Horger’s ex-

periments with carbon steel, 0.48 per cent C, the same 8 per cent and 18
per cent stretching were used. B .

¢ See H. F. Moore and T. M. Jasper, Bull. No. 136, Eng. Expt. Sta.,
Univ. of Illinois, and R. M. Brown, Trans. Inst. Engrs., Shipbuilders
Scot., 1928.
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.not affected by overstress, but above which number of cycles

the endurance limit was observed to decrease. By plotting
the maximum stresses of the cycles of overstress against the
limiting numbers of these cycles, a damage curve ™ for the
tested material is obtained. The area below this curve defines
all those degree- of overstressing which do not cause damage.
The damage carve is of practical importance when we are
dealing with a machine part normally working at cycles of
stress below the endurance limit, but subjected from time to
time to the cycles of overstress. If the magnitude of over-
stress i1s known, the safe number of cycles of overstress is
readily obtained from the damage curve.™

By running an endurance test at a load just below the
endurance limit and then increasing the load by small incre-
ments the endurance limit can be raised. This phenomenon
is called the understressing effect. The amount by which the
endurance limit can be raised in this way depends on the
material.” For mild steel this amount is sometimes as high
as 30 per cent of the original endurance limit, while Armco iron
and copper remain practically unaffected by understressing.

Frequency effect. The effect of the frequency of the cycles
in endurance tests has also been studied, but no appreciable
effect was observed up to a frequency of 5,000 per minute.
For higher frequencies some increase in the observed endur-
ance limit with the frequency, was found. Very interesting
experiments of this kind have been made by C. F. Jenkin.%
Increasing the frequency up to over 1,000,000 cycles per
minute he found at that high frequency an increase in the

" H. J. French, Trans. A. S. S. T., Vol. 21, p. 89g, 1933, and H. W,
Russell and W. A. Welcker, Proc. A. S. T. M., Vol. 36, 1936.

" B. F. Langer suggested a formula for calculating the number of
cycles of overstress of various intensities which a machine part can
withstand before failure. See “Journal of Applied Mechanics,” Vol. 4,
P. A-160, 1937.

" H. F. Moore and T. M. Jasper, Bull. No. 142, Univ. of Illinois,
Eng. Expt. Sta., 1924; J. B. Kommers, Eng. News Record, 1932.

8 C. F. Jenkin, Proc. Roy. Soc., Vol. 109A, 1925, p. 119 and C. F.
Jenkin and G. D. Lehmann, Proc. Roy. Soc., Vol. 1254, 1929.
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endurance limit of more than 30 per cent for such materials
as Armco iron and aluminum. To obtain such high frequen-
cies Jenkin used forced vibrations of small specimens. A rotat-
ing beam machine was used by G. N. Krouse ® for high speed
tests 30,000 cycles per minute. For aluminum and brass he
found 8 per cent increase in endurance limit at this speed.

Temperature effect. In the previous disctssion we were
dealing with endurance tests made at room temperature;
there are, however, cases when engineering structures and
machine parts are submitted to the action of cycles of stresses
at low temperature, as, for instance, in the case of aeroplanes,
or at high temperature, as in steam turbines and internal
combustion engines. Hence, endurance tests at low and at
high temperatures are of practical importance. The com-
parative endurance tests made ® at + 20° C. and — 40° C.
with Monel metal, stainless steel, nickel steel and chromium-
molybdenum steel showed in all cases some increase in endur-
ance limit with the decrease of temperature. Similar con-
clusions were also obtained for other materials.3

The endurance tests at sigh temperatures made with various
kinds of steels on rotating beam machines 3 and also on
reversed direct stress machines ¥ all indicate that up to
300° C.—400° C. there is no great effect of temperature on the
endurance limit. The maximum endurance limit is usually
obtained at 300° C.—400° C., while at 100° C.—200° C. the
endurance limit is usually somewhat less than at room tem-
perature. The experiments show also that the e—# curves do
not approach their asymptotes so rapidly as at room tem-
perature, and that more than 107 cycles are required for
determining the magnitude of the endurance limit.

8 G. N. Krouse, Proc. A. S. T. M., Vol. 34, 1934.

82 H. W. Russell and W. A. Welcker, Proc. A. S. T. M., Vol. 31,
p. 122, 1931.

% W. D. Boone and H. B. Wishart, Proc. A. S. T. M., Vol. 35, 1935.

8 H. F. Moore and T. M. Jasper, Bull. No. 152, Univ. of Illinois,
Engr. Expt. Sta., 1925 and H. F. Moore, S. W. Lyon and N. P. Inglis,
Bull. No. 164, Univ. of Illinois, Engr. Expt. Sta., 1927.

# H. J. Tapsell and J. Bradley, Journal Inst. Met., Vol. 35, 1926.

/
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The phenomenon called corrosion fatigue is also of practical
importance. This term is used to designate the simultaneous
action of corrosion and fatigue. In 1917 Haigh 3¢ published
the results of some very interesting endurance tests on
brasses, in which he found some lowering of the endurance
limit when the specimen under alternating stress was subjected
to the action of salt water, ammonia, or hydrochloric acid.
He pointed out also that the damaging effect of ammonia on
brass was not produced unless the corrosive substance and the
alternating stresses were applied simultaneously. Further
progress in the investigation of corrosion fatigue was made by
McAdam,? who investigated the combined effect of corrosion
and fatigue on various metals and alloys. These tests proved
that in most cases a severe corrosion prior to an endurance
test 1s much less damaging than a slight corrosion which takes
place simultaneously. Tests with carbon steels with various
carbon contents and having endurance limits 88 in reversed
stress varying from 20,000 lbs. per sq. in. to 40,000 lbs. per sq.
in. showed that, if the specimens are subjected to the action of
fresh water during the endurance tests, the endurance limits
are greatly diminished and vary from 16,000 lbs. per sq. in. to
20,000 lbs. per sq. in. These lowered endurance limits are
called corrosion fatigue limits. The tests showed that while
for testing in air the endurance limit increases approximately
in the same proportion as the ultimate strength of the steel the
results obtained when testing in fresh water are quite different.
The corrosion fatigue limit of steel having more than about 0.25
per cent carbon cannot be increased and may be decreased by
heat treatment.®® It was shown also that by adding enough
chromium to increase the ordinary corrosion resistance’ of

8 B. P. Haigh, Journal Institute of Metals, Vol. 18, 1917.

87 D. J. McAdam, Proc. Amer. Soc. Test. Matls., Vol. 26, 1926;
Trans. Amer. Soc. Steel Treating, Vol. 2, 1927; Proc. Amer. Soc. Test.
Matls., Vol. 27, 1927; Proc. International Congress for Testing Materials,
Vol. 1, 1928, p. 305, Amsterdam.

88 Determined by tests in air.

8 McAdam, Proc. International Congress at Amsterdam, Vol. 1,
P- 308, 1928.
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steel, the corrosion fatigue limit can be raised considerably
above that for carbon or nickel steels.?

The endurance tests in an atmosphere of steam ' showed
that dry steam does not affect the endurance limit, but in
the case of steam containing air or water a lowering of the
endurance limit was observed. The experiments in vacuum
showed that the endurance limit of steel is about the same as
that obtained from the tests in air, while experiments with
copper and brass demonstrated an increase of endurance limit
of no less than 14 per cent and 16 per cent respectively.

There are many known cases of failures in service which
must be attributed to corrosion fatigue; they include failures
of such parts as marine propeller shafts, water-cooled piston
rods of marine oil engines, turbine blades, locomotive springs,
pump rods in oil wells, boilers and super-heater tubes, and so
on. In many cases corrosion-fatigue failures were eliminated
by introducing corrosion-resisting materials. The McAdam
experiments with corrosion-resisting steels showed that such
steels give very satisfactory results in corrosion-fatigue tests.
Recent experiments with special bronzes ¥ showed that
phosphor bronze and aluminum bronze, tested under ex-
tremely corrosive conditions, have a remarkable corrosion-
fatigue resistance, which compares favorably with that of the
best stainless steels.

Protective coatings ® of parts subjected to corrosion-
fatigue and surface cold work % were also successfully used in
eliminating corrosion-fatigue failures.

% See McAdam, Trans. Am. Soc. Mech. Engrs., Applied Mech.
Divis., 1928.

%t See T. S. Fuller, Trans. Amer. Soc. Steel Treat., Vol. 19, 1931, p. 97.

%2 H. J. Gough and D. G. Sopwith, “Journal Inst. Metals,” Vol. 49,
P. 93, 1932.

% H. J. Gough and D. G. Sopwith, “Journal Inst. Met.,” Vol. 6o,
P. 143, 1937.

#D. G. Sopwith and H. J. Gough, “Journal of the Iron and Steel
Inst.,” 1937.

% 0. Féppl, O. Behrens und Th. Dusold, ““Zeitschr. f. Metallkunde,”
Vol. 25, 1933.
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Effect of residual stresses. During heat treatment of
machine parts and during welding of structures, considerable
residual stresses are usually produced, and the question arises
what effect these stresses may have on the endurance limit.
The experiments with quenched steel specimens tested in the
rotating beam fatigue testing machine showed ¢ that, due to
application of cycles of reversed stresses, the initial residual
stresses are reduced to less than one quarter of their initial
value and that the effect of these stresses on the endurance
limit is negligible. Similar conclusions were obtained also
from fatigue tests of welded I-beams.?”

The effect of surface finish on the endurance limit has also
been studied. Tests were made on 0.49 per cent carbon steel
with an ultimate strength of 95,000 lbs. per sq. in. and an
ordinary endurance limit of 48,000 lbs. per sq. in. By taking
100 as the endurance limit for highly polished specimens, the
following results were obtained for various finishes: °® ground
Jfinish 89, smooth-turned finish 84, rough-turned finish 81.
Tests with 0.02 per cent C steel (Armco iron) gave for the last
two types of finish 92 and 88 respectively. Similar experi-
ments were made with 0.33 per cent C steel by W. N. Thomas,?®
who measured the magnitude of the scratches in various
finishes with a microscope; other experiments have been made
by W. Zander.'®

The tables on pages 497 and 498 give the results obtained
in static and endurance tests of certain steels often used in
engineering.

9 See H. Biihler und H. Buchholtz, “Stahl u. Eisen,” Vol. 53, p. 1330,
1933, and Mitteil. Forsch. Inst., Verein. Stahlwerke, Dortmund, Vol. 3,
P- 235, 1933. '

9 E. H. Schulz und H. Buchholtz, “Stahl u. Eisen,” Vol. 53, p. 545,
1933.
9% See H. F. Moore and J. B. Kommers, Bulletin No. 124, loc. cit.,
p- 683.

9 W. N. Thomas, Engineering, Vol. 116, 1923, p. 483. Recent
development in investigating surface roughness is discussed in the paper
by S. Way, see reference 111, p. 453.

100 W. Zander, Dissertation, Technische Hochschule Braunschweig,

1928.
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80. Fatigue and Stress Concentration.—In discussing
stress concentration produced by sharp variation in the cross
sections of bars or shafts (see Chapter VII), it was indicated
that such stress concentration is especially damaging in the
case of varying stresses. In machines stress concentration is
always present owing to fillets, grooves, holes, keyways, etc.,
in their parts, and experience shows that most of fatigue cracks
start at points of stress concentration. Several examples of
such failures will now be briefly discussed. Figure 277 repre-

Fia. 277,

sents ! fatigue failures of circular shafts with transverse
circular holes subjected to the action of reversed torsion.
The maximum stress in such a case occurs at the ends of the
diameters of the hole inclined 45 degrees to the axis of the
shaft (see p. 317). At these points the cracks start and
gradually develop along a helical path following the direction
of one of the principal stresses. Figure 278 represents the
torsional fatigue failure of a shaft of a large motor-generator
set which unfortunately operated near resonance.!® The

10 See paper by A, Thum, “Forschung,”” Vol. g, p. 57, 1938.

1% This figure and the following three are taken from the paper by
R. E. Peterson presented at a conference on “Strength of Materials
Problems in Industry,” Mass. Inst. Techn., July, 1937. The mechanism
of cracks growth is discussed in the-paper by R. E. Peterson, Journal of
Appl. Mech., Vol. 1, p. 157, 1933.
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crack started at the keyway, where a high stress concentration
takes place, and gradually developed along the helical path.

Fic. 278.

The helical crack corresponding to the direction of the second
principal stress can also be seen on the photograph. Figure
279 represents torsion failure of a shaft of a Diesel dri\fen
generator. A high stress concentration at the small radius
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fillet resulted in several helical cracks, which, joined together
produce a saw-tooth appearance. In Fig. 280 are shown the

F1a, 280,

fatigue cracks, which gradually developed at the roots of the
gear teeth at points of high stress concentration produced by
the bending of the teeth as cantilevers. Finally, Fig. 281
represents a characteristic fatigue failure of a heavy helical
spring. The crack started from the inside, as theory predicts
(see p. 272, Part I), and again follows the direction of one of
the principal stresses. All these pictures clearly demonstrate
the damaging action produced by stress concentration, and
make it clear that this factor must be seriously considered in
the design of machine parts.

The early fatigue tests made with specimens having sharp
changes of cross section showed that there was a reduction
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in strength due to stress concentration, but this reduction was
usually found to be much smaller than would be expected
from the magnitude of the calculated factor of stress concen-
tration. For instance, in the case of flat steel specimens with
small circular holes subjected to direct stress the theoretical
factor of stress concentration is equal to three (see p. 313),

TG, 281.

and if the magnitude of the peak stress is the controlling
factor in endurance tests, it would be expected that the
tension-compression load required to produce fatigue failure
of specimens with holes would be about three times smaller
than that for specimens without holes. However, the experi-
ments showed that in this case the reduction in strength due
to stress concentration is small as compared with the calcu-
lated effect.’® To explain this discrepancy and to give
necessary information for designers, a very extensive series
of tests were made by R. E. Peterson at the Westinghouse
Research Laboratories.’™ Geometrically similar cantilever
test specimens varying in diameter from o.1 in. to 3 in. with a

16 B, P, Haigh and J. S. Wilson, “Engineering,” Vol. 115, p. 446,
1923.
104 R, E. Peterson, Trans. A. S. M. E., “Journal Appl. Mech.,” Vol.
, . 79, 1933, Vol. 1, p. 157, and R. E. Peterson and A. M. Wahl, Trans.
A. S. M. E., Journal Appl. Mech., Vol. 3, p. 15, 1936,
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fillet or with a transverse circular hole and of different ma-
terials, as given in the table below, were tested in special
fatigue testing machines.1%

TaBLE oF MaTEr1ALs Usep 1x TEsTs

Chemical Composition | YP Ult. | Elong.
Steel c|Ma|si{s|p|nlc o ‘lbs./in.2 Ibs./in2| per tent
Medium! carbon | 0.45| 0.79( 0.18 0030013 — | — | — || 32,500 | 76,000| 32
Ni-Mo? 0.52({0.68/ 0.19| — [o.014 2—96_—_0‘38 ;5,500 97,000 26
Ni-Cr? ©.54/0.65] — { — | — [1.38/0.64] — 91,000 120,000 | 24

! Normalized: 1560 F, air cooled.

2 Normalized and drawn: 1750 F, air cooled; 1460 ¥, air cooled; 1160 F, furnace
cooled.

#Quenched and drawn: 1475 F, oil quenched; 1200 F, furnace cooled.

The results of these tests for specimens with fillets are given
in Fig. 282. The smaller diameters of the specimens are
taken as abscissae while the ordinates represent the ratios &,
of the endurance test loads for plain specimens to the endur-
ance test loads found for the corresponding test specimens
with stress concentration. Similar results were also obtained
for specimens with transverse holes. The horizontal lines in
Fig. 282 give the values of the factors of stress concentration
obtained for each proportion of the fillet by a direct measure-
ment of strain at the points of maximum stress concentration
(see p. 341). These values are designated by k; and are called
theoretical values of stress concentration in the following dis-
cussion. If the fatigue strength of the specimens depends
only on the peak stress, &, must evidently be equal to #,.

On a basis of his tests, R. E. Peterson came to the following
cconclusions: :

(a) In some cases fatigue results are quite close to theoretical
Stress concentration values. This conclusion is of great prac-

1% The description of these machines is given in the paper by R. E.
Peterson, Proc. Am. Soc. Test. Mat.; Vol. 29, p. 371, 1929.

MECHANICAL PROPERTIES OF MATERIALS 447

tical importance, since a general idea seems to exist, based
on some early experiments, that fatigue data for stress-
concentration cases are always well below theoretical values,
i.e., on the safe side for design purposes.
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(b) Fatigue results for alloy steels and quenched carbon ste.e/s
are usually closer to theoretical values than are the corresponding
Jatigue results for carbon steels not quenched. 1t was expected
in these tests that theoretical values k., would be reached for
all steels provided specimens were made large enough, .but
Fig. 282 shows that the fatigue-data curves for .normallzed
0.45 per cent carbon steel are apparently asymptotic to values
considerably below the theoretical. o

(¢c) With a decrease in the size of specimen the reduction in
Satigue strength due to a fillet or hole becomes som.ewhat less; an.d
Sor very small fillets or holes the reduction in fatigue strength is
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fomg?aratively small. This can be clearly seen from the curves
in Fig. 282,
Another way of presenting fatigue test results showing

the extent to °which gheoretic.al values k; of stress concentration
are reached, is obtained by introducing the quantity

=kf—'I
7 kg—I, (ﬂ)

which is sometimes called the sensitivity index. As k; ap-
proaches the value #;, the value of ¢ approaches unity, and
when the stress concentration has only a small effect on fatigue
str'ength, ks is close to unity, and ¢ approaches zero. By
using the experimental data given in Fig. 282 and by plotting
the values of ¢ against the diameter magnitudes 4, the curves
shown in Fig. 283 are obtained. It is seen that the sensitivity
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index is not a constant. It depends not only on the kind of
material but also on the size of specimens. In the case of
alloy steels and for larger specimens ¢ approaches the value
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of unity, while for a coarser material, 0.45 per cent carbon
steel, it approximates a somewhat lower value.’®® Similar
curves were also obtained for the specimens with transverse
holes.

On the basis of the above discussion the use of the theoretical
value k; of stress concentration can be recommended in the
design of larger size machine parts and in the case of the finer-
grained steels, such as alloy steels and heat-treated carbon
steels. In the cases of smaller dimensions and coarser ma-
terials the reduced values of the stress concentration factor
which, from equation (a), are

ky = glke — 1) + 1

can be used. The values of ¢, obtained experimentally for
fillets and holes and represented for the case of fillets by the
full lines in Fig. 283, can be used as a guide in selecting the
proper values of k; in other cases of stress concentration.

To explain the “size effect” in fatigue tests it is necessary
to consider grain size of crystalline materials. When we
speak of geometrically similar specimens of the same material,
their metallographical structure obviously is not geometrically
similar, and that fact may affect the fatigue tests. If we
consider a region of peak stress, a different result would be
expected when only few grains are contained in that region
than if many thousands are contained in the same region.
The relationship between the sensitivity index ¢ obtained
from fatigue tests and the grain size of the materials used is
discussed in a recent paper by R. E. Peterson.1®

It can be appreciated that the problem of reducing the
damaging effect of stress concentration is of primary impor-
tance to designers. Some lowering of stress concentration
can be obtained by a proper change in design. For instance,

106 T'ests of cast iron have shown very small effect of stress concen-
tration on fatigue tests results. A. Thum and H. Ude, Zeitschr. V. D. 1.,

Vol. 74, p. 257, 1930.
107 See Stephen Timoshenko Anniversary Volume, p. 179, 1938.



450 STRENGTH OI' MATERIALS

the design can be considerably improved by eliminating sharp
reentrant corners and introducing fillets of a generous radius,
by designing fillets of a proper shape, by introducing relieving
grooves, etc. But all these measures are sometimes not
sufficient to eliminate fatigue failures. As an important ex-
ample of this kind let us consider the typical failures which
occur at the wheel seat of locomotive and railroad-car axles,
at the wheel or bearing seats of automobile axles, at the
pressed or fitted bits of long drill rods in oil-well operations,
etc. All these cases of fitted members subjected to the action
of variable stresses have been a constant source of fatigue
failures. Considering, for example, the case of a wheel.hub
pressed on the axle, Fig. 284, 4, we can see that a high stress

| v,

@) (b) a

concentration is produced at the reentrant corners 7 and .
During rolling of the axle the reversal of stress at points
and 7 takes place, and finally a fatigue failure over the cross
section 7mn, such as shown in Fig. 285, may occur. Stress
concentration can be somewhat reduced by introducing raised
seats and fillets as shown in Fig. 284, 4. A further improve-
ment is obtained by introducing the relief groove a, Fig.
284, 6. Although such changes are in the right direction,
they are not sufficient in this case. Experience shows that
the mere press-fit of a hub on an axle, Fig. 284, a, reduces the
fatigue strength of the axle to,less than half of its initial
strength, while the changes shown in Fig. 284, &, raise the
fatigue strength of the axle perhaps no more than 20 per cent.
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To improve the condition and eliminate fatigue failures,
the surface cold-rolling of the axle in the region of stress
concentration has been successfully applied. The early ex-
periments ' with surface cold work were made on small

Fic, 285,

specimens, and to get sufficient information for practical
application, an extensive series of laboratory tests with larger
specimens were made. Three types of fatigue tests made by
O. J. Horger at the laboratory of the University of Michigan 10

1% The improvement of fatigue strength by surface cold-working was
introduced by O. Féppl, “Stahl u. Eisen,” Vol. 49, p. 575, 19209. It was
applied in various fatigue tests at the Wohler-Institut. See Mitteilungen
d. Wahler-Instituts, Vol. 1 to Vol. 37, 192g-Ig40. See also A. Thum
und F. Wunderlich, Mitteilungen d. Materialpriifungsanstalt, Techn.
Hochsch. Darmstadt, Vol. 5, 1934, and R. Kiihnel, “Stahl u. Eisen,”
Vol. 110, p. 39, 1932.

1 The description of these experiments is given in the papers by
O. J. Horger, Journal of Appl. Mech., Vol. 2, p. 1284, 1935; and O. I
Horger and J. L. Maulbetsch, Journal of Appl. Mech., Vol. 3, p. 9IA,
1936. The work done at the Westinghouse Research Laboratories is
described in the paper by R. E. Peterson and A. M. Wahl, Journal of
Appl. Mech., Vol. 2, 1935, p. 1A.
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are shown in Fig. 286. The properties of the materials used
in these tests are listed in the table below.

Marteriats Usep ror TesTs 1v Fig. 286

Chemical Composition Y.P. Ult.
Steel Elong.

C|Mn| P | S |Si|Cr|Ni|lbs/in? lbs./finz P 0t

S.A.E.! 1045 ©.47) 0.7210.015|0.034| 0.23] 0.03| 0.05|| 47,800 | 88,8c0| 32

2.75 per cent?
Nickel 0.24/ 0.86/ 0.034| 0.021] 0.24] — | 2.79][ 86,300 |111,000]| 23

* Normalized 1620 F and Drawn 1115 F.
?Quenched 1475 F and Tempered 1150 F.

The endurance limits obtained for S.A.E. and for Ni steel
from the usual cantilever beam fatigue tests are 34,000 lbs.
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per sq. in. and 48,000 lbs. per sq. in. respectively. After
pressing on the sleeve, as in tests type 4, Fig. 286, the endur-
ance limit of S.A.E. steel was
reduced to 15,000 lbs. per sq.

in. In tests of types B and C Calibrated
the endurance limits were found g/;‘slgﬁ%ng
to be 12,000 lbs. per sq. in. and | 2|

14,000 lbs. per sq. in. respec- | ,

tivelj. This indicates that

owing to press-fit the fatigue T

strength of specimens was di- L @orers
minished to less than one-half | T Axle

of its initial value. Similar re- l : .

sults were also obtained for Ni ‘%’ A

steel specimens. To improve Fic. 287.

the fatigue strength the surface

of the rest of the specimens was cold-rolled before pressing on
the sleeves or hubs by using the device shown in Fig. 287.
A lathe was adapted for this rolling operation by supporting
the specimen in lathe centers and the rolling device in a
transverse slide fixed to the lathe carriage. To secure a
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sufficiently smooth surface after rolling, the feeds giving more
than 40 threads per inch were used.

The results of fatigue tests of Type C, Fig. 286, made with
cold-rolled specimens, are shown in Fig. 288. It is seen from
these tests that the fatigue strength of S.A.E. steel specimens
increased, due to cold rolling, to a value more than twice their
initial strength. Similar results were also obtained with Ni
steel specimens.

Fic, 28q.

A further step in the investigation of the effect of cold-
rolling on fatigue strength was made by building special large
fatigue-testing machines, in which full size locomotive axles
can be tested. Figure 289 represents one of these machines.”
The arrangement is similar to that used in type C tests in
Fig. 286, and is the same as was used by Wshler in his famous
fatigue tests of axles.

Another case of fatigue failure under the acrion of highly
concentrated stresses is represented by the surface failure of

1% Three machines of this kind are working at present in the research
laboratory of the Timken Rollér Bearing Company, Canton, Ohio.
Figure 285 is taken from these tests.
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rollers and gears under the repeated action of contact pressures
during rotation. Considering two rotating rollers pressed
together by the forces P, Fig. 290, we can calculate the maxi-
mum compressive stress at the surface of contact
by using the formulas of art. 66. In the case
of an ideally smooth surface this calculated stress
is the true stress, and the surface fatigue strength
of rollers of a given material will depend only
on the magnitude of this stress. In actual cases
the roller surface has various kinds of uneven-
ness, the magnitudes of which depend on the
kind of surface finish. Several examples of sur-
face finish are shown™ in magnified form in Fig. 2g1.
Naturally the surface roughness will affect the pressure dis-
tribution at the surface of contact of the rollers in Fig. 290,

I1G. 290

Fia, 291,

and as a result of local overstressing at the points of the most
unfavorable irregularities fatigue cracks will start earlier than

" This picture and the two following are taken from the paper by
S. Way presented at the meeting of the American Gear Manufacturers
Association, May, 1940. Various methods of investigation of surface
finish are described in the S. Way paper published in the ““ Proceedings of
the Special Summer Conferences on Friction and Surface Finish,” Mass.
Inst. Techn., June 1940. In this paper a complete bibliography of the
subject is given.
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in the case of smooth rollers. This indicates that the fatigue
strength of rollers depends on the degree of roughness of their
surface.

Experiments show that if the surface fatigue tests are
made with lubricated rollers, surface fatigue cracks grow to
pits.  Pitting cracks, which sometimes develop in rollers and
gears under service conditions, are very undesirable, and

Fie. 292.

considerable efforts were extended in studying the causes
of pitting.”* These investigations showed that the causes of
growth of pitting cracks are of a hydrodynamical nature.
The pitting cracks assume a direction that slopes obliquely
into the metal; they are roughly in the form of a conical surface

12 Sych investigations were made at Westinghouse Research Labora-
tories by S. Way; see his paper in Journal of Applied Mech., Vol. 2, 1935-
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so that they meet the surface in a curve in the form of a
parabola, or 7, with the vertex of the 77 being the part that
during rotation 1s run over first. In Fig. 292, representing
the magnified photograph of a roller surface, the starting
point of a pit crack is shown by an arrow. Itisseen that any
oil that enters such a crack will tend to be trapped as the
crack passes under the loaded region. A high oil pressure in
a grack will produce high tensile stresses at the end of the
crack and the crack may be driven further into the metal.
This theory explains why o1l is necessary for pitting crack
growth and why changing the direction of rotation or relief
of oil pressure in the crack stops crack growth.

To obtain comparative values of pitting resistance of
various materials, the fatigue tests were made ® with pairs
of rollers, Fig. 2go, one of each pair being 1.576 in. in diameter,
the other being 1.500 in. in diameter, and the width of the
test surface being o.500 in. All rollers had a finely ground
surface on which the maximum depth of irregularities was
between ©.0001 in. and 0.00018 in. The speed of rotation
was between 300 and goo r.p.m., with lubrication by an oil
bath of a machine oil of viscosity 700—goo seconds Saybolt at
the operating temperature. The maximum compressive
stress, given by equation (295), p. 359, and calculated for
compressive load just sufficient to cause at least one pit per
square inch of test surface in 10 million cycles was defined as
the pitting limit of the material. The results of these tests
for the case of 0.45 per cent carbon steel and for various heat
treatments are represented in Fig. 293 by the curve B. The
hardness numbers ™ of the tested rollers are taken as the
abscissas, and the corresponding pitting limits make up the
ordinates. For comparison, a straight line giving for the
pitting limit the values 324 times the hardness number is
also shown. Since pitting is a fatigue failure, we would expect
the pitting strength to increase proportionally to hardness.

18 See 5. Way paper, reference 103.
"™ The hardness numbers can be considered proportional to the
ultimate strength of the surface layer of the roller’s material.
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The experiments showed that the assumption of a linear rela-

tionship between pitting strength and hardness is on the side
of conservatism.

. ‘The curve 4 in Fig. 293 gives the values of the pitting
limits found from the experiments with gears made of the

COMPARISON OF APPROXIMATE PITTING
RESISTANCE OF GEARS AND ROLLERS
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CURVE B - COMPRESSIVE STRESS ON TEST
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same material as the previously discussed rollers. The con-
ditions at the surface of contact of gear teeth are somewhat
different from those we had in rollers, the principal differerice
being the fact that rolling is associated with sliding. This
difference of conditions results, as we see, in some increase of
the pitting limit.

L
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81. Causes of Fatigue.—Although a great amount of
data concerning strength in fatigue has been accumulated, up
to now no fundamental theory has been established to explain
the cause and the mechanism of the phenomena. A fatigue
fracture was formerly attributed to “crystallization” of the
metal, making it brittle. Such a theory was advanced on the
basis of the appearance of the fracture (see p. 432).

We now know that the individual crystals remain un-
changed during an endurance test except that there may be
some “slipping” within these crystals.

Bauschinger was the first to start investigation of cycles of
stress. Heloaded and unloaded the specimens slowly and used
sensitive extensometers to establish the stress-strain relation
under these conditions.'® In this manner he showed that the
proportional limits in tension and compression are not fixed
points for a given material and that they may be displaced by
submitting a specimen to cycles of stress. To explain the fact
that the endurance limit for steel under reversed stress is
sometimes lower than the proportional limit obtained from
static tests, Bauschinger advanced the theory that the ma-
terial as received from the manufacturer may have its pro-
portional limits in tension and compression raised by cold
work and that the true or natural proportional limits are those
which are established after submitting the material to cycles
of stress; these natural proportional limits are supposed to
define the safe range in fatigue tests.

This idea of Bauschinger was developed further by
Bairstow.'®* Using a slow loading and unloading machine (2
cycles per minute), with a Martens mirror extensometer fixed
on the specimen, he obtained the stress-strain relation for
cycles with various ranges of stresses. Figure 294 represents
some of Bairstow’s results obtained with axle steel (yield
point 50,000 lbs. per sq. in. and ultimate strength 84,000 lbs.
per sq. in.) under reversed stress (mean stress equal to zero).
The line A represents the initial tersion-compression test with

115 J. Bauschinger, loc. cit., p. 409.
us I, Bairstow, Phil. Trans. Roy. Soc., Vol. 210A, p. 35, 1911, London.
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the range 31,400 lbs. per sq. in.; within these limits the stress-
strain relation evidently follows accurately the straight line
law."'7  After this the specimen was subjected to cycles of
.re'versed stresses of 31,400 and it was observed that the
initial straight line 4 develops gradually into a loop of definite
shape. This loop as obtained after 18,750 cycles is repre-
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sented by the curve B. It can be seen that in this case the
initia/ proportional limits were higher than the so-called
natural proportional limits shown after many cycles of
reversed stress. Since these limits are below the 31,400 lbs.
per sq. in., a cyclical permanent set equal to the width mn was
produced. The loops C, D, and E were obtained after a
number of cycles of reversed stress equal to 33,500, 37,500
and 47,000 lbs. per sq. in. respectively sufficient apparently to
stabilize the size of the loops. When the width of these loops
was plotted against the corresponding maximum stress,
Bairstow found that the results of his experiments gave

uz T'hcr.’gage length in these tests was only 0.5 in. and the small “elastic
hysteresis” could not be detected by Martens extensometers.
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approximately a straight line. The intersection of this line
with the stress axis determines the range of stress at which
there is no looping effect. The range of stress defined in this
manner was assumed by Bairstow to be the safe range of stress,
and subsequent endurance tests have verified this assumption
with sufficient accuracy. Since then various methods for the
rapid determination of fatigue ranges on this basis have been
developed.!'®

This measurement of hysteresis loops suggested by
Bairstow to determine the safe range of stresses can be replaced
by calorimetric measurements. The area of the loop repre-
sents the energy dissipated per cycle. It is transformed into
heat, and the quantity of this can be measured. The first
experiments of this kind were made by Hopkinson and
Williams,'* who showed that the areas of the loops as de-
termined by calorimetric methods agree within 6 per cent with
the area determined by extensometer measurements. In
these tests it was shown also that it is possible to have a
certain amount of hysteresis which will never cause destruc-
tion, and this can be considered as the true “elastic hys-
teresis.” Some short-time methods for determining endur-
ance limits have also been developed on the basis of these
calorimetric measurements.

The first attempt to explain the mechanism of fracture in
endurance tests was made by Ewing and Humfrey.’*® They
used a rotating specimen of Swedish iron with a polished
surface and examined this surface with a metallurgical
microscope after applying cycles of reversed stress. They
found that, if stresses above a certain limit were applied, s/ip
bands appeared on the surface of some of the crystals after a
number of cycles. As the cycles were repeated the number of
slip bands increased and some of the previous slip bands

18 See book by H. J. Gough, Chapter 10, loc. cit., p. 428. See also
E. Lehr, Die Abkiirzungsverfahren, Dissertation, Stuttgart, 1925.

19 B, Hopkinson and G. T. Williams, Proc. Roy. Soc. (A), Vol. 87,
I912.

120 J A, Ewing and J. C. W. Humfrey, Phil. Trans. Roy. Soc. (A),

.Vol. 200, 1903, p. 241.
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seemed to broaden out. This broadening process continued
till finally cracking occurred, the crack following the marking
of the broadened slip bands. They found that a reversed
stress of 11,800 Ibs. per sq. in. could be applied millions of
times without producing any slip bands. A stress of 15,400
Ibs. per sq. in. produced only one isolated slip band in the
region examined after three million cycles and this line was
confined to the middle portion of the crystal. From these
tests it was concluded that 15,400 lbs. per sq. in. was the
endurance limit for Swedish iron. On the basis of such
investigations the theory was advanced that cycles of stress,
which are above the safe range, produce slip bands in indi-
vidual crystals; if we continue to apply such cycles of stress
there is a continual sliding along the surfaces accompanied by
friction, similar to that between sliding surfaces of rigid bodies.
As a result of this friction, according to the theory the ma-
terial gradually wears along the surfaces of sliding and a
crack results.

Further investigation in this direction 1 showed that slip
bands may occur at stresses which are much lower than the
endurance limit of the material. They may develop and
broaden, as was observed by Ewing and Humfrey, without
leading to the formation of a crack. This shows that the
appearance of slip bands cannot be taken as a basis for
determining the endurance limit and cannot explain the
mechanism of fatigue cracks. It seems probable that more
light will be brought on the causes of fatigue by testing single
crystal specimens and by going into the study of the molecular
structure of crystals.122

82. Mechanical Properties of Metals at High Temper-
atures.—There are many cases in which parts of engineering
structures are submitted simultaneously to the action of
stresses and of high temperatures. Such conditions are found
for instance in power plants and chemical industries. Due
to the modern tendency to increase the initial temperature of

2 H. J. Gough and D. Hanson; Proc. Roy. Soc. (A), Vol. 104, 1923.
12 See H. J. Gough, Phil. Trans. Roy. Soc., Vol. 226, 1926,
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steam # in power plants, the question of the strength. of
materials at high temperature has become of practical
importance, and a considerable amount of research work has
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been done in this field.!* Experiments shov.v that the yield
point and ultimate strength of metals in tension d.epend very
much on the temperature. Several tensile test diagrams fer
medium carbon steel at different temperatures are shoYvn in
Fig. 295.1% Up to about 250° Centigrade the ultimate

; Guy

123 Mellanby and Kerr, Proc. Inst. Mech. Engr.,. London, 1927; S

H. L., Pric. InZt. Mech. Engr., 1929, and The Engineer, Vol. 147, 1929,

. 136. ] .

p ?24 A bibliography on this research work can b§ found in t{le" %ym-
posium on effect of temperature on the properties of meta s,F ro;i.
Amer. Soc. Test. Matls., Vol. 24, 1924. See also paper by H. J. Frenc ;_
H. C. Cross and A. A. Peterson, Technologic Papers of the Bureau o
Standards, No. 362, 1928. ) ‘
an”"’aée: ru‘:pori3 of work done at the Westinghouse Research Laboratory
by R. B. Wilhelm, Proc. Amer. Soc. Test. Matls., Vol. 24, part 2, 1924,

p. 151,
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strength of the steel increases, but with further increase in
temperature it drops off rapidly. Also the yield point be-
comes less pronounced as the temperature increases and at
300° C. it cannot be distinguished on the diagram. In Fig.
296 the first portions of the same diagrams are shown to a
larger scale. These show that the proportional limit of the

0 — 20°c
100°C
|__1zo00°c.
3 railny'd ——
§ %0 A |
9
300°C.
£ P E——
& 20 pd W L~ 400°.
3 aa P 500°C.
§’ p AP /, ——
Q ST AN
) A A 1 ¥,
pd ol
' A 7 ¥y 1~
Stroin
Fia. 296,

steel diminishes as the temperature increases. At the same
time there is a decrease in the slope of the straight portions of
the diagrams, and hence in the modulus of elasticity. All the
results obtained in the above tests are summarized in Fig. 297,
which shows that, while the strength of the material decreases
as the temperature increases, its ductility, as characterized by
elongation and reduction in area, increases.

Experiments at high temperatures show that the results
of tensile tests depend very much on the duration of the test.
As the duration of the tensile test increases, the load necessary
to produce fracture becomes smaller and smaller. In Fig. 298
are shown the tensile test diagrams for the same steel as above
at 500° C. and for test durations of 6 minutes, 70 minutes and
240 minutes respectively. It is evident from this that tensile
test data obtained from the usual short duration tests (lasting
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say 1 or 20 minutes), as given in Fig. 297, arezzlseful only for
3 1
cases in which the, loads act but a short time. -
For loads acting over a long period of time and at hig
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temperature, as for instance the weight of a structure or steam

pressure in power plants, we need additional 1nformat10;11
regarding the fime effect. Experience shows that under suc

126 To eliminate time effect, vibration tests have been used mldg}
termining modulus of elasticity. See paper by G. Versé, Journa

~ Appl. Mech., Vol. 2, 1935.
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conditions a continuous deformation, “creep,” may take
pla.ce, which is the most important factor to be’considered in
de.s1gr}. Although a considerable amount of research work in
this direction has been done 27 and much more is now in vro

ress, the question of the behavior of metals under phigg};

temperature and prolonged loading cannot b 1
completely cleared. ¢ ot be considered
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Fig. 298.

In'most experiments of this kind the gradual elongation of
matc?rlals undel: prolonged tension is studied. Tensile test
specimens at high temperature are submitted to a certain

%7 See papers: J. H. S. Dickenson, Journal of Iron and S

Vol. 106, 1922, p. 103; H. J. French and W. A. Tucker dTet:}?:nglr;SgE'é
Papers, Bureau of Standards, No. 296, 1925; T. D. Lynch N L. Mochel
and P. G. McVetty, Proc. Amer. Soc. Test. Matls., Vz)l. .25' part 2
19255 H. J. Tapsel and J. Bradley, Engineering, Vol. 120 1925, pp. 61 ’
and 746, and Journal Inst. of Metals, Vol. 35, 1926, p. 753 ’P G. i\’[c\}ett;
and N. L. Moch'el, Trans. Amer. Soc. Steel Treating,, Vol. 11, 1926
;\)f. 73; A. E. White and C. L. Clark, Trans. Amer. Soc. Mech? Eng.’

ol‘. 48, 1926, p. 1075; H. J. Tapsell and W. J. Clenshaw, Dept. of Sci:
entific and Industx:ial Research, Eng. Research, Report’ No. 1 19i7.
Informatz?n regarding more recent publications see in the book b’y H. J.
Tapsell, Creep of Metals,” 1931; see also Symposium, A. S. T. M
Chicago, 1931; E. L. Robinson, Journal Appl. Mech., VOI.’I p. 145 .193'3:
and P. G. McVetty, Proc. Am. Soc. Test. Math., Vol. 37, 1937.

»
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constant load and temperature, and the progressive creep under
this load is investigated.

The results of such experiments made for a given tem-
perature and for various values of the load can be represented
by time-extension curves, such as is shown in Fig. 299.°
Curve A represents a typical
creep curve for a relatively
high stress. After application
of the load creep proceeds at
a gradually diminishing rate.
At point @ an inflection occurs
and the creep rate begins to in-
crease until the test specimen
breaks. The curve B, cor-
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load is further reduced, sim- C——
ilar tests on different speci- Fo. 299.

mens give curves C, D, E,

F and G. As the stress diminishes, a longer and longer
time is required to obtain the inflection point on the creep
curve. To determine the inflection points for such curves as
F and G, tests of extremely long duration would be required.
It is seen that, as the stress decreases, the creep curve is
essentially a straight line for a progressively longer period of
time as it approaches its inflection point. The working
stresses encountered in practice are usually below that corre-
sponding to the curve G; hence the assumption that the creep
curve approaches a straight line is sufficiently accurate for
practical purposes. The slope of this line gives us the mini-
mum creep rate for a given stress and a given temperature.

128 This figure and the three following are taken from McVetty’s
papers; see Mechanical Engineering, 1934, p. 149 and Proc. Am. Soc.

. Test. Mat., Vol. 34, 1938. .
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The magnitude of this creep rate diminishes as the stress
decreases, but there is no conclusive evidence that it will
ever vanish—that is, that there is a limiting stress at which
the specimen can indefinitely resist the stress and high
temperature.

In studying the progressive creep of tensile test specimens
under constant load and high temperature, two phenomena
must be kept in mind: (1) hardening of the material due to
plastic strain, and (2) removal of this hardening or “softening”
of the material due to the prolonged action of the high tem-
perature. 'The mechanism of plastic flow at high temperature
is the same as at room temperature. The plastic deformation
1s due to sliding of the metal. This sliding is accompanied
by an increase in the resistance to sliding, which represents
the strain hardening (p. 412).

The rate at which the effect of strain hardening is removed
depends on the temperature. It was mentioned before (p.
409) that the effect of strain hardening can be eliminated in a
short time by annealing metal at a certain high temperature
which depends on the kind of metal. But the same effect can
be obtained at much lower temperatures acting over a longer
period of time. It has been shown,”® for instance, in investi-
gating the softening of cold worked copper, that the softening
produced in 12 minutes at 300° C. would take 10.4 days at
200° C. and that apparently it would take about 300 years to
produce the same softening at 100° C.

The time-extension curves, Fig. 299, show that during the
initial extension the rate of extension gradually diminishes.
This is due to strain hardening. At the inflection point a
certain constant rate of extension is established at which the
hardening and softening counteract each other; that is, the
strain hardening produced by creep is continuously destroyed
by the softening effect of the high temperature, and creep
continues at a constant rate depending on the magnitudes of
stress and temperature. ' '

129 See Pilling and Halliwell, Proc. Amer. Soc. Test. Matls., Vol. 23,
1925. See also R. W. Bailey, Journal Inst. of Metals, Vol.V35, 1926.
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Since we always have to consider progressive creep in
members subjected to the simultaneous action of high tem-
perature and stress, the design must be based on the assump-
tion of a certain duration of service of the structure and of a
certain amount of permanent deformation which can be con-
sidered as permissible. The working stresses must be c.hosen
in each particular case so that the permanent deformatlon‘of
the structure during its lifetime will not exceed a definite
limit depending on the type of structure. The purpose of
long-duration high-temperature tests is to furnish the. designer
with sufficient information for a satisfactory calculation of the
above mentioned permanent deformations due to creep.

The duration of the laboratory tests usually- does not
exceed a few thousand hours, and for the prediction of the
creep deformation during the lifetime of a structure some
extrapolation of the laboratory test results become§ necessary.
The experiments with various steels show that in the first
portion of the creep curves, Fig. 299, the excess .of creep rate
above the minimum creep rate decreases geometrically as time
increases arithmetically. Hence, denoting by e the tqtal
inelastic elongation at a certain time ¢, by v the corresponding
creep rate, and by v, the minimum creep rate, we can take for

the creep rate the expression *°

= zdf = vy + ce, (@)
in which ¢, vo and « are certain constants which must be de-
termined from the creep curves. Take, for example, a metal,
the creep curves of which for several. Vah%es qf stress and for
a constant temperature 850° F. are given in Fig. 300. Mea-s—
uring the slope in five points of each of these curves, we obtam
the five values of the creep rate for each stress at five differ-
ent values of ¢, and the curves shown in Fig. 301 are con-
structed. The horizontal asymptotes to these curves evi-
dently give us the values of v, for the applied values of stress.

- - :
130 See reference 128. For comparison methods of extrapolation of

test data see J. Marin, Proc. Am. Soc. Test. Mat., Vol. 37, p. 258, 1937.
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Plotting now the values of log (v — v) against time, we obtain
the system of inclined parallel lines which indicate that the
assumed expression () is satisfactorily chosen. From these
lines the values of constants ¢ and « in expression (4) are
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obt.alned by measuring the ordinates of the lines at # = o and
Fhelr slc?pe. The plastic elongation is now obtained by the
Integration of equation () which gives

€ = ¢ + v — ée“"’, (&)
where ¢, 1s a constant.

.Applying this equation to some specific value of ¢ for
which the plastic elongation is known from F ig. 300, the x:alue
of ¢ can !Je calculated. Hence all the constants e’ntering in
the equation (%) are determined by using the curves of Figs.
300 and 301, and we can now apply this equation for calculat-
ing e fo.r any given interval of time. In this way the curves
shown in Fig. 302 are obtained. Having such a system of
curves for a definite material and a definite temperature, a
designer can readily select the proper value of working stress

if the lif.etime of the structute and the permissible plastic
deformation are given.
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In our previous discussion it has been assumed that plastic
flow is accompanied by strain hardening. Experiments show
that with increase in temperature the strain hardening be-
comes less and less pronounced.
The maximum temperature at
which strain hardening is ob-
served varies with the material,
and in the case of steels it varies
with the composition of the
steel. For instance, with mild
carbon steel (0.17 C) at a stress
of 2,200 lbs. per sq. in. no
strain hardening was observed **!
at a temperature of 647° C.
Under such conditions the time
extension curve has a shape
such as shown in Fig. 303; i.e.,  °0 92 07 e —as Tox
the rate of creep increases con- Fro. 302.
tinuously with the time. It is
interesting to note that the two kinds of time-extension
curves shown in Figs. 299 and 303 are associated with different

types of fracture. When strain
hardening is present, yielding at a

30.10°

ALLOY A
ll 850°F 454°cC YEAZRS
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N certain point in the specimen in-
g creases the resistance at this point
g and the next sliding occurs at
Fime some other cross section. As a
Fic. 303. result of this a uniform elongation

takes place and the specimen re-
mains cylindrical up to the beginning of “necking.” When
strain hardening is absent, the local yielding which begins at
the weakest cross section spreads at a decreasing rate towards
the ends of the specimen. As a result of this the two parts
of a broken specimen are tapered from the ends to the cross
section of fracture.

131 Book by H. J. Tapsell, loc. cit., p. 466.
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Under the prolonged action of high temperature a metal-
lographic transformation in metal takes place of such a nature
that the resistance of the steel to creep is reduced. This effect
is more pronounced in the case of high carbon steels. To
reduce this structural transformation it is necessary to apply
a suitable heat treatment assuring the metallographical
stability.132

Most of the data regarding the strength of metals at high
temperatures has been obtained from simple tension tests and
the strength of metals under combined stress remains an
unexplored field. In order to get some information about the
creep of steel under such conditions Mr. Bailey made some
interesting tests with lead.® This metal has a low melting
point and creep phenomena occur at room temperature.
Experiments with combined stresses are much simpler at this
temperature and may throw some light on the behavior of
steel under combined stresses at high temperature.

The long-duration high-temperature torsion tests with thin
tubular steel specimens were made at the University of
Michigan by F. L. Everett. This kind of test has some
advantages as compared with usual tensile tests, since the
plastic torsional deformation does not affect the cross.
sectional dimensions of specimens and since small volume
changes owing to temperature fluctuation and to metallo-
graphical transformation do not affect the measured angle
of twist.

Before concluding this discussion it should be noted that
progressive creep may produce a redistribution of stresses in
parts submitted to the simultaneous action of stresses and
high temperatures. At points of high stress concentration
the rate of creep is larger and hence creep will result in a more
favorable stress distribution. This fact must be considered in

132 See F. R. Hensel and E. 1. Larsen, Trans. Am. Inst. Min. Metalg.
Engrs., Vol. g9, p. 45, 1932.

138 See paper presented at the World Power Conference, Tokyo, 1929.

1% Trans. Am. Soc. Mech. Engrs., Vol. 53, p. 117, 1931.
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design. Several examples of this kind have been discussed by
Mr. Bailey.13

83. Various Strength Theories.’**—The mechanical prop-
erties of structural materials have chiefly been investigated
with testing machines which subject specimens to the simplest
sort of stress conditions. Most of our information regarding
the strength of metals is obtained from simple tensile tests,
while the strength of brittle materials such as stone or concrete
has mostly been studied by compression tests; we also have a
certain amount of information regarding the strength of
materials in shear. The strength of materials under more
complicated stress conditions than these has only been in-
vestigated in exceptional cases. In order to have some basis
for determining working stresses for the conditions of com-
bined stress which are often encountered in design, various
strength theories have been advanced. The purpose of these
theories is to establish laws by which we can, from the
behavior of a material in simple
tension or compression tests, pre-
dict the condition of failure under , 7 -
any kind of combined stress; here ':
failure signifies either yielding or a1 ——> &
actual rupture whichever may oc- . s SN S
cur first. = '

In the most general case the ] .
stress condition of an element of a
stressed body is defined by the
magnitude of the three principal stresses, ¢, 0, and ., Fig.

%

Q

F16. 304.

85 R. W. Bailey, Inst. Mech. Eng., 1927. Engineering, Vol. 124,
1927, p. 44. Vol. 129, 1930; Inst. Mech. Engrs., 1935. See also C. R.
Soderberg, Journal Appl. Mech., Vol. 1, p. 131, 1933; G. H. MacCullough,
Journal Appl. Mech., Vol. 1, p. 87, 1933. J. Marin, Journal Franklin
Inst., Vol. 226, p. 643, 1938.

3¢ A description of these theories can be found in papers by H. M.
Westergaard, Jour. Franklin Inst., 1920; A. J. Becker, Bull,, nr. 83,
Eng. Expt. Stat., University of Illinois; F. Schleicher, Zeitschr. f. Angew.
Math. u. Mech., Vol. 5, 1925, p. 199. A. Nadai, Journal Appl. Mech.,
Vol. 1, p. 111, 1933.
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304. The following relation between the algebraic values of
principal stresses is assumed:

0: > 0y > g, (a)

in which tension is taken positive and compression negative,
The oldest theory, the so-called maximum stress theory, " takes
the maximum stress as the criterion for strength and assumes
that, in the case of ductile materials, yielding starts in an
element such as shown in Fig. 304 when the maximum stress
becomes equal to the vield point stress of the material in simple
tension or the minimum stress becomes equal to the yield
point stress of the material in simple compression. This
makes the conditions for yielding

Oz = 0Oy.p.
or

14
0z = 0y.p.’,

(309)

in which ¢y p. is the yield point in tension and oy.p. the yield
point in compression. There are many evidences contra-
dicting this theory. We have seen, for instance (Fig. 214),
that in the case of simple tension sliding occurs along planes
inclined to the axis of the specimen, i.e., on planes where the
tensile stress is not a maximum. It is known also that a
homogeneous and isotropic material, although weak in simple
compression, may sustain very large hydrostatic pressures
without yielding. This indicates that the magnitude of the
maximum tensile or compressive stress alone does not define
the condition for yielding.

Another strength theory, attributed usually to Saint
Venant, is the so-called maximum strain theory. In this
theory it is assumed that vielding of a ductile material starts
cither when the maximum strajn (elongation) becomes equal
to the strain at which yielding occurs in simple tension or when
the minimum strain (compressive strain) becomes equal to the

. . '
7 Sometimes called Rankin’s Theory.
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unit strain in simple compression. That is, from eqs. (43,
Part I), either

Oz M gy.p.
T T T (0'1/ + o'z) = E

or bk , (310)
[ JY.P.

E-EEte) =T

There are evidences against this theory also. For inst'ance,
when a plate is subjected to tension in.two perpendlcglar
directions, the maximum strain theory indlcates. that the y.leld
point must be higher than in the case of sm.lple tension,
because the elongation in each of the two directions Is some-
what decreased by the tension in the perpendicular dlrectlor.l.
This conclusion is not supported by experimer}ts.138 Experi-
ments with specimens under uniform hydrostatic pressure also
contradict this theory. .

Much better agreement with experiment, at least with
ductile materials having ov.». = ov.p.’, is givet} by the
maximum shear theory, which assumes that yielding starts
when the maximum shearing stress becomes equal to the
maximum shearing stress at yield point in a simple tensile
test. Since the maximum shearing stress is equal to h.alf.the
difference between the maximum and the minimum principal
stresses, the condition for yielding is 13

3(0: — 02) = Jov.p. (311)

In machine design the maximum shear theory is now generally
used for ductile materials. This theory is in good agreement
with experiment and is very simple to apply.14

138 See Wehage, Mitteilungen d. Techn. Versuchsanstalten, p. 89,
lin. )
Iigsgl‘:“’}'gl‘e}l;is theory is supported by the experiments of ] J. Guest, Phil.
Mag., Vol. 50, 1900, p. 69. See also L. B. Turner, Engineering, Vol. 86,
p- 169; W. A, Scoble, Phil. Mag., 1906, December, and 1910, January;
C. A. Smith, Engineering, Vol. 88, p. 238. ) o ]
10 The comparison of various strength t.heor{es as applied in machine
design is given by J. Marin, “Product Engineering,” May, 1937.
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The quantity of strain energy stored per unit volume of
the r}qaterlal.has also been proposed as a basis for determinin
starting of yielding.* By using the general eq. (192) (p. 30 .
Part I) and equating the energy for the case shown in Fié 307’
to the energy at yield point in simple tension, the conditic;n o4f-

yielding is found to be
I
w = E (622 + 0,2 + 7%

gy,

u 2
-7 (020, + 0y0: + 0,0,) = 2EP. . (3r2)

To compare the various strength theories let us consider the
case of pure shear. In this case the maximum tensile stress is
equal. to the maximum compressive stress and to maximum
shearing stress (article 16, Part I). Then

0':1:=—0'z=1‘; gy = O,

Assuming that the material has the same yield point in tension

and. compression, the conditions for vielding according to the
various theories are

T = oy.p. from eqs. (309),
1

T= o from eqs. (310),

T = loyp from eq. (311).

Equation (312) for this case gives

o1 +u) _ ov.p?

w = Z 2E’

from which

r = JY.Pp. .
V2t + )

: ! This proposal was first made by Beltrami, Rendiconti, p. 704,
<Ii 8VSV;' Math. Annalen, p. 94, 1903; see also Girtler, Sitzungsberichte
néer‘ lene‘x; zl‘\kad., Vol. 1:6, I1a, 1907, p. 509, and B. P. Haigh, Engi-

ing, Vol. 109, 1920, p. 158, and Brit. Assoc. for the A i

Reports, Edinburgh, 1921. ¢ Adv. of Science,
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Taking u = 0.3, as for steel, we find:

= gy.p, from the maximum stress theory,

T
T = 0.770v.p. from the maximum strain theory,
T = 0.500Y.p. from the maximum shear theory,
7 = 0.620y.p. from the maximum strain energy theory.

It may be seen that the difference between the various theories
in this particular case 2 is a considerable one. If we have a
circular shaft in torsion, for instance, and assume a certain
value for 7,,, = 7v.»./n, we will find from eq. (149), Part I, for
the various strength theories, the following ratios of diameters:

A A : 1.0g : 1,26 :
LiNG 050 ' Nob2’ or I:1.09:1.26: 1.17.

. +| 9y // 5
N,
N2 7’
N6 8 /\
N e
Vs
N d
N 7
A &l A ox
= s +
// \\
L, \
7
/// N8
N
3 Z s
Ve 8 N
/ AN
// \\
7 —
Fic. 305.

Figure 305 compares graphically the four theories presented
above for the case when there are only two principal stresses
(6. = 0) ™ and ov.p. = ov.p.’. The lines in the figure repre-

12 Comparisons of various strength theories in application to various
design problems are given in the paper by Roth; see Zeitschr. f. Math. u.

Phys., Vol. 48, 1g902. )
143 See papers by A. J. Becker, loc. cit., p. 473, and B. P. Haigh,

loc. cit., p. 476.
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sent the values of ¢, and oy at which yielding starts, according
to the various theories, The maximum stress theory is
represented by the square 1234. The lengths 04 and OB
represent the yield points in simple tension in the x and y
directions respectively. In the same manner A4’ and B’
correspond to simple compression. Point 1 represents equal
tensions in two perpendicular directions, each equal to the
yield point in simple tension. The maximum stress theory
states that there is no vielding at any point inside of the
Square 1234. The maximum strain theory is represented by
the rhombus §678. Since a tension in one direction reduces
the strain in the perpendicular direction, two equal tensions,
according to the maximum strain theory, can have much
higher values at vielding (as represented by point ¢) than
with the maximum stress theory (point 1). If the two
principal stresses are equal and opposite in sign, the maximum
strain theory (points 6 and 8) indicates that yielding starts at
lower values than the maximum stress theory would indicate.
‘The maximum shear theory is represented by the irregular
hexagon 41BA'3B' 4. 1t coincides with the maximum stress
theory when both principal stresses are of the same sign, but
there is considerable difference between the two theories
when the principal stresses have opposite signs. Equation
(312) for the maximum strain energy theory reduces, for two-
dimensional problems, to

0" + 0 — uoz0y = oy pl

By plotting this we obtain the ellipse shown in Fig. 305, en-
closing all the points at which no yielding takes place, ac-
cording to the maximum strain energy theory.

The maximum strain energy theory was further developed by
Huber. In order to bring the theory into agreement with the

1 M. T. Huber, Czasopismo technizne, 1904, Lwov (Lemberg). -See
also R. v. Mises, Gottinger Nachrichten, Math. Phys. K1, 1913, p. 582;
H. Hencky, Zeitschr. f. Angew. Math. u. Mech., Vol. 5 1925, p. 11§;
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fact that materials can sustain very large hydrostatic pressxlzzes
without yielding, Huber proposed, when the average sttreoss :rt:r
+ o, + 0.) is compression, to split the strain energy m}:o d\_avt gtion,
one due to the change in volume and the other due to the disto ,

and consider only the second part. Using the notation
3ozt oy t+o)=p

and eq. (45) (Part I) for the unit change in volume A, the strain
energy due to the change in volume is

pA _3(—2w) , 12 ] e

W= = oF ?? 6F (02 + ay + a2)
Subtracting this from the total energy w (eq. 312), we find for the
energy of distortion

L oy — ) 4 (02 — 0 + (oy — 027] (313)

w2=w—w1=—6-E—[(¢rx

In case p < oit was proposed to use w; instead of the total energy w

iti f yielding. ‘ _
* t}:plc)(l)}rflicrlllgilrlliso al};o to pgure shear and to simple tension we find,

from eq. 313, for shear (6, = — 0. = 7; 0, = 0)
_ (4w
We = E -
and for tension (¢, = ¢; 0, = 0, = Q)
e o)
Wy = SE
The condition of yielding in shear is

G+ wr _ G+ woys?

E 3E
from which 145
7= %3 o¥.p. = 0.5570¥.P.. (314)

F. Schleicher, loc. cit., p. 473, ind'M. Ro6é ;r}diczﬁ. Eichinger, Proc.
. Congress for Applied Mechanics, 1926, Ziirich. )

Inte&?Reggft experiments by W. Lode, Zeitschrift f. Phyls\;lk, }g’oél. ;;6(i
1926, p. 913, Forschungsarbeiten, mi. 303,d19}95.‘,8”[?m}-]0f2ﬁ;ich0 1;26

. . ) i
A. Eichinger, Materialpriifungsanstalt an d. E. T. ,re bettér 920

i i Berichte, nr. 28, 1928, and nr. 34, 1929, agre

'gllisskums:;??r;um strain energy theory than with maximum shear theory,
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The maximum shear theory was given a further develo men{
; tb
O. Mohr.1#  [n this development he made use of the repregentatioz
of stress conditions on an element

T
F P, of a stressed body by circles, as

W explained in article 18, Part I. In

i this representation the normal and
shearing components of the stress

ol ~ acting on any plane are given by
the coordinates of a certain point

in the shaded areas (Fig. 306).

Points lying on the same vertical

. ] line such as AN represent the
— stresses on planes with the same

. = ' normal stress ¢ and with various

shearing stresses. It is natural
] to assume that the weakest of all
these plane_s is the plane with the maximum shearing stress, whose
stress condition is represented by the point N lying on the outer
circle. Repeating the same reasoning with points lying on any
other vertical line, we finally arrive at the conclusion that the

M,

Fie. 307.

weakest plane must be one of the planes whose stress conditions are
represented !)y points on the outer circle /NC. Hence the outer
Flrcle alone is sufficient to determine the limiting stress condition,
Le., the stress condition at which yielding begins. In Fig, 307 the

but in most cases the difference between these two theories is not sc
large as to make it of practical importance to introduce the maximum
energy theory in machine design. For further development of this theory
see t.he paper by F. Schleicher, loc. cit., p. 473. Seealso W. v. Burzynski,
Sweiz. Bauz., Vol, 94, 1929. ' '

16 0. Mohr, V. D. I, Vol. 44, 1900, p. 1524. See also his “ Abhand-
ll;m%.en aus dem Gebiet d. technischen Mechanik,” sec. ed., p. 192, 1914,

erlin,
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length OA represents the yield point in simple tension and the
circle with the diameter O4 represents the condition for yielding in
simple tension. In the same manner the circle with the diameter
OC represents the condition for yielding in simple compression, and
the circle with the diameter DB represents the condition for yielding
in pure shear. If several circles of this kind are obtained for a
given material by experiments, the envelopes of these circles, in
this case MN and My1Ny, can be constructed. Then Mohr assumed
that any stress condition at which yielding would start is represented
by a circle tangent to these envelopes. Assume, for instance, that
the envelopes MN and MN: can be replaced by straight lines

Fic. 308.

(Fig. 308). Then, knowing the limiting condition in simple tension
(62 = oy.p.) and in simple compression (¢, = oy.p."), the conditions
for yielding in pure shear can easily be obtained. From the figure,

’
=TT 74 1 Ox.p. — Oyp.

OF = FG = FH = 1GH = 1L =37, - Cose

Then the stress producing yielding in pure shear, represented by
the radius OD of the circle with center at O and tangent to MN, is

Typ. = OD = OF cos ¢ = i(ov.p, — oyp’) cos? o. (a)

The angle ¢ may be calculated from the triangle KLP, from which

3 VPK: — PJe B V— oypoyve’ . @)
BCTTTPK T Yoww—ovs)
Substituting in (a)
_ Iy oyp. ,
e = oyp — oyp’ ©
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when oy.p. = — gy p/, eq. {¢) coincides with the maximum shear
theory. If we apply €q. (c) to cast iron 47 and assume that the
ultimate stress in compression is four times the ultimate stress in
tension, we find for the ultimate stress in shear, from (¢),

4-0'u1t,2

Tuly = = 0.80u1, = 0.8 ult. str. in tension.

Tult

This is in satisfactory agreement with experiments made by C.
Bach with hollow cast iron cylinders.!®  Very extensive experiments
with marble and sandstone have been made by Th. v. Karman 14
and R. Boker.150 '

84. Working Stresses.—The problem of choosing an
adequate factor of safety in design of structures and machine
- parts is of the utmost practical importance. If this factor is
taken too low, making the working stresses too high, the
structure may prove weak in service. On the other hand if
the working stresses are too low the structure becomes un-
necessarily heavy and uneconomical. 1In discussing the vari-
ous factors to be considered in choosing working stresses let
us take a simple example of tension of a prismatical bar, We
assume that the yield point of the material is taken as the
basis for determining the working stress; then the safe cross
sectional area 4 is obtained from the equation:

Jgy.p. P

n =4 (@)

We see that the cross-sectional area depends on the magnitude
of the external load P, on the vield point of the material,
ov.r., and on the factor of safety 7. Obviously the magnitude
of this factor, which is sometimes called the Sfactor of ignorance,
depends on the accuracy with which we know the quantities in
€q. (a), namely, the external load and the mechanical prop-

Y In the case of brittle materials the above theory applies to the
ultimate stresses, instead of yield point stresses.

148 C. Bach, Elastizitiat und Festigkeit, 7th ed., p. 362.

49 Th. v. Karman, Forschungsarbeiten, nr. 118; see also V. D. I,
Vol. 55, 1911.

150 R. Boker, Forschungsarbeiten, -nr. 175/176.
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erties of the material, and on the accuracy with which this
equation represents the maximum stress.

There are cases where the external forces are known with
good accuracy. We know exactly, for instance, the hydro-
static pressure acting on a dam if the depth of the water is
known. We know accurately the centrifugal forces acting in a
rotor having a definite angular velocity. But in the majority
of cases the forces are known only approximately and the most
unfavorable loading condition for a structure can be estimated
only on the basis of long experience. Consider, for instance,
the design of a bridge. The weight of the bridge itself and the
weight of the train moving across the bridge may be known
with satisfactory accuracy. But in designing the bridge
dynamic effects must be taken into account. Due to the
balance weights the pressure of a locomotive wheel on the rail
is not constant and the maximum pressure is larger than the
static pressure. Under the action of the moving and varying
loads the bridge will be brought into vibration and under such
conditions the problem of determining the forces in individual
members of the bridge becomes extremely involved. Another
type of forces acting on the bridge, which we do not know
accurately, is wind pressure. The magnitude of such forces
is usually estimated on the basis of experience with existing
structures. From this discussion it is obvious that if eq. (a)
represents the condition of safety for a member of a bridge, the
force P is not known to us exactly and can be estimated only
with some approximation. The accuracy with which the
estimate can be made will affect the magnitude of the factor of
safety.

The magnitude of oy p is also not an exactly known
quantity. It may vary to a certain extent for the same
material, and this variation depends on the homogeneity of
the material. It is quite natural therefore that in the case of
such homogeneous materials as steel the factor of safety may
be taken lower than in the case of such materials as wood or
stone.

The accuracy of the formula itself must also be con-
"
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sidered in choosing the factor of safety. Equation (2) can be
considered very accurate for calculating the stresses in a
tensile test specimen (see Fig. 248) because special precautions
are taken to apply the load centrally and to distribute it
uniformly over the weakest cross section. But again taking as
an illustration the design of a member of a bridge, it can be
appreciated that eq. (2) is only a rough approximation
depending usually on the assumption that there are ideal
hinges at the joints. The actual stress condition in such a
member is very far from simple tension. Due to rigid joints
the members of a bridge truss undergo not only direct stress,
but also bending. The corresponding bending stresses are
sometimes of a considerable magnitude and if they are not
taken into account and the simple eq. (2) is used in determining
the cross sectional area of the member, then the inaccuracy of
eq. () in this case is usually compensated for by increasing the
factor of safety.

From this discussion it can be seen how difficult it would
be to give any definite recommendations regarding the
magnitude of the factor of safety and how much this factor
depends and always will depend upon the experience and
judgment of the designer.

In the following discussion it is assumed that the forces are
established on the basis of experience with past practice and
that the mechanical properties of the material are known.
Methods are then considered for determining the effect of
various kinds of stress conditions on the choice of working
stresses. Knowledge of this enables us to design a structure in
such a manner as to have the same factor of safety in all
parts of the structure. It is obvious that this latter require-
ment must always be fulfilled if the design is to be economical,
because the ultimate strength of a structure is determined by
the strength at the weakest place.

Let us begin the discussion with the cases in which the
Stresses remain constant, as, for instance, in structures submit-
ted only to static loads or in rotors of machines running con-
tinuously at the same speed. The first question to be
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considered is whether to take the yield point or the ultimfite
strength as the limiting stress in determining the working
stress. In the case of ductile materials, such as struc.tural
steel, it seems logical to take the yield point as t.he basis for
determining working stresses, because the considerable de-
formations, which take place at yield point, are seldom per-
missible in engineering structures. In the case of brittle
materials, such as cast iron or concrete, the working stresses
are usually taken as some part of the ultim'ate strength.

Knowing the yield point oy.p. of a ductile material,’®! the
working stress in tension or compression is

Gy = ﬁ-_l’-’ )
n

where 7 1s the factor of safety. In structural engineering this

factor is often taken equal to 2. If the most unfavor‘able
loading condition is taken, the factor of safety is sometimes
Jowered to 1.5.9% It must be noted that when the loa}dlng is
static and the material is ductile the stress concentration due
to holes or reéntrant corners is usually disregarded, and the
maximum stress is calculated from simple equatif)ns such as
eq. (a) for direct stress, eq. (149), Part I, for twist and egs.
(58), Part I, for bending. . .

After having established the working stress for simple ten-
sion and compression, the working stress for any other stress
condition is usually determined on the basis of the maximum
shear ¥ theory (p. 475), from which we find for pure shear

_ 0w _ lo'Y.P. . (c)

This magnitude of working stress for shear must be used in all

1t It is assumed that the yield point in tension and compression is
the same. ) »

152 Sometimes the calculations are made for two different condlt‘lc‘ms:
(1) the usual service loading condition an‘d (2) emergency condition,
when the most unfavorable loading condition possible is assumed. A
lower factor of safety is used for this second condition.

1 Application in design of other theories has been discussed by J.

Marin, “Product Engineering,” May, 1937.
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cases of combined stresses; that is, the structure is designed
80 as to make

Ty — 0, Oyp

I .
2 T Si, @)

1n.w%11ch o- and ¢, are the maximum and the minimum
principal stresses respectively, so that the left side of eq. (d)
represents the maximum shearing stress. In the particular

case of combined bending and twist of a circular shaft (art. 62)
Part I, we have, for example, ’

T, — o, 16
T2 =T = VM AR,
from which

6
d =\ T I

TTw

I.n the case of &rittle materials the working stresses in
tension and compression are

Tult o lt/
T, = —1t, o = Zult
S =T @

in which ¢y, is the ultimate strength in tension, ¢y, the ulti.
mate strength in compression and # is the factor of safety
For such materials as concrete or cast iron this factor is usuall};
taken comparatively high, varying in various cases from 4to8.
. Once we have the working stresses for tension and compres-
sion, the working stress for any other stress condition can be
obtalfled by using Mohr’s theory as explained on p. 480. In
practice the maximum stress theory (p. 474) is often used in
the case of brittle materials; that is, the dimensions are
determined so as to have the maximum tensile stress not
large.:r than the working stress in simple tension and the
maximum compressive stress not larger than the working
stress In compression. It must be noted that for brittle
materials the stress concentration must be taken into account

(see Chapter VII) in calculating these maximum tensile and
compressive stresses. :
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It was assumed in the above discussion that the principle
of superposition holds, which means that the maximum stress
is proportional to the load. Hence the factor of safety n,
which we use in determining the working stress, applies also
to the external loads, and we can state that the yielding in
the structure begins under the load which is # times the actual
safe load. If the principle of superposition does not hold,
the maximum stress is no longer proportional to the load,
and it is necessary to apply the factor of safety to the load
and determine the dimensions of the structure in such a
manner that the yielding will begin only if the acting loads
are increased 7 times. The application of this method to the
case of combined bending and direct stress is discussed in
art. 4 (see p. 32). This method is recommended also in the
design of columns on a basis of the assumed inaccuracies (see
p. 255, Part I).

In discussing plastic deformations in structures, it was
pointed out that instead of applying the factor of safety to
the load at which yielding begins, we can apply the factor
of safety to the load at which a complete failure of the struc-
ture occurs. Some applications of this latter method of design
are discussed in article 68. Sometimes, as, for example, in
aeroplane design, both methods are applied and the two
different factors of safety are used—one with respect to the
load up to which no yielding occurs, and the other with respect
to the load sufficient to produce the complete collapse of the
structure.

In the case of variable stresses the problem of selection of
working stresses becomes more complicated, since the stresses
produced by dynamic causes, such as vibrations and impact,
are usually known with much less accuracy than the statically
produced stresses, and also the properties of materials under
the action of variable stresses have not yet been completely
studied. As a basis for determining working stresses the
fatigue tests are usually taken in this case. If for a given
material there are sufficient test data to construct an em-
pirical curve, such as Gerber’s parabolas, or straight lines such
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as are shown in Fig. 276, the working stress can be selected on
a basis of such curves. Inmost cases, however, we do not have
such complete information, and a decision regarding working
stresses must be taken on a basis of the known endurance
limit o, for reversed stresses (0mux = — Omia) and the yield
point stress in tension gy p.

A method sometimes successfully applied in the design of
machine parts will now be discussed.™ We shall begin with
a direct variable stress and solve it in two parts, constant
mean stress and reversed stress, given by the formulas:

o, = Imex + Omin . = Tmex = Tmin
2 > " 2
Taking o, as abscissa and o, as ordinate, we can represent
any variable stress by a point in the o, ¢, plane shown in Fig.
309. In this figure, let .4 represent the yield point in a static

o

o

A
:lfa_.ib

G
0 F < a7 m
<P
”
7
Fie. 309.

tension test (¢, = 0), and B the endurance limit for reversed
stress (om = 0). Having these two limiting stresses, let us
assume that the limiting stress conditions % for other cases are
represented by points on the straight line 4/B. From the

4 This method is used in machine design of the Westinghouse
Electric and Manufacturing Co.; see papers by C. R. Soderberg, Trans.
A.S. M. E,, Vol. 52, p. 52, 1930; Journal of Appl. Mech. Vol. 1, p. 131,
1933. See also A. M. Wahl, “Machine Design,” 1938.

15 The limiting stress condition fs defined as that whi¢h produces
a failure; that is, fatigue fracture or stretching beyond the permissible
limit.
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discussion given on page 434 it is evident that such an as-
sumption 1s on the safe side as compared with Gerber’s
parabolas and the straight lines of Fig. 276. If we divide OA4
and OB by the factor of safety #, we obtain points determining
the straight line CD, parallel to 4B, which represents safe
stress conditions. From this line we can determine the safe
value of o, and ¢, for any value of the ratio o,/o.. For
example, for the stress condition represented by the point G,
on = OF, 0. = FG, and from the similar triangles GFC and
DOC we find

o, _ e , (f)
Ivp. Oy.p.
n m
from which
1 gy Om
Loy (315)
7 LI 315
and
2 1 g I
o = s o=l L (314
b
n1+0'e Om n I_'_G'Y.P.Q
OCyp Or Ge Onm

It is seen that for any given value of the ratio o./o, the
allowable values of ¢, and o, are obtained from equations
(316) if the values of o, and oy are known from tests, and
the magnitude of the factor of safety » is selected. As an
illustration of the application of these equations let us assume
that a prismatical bar of steel having ov.p. = 42,000 lbs. per
sq. in. and ¢, = 30,000 lbs. per sq. in. is submitted to repeated
stresses, varying between the limits o and on.x.  Then

T max Tm

O = 0p = —— — =1
T m 2’ o'r b

and for # = 2 we find, from eqgs. 316,

oy = \lo,;)_oo —r  _ 8,750 lbs. per sq. in.;

1+
_ 42,000 1
T2 14 1.4

T
1.4

= 8,750 lbs. per sq. in.
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Hence
Tmax = Om + 0r = 17,500 lbs. per sq. in.

In the above discussion it is assumed that we are dealing
with a prismatical bar and that the direct stress is obtained
by dividing the axial force by the cross-sectional area of the
bar. If the form of the bar is such that there is stress con-
centration at certain points, as, for example, in a bar with
fillets or in a bar with a hole, this stress concentration must be
considered in selecting allowable stresses. Experience shows
that a satisfactory design is obtained if the stress concentra-
tion is considered only in dealing with the variable portion of
the stress and disregarded when calculating the constant mean
stress. Some justification of this procedure is obtained if we
consider the case in which the acting forces increase above the
allowable limit and some yielding of a ductile material, such
as steel, occurs at the points of high stress concentration. As
a result of such yielding, cycles of stress finally will be estab-
lished for which ¢, = gyp. Since for cycles in which
Omax = 0yp the range of stress is practically independent of
the magnitude of the mean stress,' the omitting of the factor
of stress concentration in the calculation of mean stress does
not effect the conclusion regarding the fatigue strength.
Using the symbols o, and o, for the nominal values of stresses
(neglecting stress concentration) and the symbol % for the
factor of stress concentration, which is applied only to variable
stress, we obtain the allowable values of ¢, and o by sub-
stituting ko, instead of o, in equations (315) and (316), which
gives

I ko'r Om
7 e T (317)
n Oe Oyp
[ I Typ T
Op = 5— s Om = Y.P, B (318)
n O Om 7 Oyp ko
1 + 1 + —_yr. =
Oyp. ko, O, Onm

136 See R. E. Peterson’s discussion in Proceedings Am. Soc. Test. Mat.,
Vol. 37, 1937. .
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Considering again the bar of the previous examp%e a.nd as-
suming, for example, that the local stress concentration is such
that £ = 2, we obtain from equations (318)

= 3900 = bs. . in.;
o= s T 1 5,530 Ibs. per sq
T+ 1.4 2
— 42,000 ! = Ibs. per sq. in.;
Im =TT 1 F I.g X 2 5,530 per sq

= ¢, + on = 11,060 lbs. per sq. m

o-max

Equations (318) can also be used in bending. Suppose, for
instance, that a shaft of steel with oy.p. = 42,000 lbs. per sq.
in. and ¢, = 30,000 lbs. per sq. in. is bent ‘t.>y its own weight
while rotating. Then ¢, = 0 and, assuming, for example,
n = 2 and k = 1.7, we would have

or = 7 = ~—— = 8,800 lbs. per sq. in.,

which represents the maximum nominal bending stress allow-
able in this case.

Since the endurance limit in shear is usually not far from
half the endurance limit in reversed direct stress (see'p. 43%)
we can assume that the maximum shear thef)ry, Wh}ch was
originally proposed for constant stresses, applies also in cases
where fracture occurs due to fatigue.’” Hence for pure shear,
using the notations 7, and 7. for the reversed and constant
parts of the stress, and & for the factor of stress concentration,

we find, from eqgs. (318),

1 Typ. 1 .
=17 o Tm =T oyp kT (319)
T 2kn I+ Oe Tm n 1+ Y.P. r

oyp kTs Te Tm

187 Application of various strength theories to fluctuating stresses is
discussed by J. Marin, Journal Appl. Mech., Vol. 4, p. 55, 1937.
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Assumez, for example, that a shaft of the same material as
above is submitted to a pulsating torque such that r .,
= $7mex and that the dimensions are such that the faCtorm(;;
stress concentration at the fillets (see p. 335 is & = 1.7. Then

T ._I_. . J—
T = max Tmin — 3_ r . o= Tmax Tmin I
9 4 maxy r = = =~ Tmax.

2
4
Assuming a factor of safety # = 2, we find, from eq. (319)
_ 30,000 I
2 .
X 1.7 X 21 +

Tr

X__

7
= 5,860 lbs. per sq. in.;
I+ 1.4 X %7- !

Twax = Tm + 7, = 7,810 lbs. per sq. in.

- o 1,950 lbs. per sq. in.;

rRebs

_ 42,000 I
4

Tm

Equgt?on (319) can also be used for the general case of stress
conc!ltlon represented in Fig. 304, provided the plane of
maximum shear remains immovable in the material, while the
principal stresses vary.'® In this case ’

Ty — O —_
Tmax = ( L2 72 roin = ( L2 %2
2 max) min 2
min

and the quantities

Tmax I Tmin
= ——— T i
T > and 7, = ~mex 7 Tmin
2

are determined from egs. (319).

There are sometimes more complicated cases, when not only the
magnitude of the maximum shearing stress but also the positic}),n in
the body of the plane in which it occurs changes. The simplest
case of this kind is that of combined bending and torsion. Forptfjs

case the nominal value of the maxi 1 i
mum shearing stress
161, p. 278, Part I) ¢ 's (see &g

158 1t
Such a condition we have, for example, in the case of combined

reversed bending and reversed torsion i i
. sion if the bendin i
moments are in phase. ' § and the torsion
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Tmax = 7:—35 M2 + Mtzi (g)

where M and M, are the maximum values of the bending and
of the twisting moments respectively. In calculating the
diameter 4 from this equation we substitute oyp /27 fOr Tmes,
as for static conditions, and take care of fluctuation of stresses
by multiplying M and M, by certain numerical factors 7 and
ms, so that the equation for determining 4 becomes

U;;' = ;I%\l(mMP + (miM,)2 (320)
The values of 7 and m, depend on the relative values of the
moments M and M, and on their fluctuation. A satisfactory
working formula will be obtained if the values m and m; are
chosen so as to satisfy the two extreme conditions: (1) when
M, = o, and we have a fluctuating bending and (2) when
M = o, and we have a fluctuating torque. For these two
extreme conditions equation (320) gives

o 16 M
2Y7'1P' wd® ? ®
6 ]
";’;. ;d"' mM:. 2

The first of these equations corresponds to the fluctuating
bending and the second to the fluctuating torsion. Both
these cases were already discussed, and we have only to adjust
the factors m and m, so as to bring equations (%) and (7)
into coincidence with the previous equations (318) and (319).
Let us begin with the case of fluctuating bending and use the
symbols M,, and M, for the mean value and the variable
value of the fluctuating bending moment M, so that

M= M, + M. )
The corresponding nominal values of stresses are

oM, oM,
Om = 37rd3 and gy = -37|'—dé—’ (k)
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and
Td®
M=M,+ M, = 3—2(0,,,4—!1,).
Substituting this value of M in the equation (%), we obtain
g
;'P' = m(om + a.). )

If. there is no stress concentration, this equation must coincide
with equation (315). Hence

m(owm + o.) or Om

Oyp. - Ce T O'Y.P.’ (m)
and
1+ Or Oyp,
_ Om O
m=—_"3Im % | (n)

or

I+ —

Tm

SlnC(? oyr, 0. and the ratio o,/s, are known, the factor m is
readily calculated from the equation (). If there is stress

concentration, the equation (/) must coincide with equation
(317) and we obtain

I _|_ kUY.P.ﬁ
_ Te O
m = ———— (0)

ag
I 4 —
Tm

ConSIderfng in the same manner the fluctuating torque given
by equation (i), we obtain

g T
1 + k'l Y.P. ir
Ue m

my = b (
i ?)
T

m

in yvhich k1 is the factor of stress concentration in torsion,
whlch‘is generally different from k, the factor for bending.

It is seen that for given values of the ﬂuctuating:bending
and torsion moments the values of the factors m and m, can
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be calculated from equations (o) and (p). The necessary
diameter is then obtained from equation (320).

As an example take a shaft of the same material as considered
before and assume that the bending moment M is completely re-
versed 1% and the torque fluctuates in such a way that M,
= (M)m(1 & 0.1). If the proportions of fillets are such that the
factor of stress concentration in bending ' £ = 1.7 and the factor
of stress concentration in twist k; = 1.7,'® then by substituting
om = 0 and 7, = 0.17,, we obtain from eqgs. (o) and (p)

L OY.P. _ . _I417 X714 Xo0I
m=k . =17 X1.4=238; m= o1

The diameter of the shaft can be obtained by substituting these in
eq. (320).

In the previous discussion it was assumed that the di-
mensions are determined by strength considerations only.
There are sometimes additional requirements which must be
considered in design. There are cases in which a limiting
deflection is prescribed and must be taken as a basis for
calculating the dimensions. The deflection is of great im-
portance in cases in which vibration of the system is to be
considered. Sometimes there are requirements regarding the
maximum deflection of beams or girders. Shafts must some-
times satisfy requirements regarding the angle of twist per
unit length.

In the case of structures submitted to the action of high
temperature the design must be based on the assumption of a
certain duration of service of the structure and of a certain
amount of distortion which can be considered as permissible.
The working stresses are chosen so that the distortion of the
structure during its life time will not exceed- a definite limit
depending on the type of structure (see art. 82).

= I.I3.

159 This is always the case when the rotating shaft is under the action
of loads fixed in space.

160 If we determine £ from the same table as used for the two-dimen-
sional problem shown in Fig. 210, we shall always be on the safe side.

16t It is assumed that the stress concentrations in bending and twist
are at the same point. This is approximately true at the fillets of shafts
of variable diameter.
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From all this discussion it may be seen th
working stresses is a very important and at t
very complicated problem.

safety # the designer must al
ence. The above discussio
working stresses for various
to replace the use of past e

at the choice of
he same time a
In establishing the factor of
ways be guided by past experi-
n giving a comparison of the
stress conditions is not intended

xperience but may be helpful in
interpreting this experience and in arriving at a design which

i1s equally strong in all parts. [t may be useful also in making
comparisons of different designs and in comparing the
strengths of existing structures, The study of actual failures
and the investigation of the causes of these failures in the light
of the above theoretical discussion form a very useful method
for acquiring a deeper knowledge of the strength of our struc-
tures.’®  Combining such an analysis of failures with theo.
retical investigations of the stress distribution in various cases
and with laboratory investigations of the strength of materials
under various stress conditions will enable us to accumulate a
more reliable knowledge, of the actual strength of structures,
When we have such knowledge, the present specifications for
working stresses in various branches of engineering can be
considerably improved. This will without doubt result in an
economy of material and in greater reliability for structures
and machines.

1% In this respect such

publications as Technijcal Reports, British
Engine, Boiler, El. I

nsurance Co. are of great practical importance.,

Mechanical Properties of Steels
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Numbers refer to pages

Arch, hinged at the ends, 94
buckling of a circular, 219
Assembly stresses in built-up cylinders,
241

Balls and rollers, 355
Ball bearings, stresses in, 359
Bars, curved, Chapter 11, 65
Beams, on elastic foundation, 1
on elastic supports, 20
Belleville spring, 182
Bending, beyond elastic limit, 362
combined with direct stress, 25
in thin shells, 164
of bars with small curvature, 104
of curved bars, 65
of curved tubes, 107
of helical springs, 308
of thin plates, 119
Buckling load, 184
effect of shearing force on, 209
energy method in investigating, 199
Buckling, lateral, of beams, 229
of bars of variable cross section, 198,
207
of built-up columns, 211
of a circular arch, 219
of a circular ring, 216
of compression members, 184
of latticed struts, 211
of a pillar uniformly loaded, 205
of plate girders, 228
of plates, 224
of a rectangular frame, 195
of tubes, 219
of tubular sections, 228
Buckling with torsion, 295
Built-up, columns, 211
cylinders, 241

505

Carbon steel, effect of carbon on the
tensile properties, 397
fatigue tests on, 497
high temperature tests of, 463
mechanical properties of, 497
overstrain of, 406
Cast iron, compression tests on, 404
Castigliano theorem, application to curved
bars, 81
Center of twist, 51, 292
Chain link, 87
with a stud, g3
Circular hole, in rotating disc, 246
in tension member, 313, 317
in twisted shafts, 317, 324
with a bead, 317
Circular membrane, 144
Circular plate, loaded at the center, 146
of a variable thickness, 145
symmetrically loaded, 135
uniformly loaded, 139
with concentric loading, 149
with a hole at the center, 151
Circular ring, bending by two opposite
forces, 80
buckling of, 216
deflection curve of, 101
twist of, 172
Cold work effect, in tension, 406
in fatigue, 436
Cold rolling of surface, 451
Collapse of tubes under external pressure,
219 °
Columns, theory of, 184
Combined, bending and compression, 2§
bending and tension, 39
Combined stress, failure under, 473
Compound cylinders, 241
Compression of balls and rollers, 353
Compression tests, 403



506 SUBJECT INDEX

Concentration of stress, Chapter VII, 312
in shafts of variable diameter, 33¢
in tension compression members, 312
in torsion of tubular sections, 326
in twist of shafts, 317, 324
Conical ring, 182
Conical tank, 161
Contact stresses, 355
Continuous struts, 35
Corrosion fatigue, 439
Creep at high temperature, 466
Creep rate, 467
Creep in torsion, 472
Critical load, 184
determination of, by energy method,
199
for a bar with built-in ends, 188
for a bar with one end built-in, another
hinged, 190
for a hinged bar, 187
for a pillar, 187
for continuous struts, 191
Critical pressure for a circular ring, 216
for an arch, 219
for a tube, 219
Critical stress, 189
Crystal, mechanical properties of, 413
Curved bars, bending perpendicular to the
plane of initial curvature, 112
bending stresses in, 65
deflection of, vg
neutral axis in, 66
of circular cross section, 73
of rectangular cross section, 69
of T and I cross section, 72
of trapezoidal cross section, 71
theory of bending of, Chapter II, 65
with circular axis, 101
with small initial curvature, 104
Curved tubes, of circular cross section, Io'f
of rectangular cross section, 111
Cylinder, built-up, 241
deformation of thick-walled, 236
deformation of thin-walled, 162
plastic deformation of, 389
shrink fit stresses in, 241

thermal stresses in, 174
thin, with spherical heads, 164
Cylindrical shell, 162
thermal stresses in, 173
Cylindrical surface, bending of plates to
a, Lig
Cylindrical tube, buckling under pressure,
219
deformation symmetrical about the
axis, 165
shrink fit stresses in, 169
with reinforcing ring, 169, 171

Damage curve, 437
Damping properties of materials, 427
Deflection of beams, under direct and lat.
eral loading, 25
on elastic foundation, 1
with small initial curvature, 104
Deflection, of circular rings, ror
of conical rings, 182
of curved bars, 79
of flanges, 180
Deflection of plates, circular, having cen.
tral hole, 151
circular, with clamped edge, 139
circular, with supported edge, 140
rectangular, 155
rectangular, long, uniformly loadéd, 119
Deflection of rails, 8
Deflection of struts, 25
of tie-rods, 39
Discontinuity stresses in thin-walled ves-
sels, 165
Discs, rotating, of constant thickness, 245
stresses in, 247
of varying thickness, 253
Dovetail joint, 322
Drum, rotating, 16
Ductility, 399
and stress concentration, 322

Effect of time, in tensile tests, 423
in high temperature tests, 464
Effective elongation, 401 ’
Effective width, 53, 112

stresses in, 239

Elastic foundation, beams on, 1
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Elastic, hysteresis, 426, 461
stability, 185
Elastic properties, effect of speed on the,
42§
effect of temperature on the, 462
Elliptical hole, in tension member, 318
in twisted shaft, 325
Elliptical ring, go
Elongation, in tensile test, 400
effective, 401
Endurance limit, in bending, 430
in combined stress, 435
in shear, 435
Endurance test, 429
Energy method, in column theory, 199
Euler’s column formulae, 185
Exponential law, 405
Eye-shaped ends, 85

Factor, of safety, 482
of stress concentration, 319
Failure, types of, 418
Fatigue failures, 443
Fatigue of metals, 428
causes of, 459
corrosion and, 439
effect of cold work on, 436
effect of form of test bars on, 442
effect of residual stresses on, 441
effect of speed on, 437
effect of surface finish on, 441
effect of understressing or overstressing
on, 436
temperature effect on, 438
Fillets, stress concentration produced at,
320, 335, 339
Flanges of tubes, bending of, 180
Flexural rigidity of a plate, 120
Flywheel rim, stress in, 98
Foundation, elastic, 1
Fracture, various types of, 418
Frames, buckling of, 195

Gears, fatigue failures in, 444, 458 .
Grooves, effect on stress concentration,
in tension member, 319, 338
in twist, 325
effect on the type of fracture, 421

Girders, buckling of the web of, 228

Helical springs, 304
High temperature tests, 462
Hole, circular, in tension member, 313
in twisted shaft, 317, 324
reinforced, 317
Hole, elliptical, 318
Hook, stresses in a, 75
Hydrodynamical analogy in torsion, 324
Hysteresis, 423
elastic, 426, 461
loops of, 427
model for demonstrating, 427

I-beams, buckling of, 229
torsion of, 27§, 283

Keyway, stresses at, 323

Lamé’s theory of thick-walled cylinders,
236

Lateral loads on struts, 2§
on tie-rods, 39

Latticed struts, 211

Link of a chain, stress in, 87
with a stud, 93

Local bending in thin shells, 165

Local stress, at fillets, 320, 335, 339
at holes in a tension member, 313
at holes in a twisted shaft, 317, 324
at keyway, 325

Loop of hysteresis, 427

Lueders’ lines, 343

Membrane analogy in torsion, 267, 387
Membrane, circular, 144
Membrane stresses, in shells, 164
Middle plane of a plate, 130
"Models, in stress analysis, 342
Modulus, of foundation, 1
reduced, 365, 369
Mohr’s strength theory, 480
application in twist of cast iron, 482

Neutral, axis in curved bars, 66
surface in a plate, 130
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Notch, hyperbolic, stress concentration
produced by, 321, 338

Overstrain, strain hardening, 406
effect on fatigue, 436
Overstraining, of materials in machine
parts, 409
recovery after, 407
residual stresses due to, 416

Photo-elastic method, 346

Pillars, 184

Pipes, bending of curved, 107
buckling of, 219
flanges, of, 180
reinforced, 171

Piston ring, 92

Pitting cracks, 456

Pitting limit, 457

Plasticity, Chapter VIII, 362

Plastic, bending, 362
torsion, 383
deformation of thick cylinders, 389

Plate, bending to a cylindrical surface, 119
buckling of, 224
circular, loaded at the center, 146
circular, symmetrically loaded, 135
cricular, with a central hole, 151
circular, with concentric loading, 149
pure bending of, 129
rectangular, 121, 155
thermal stresses in, 133

Polarized light, application in stress meas-

urements, 346

Proportional limit, 397
initial, 460
natural, 460

Pure bending of plates, 129

Railroad track stresses, 8
Range of stress, in fatigue tests, 429
effect of average stress on, 434
safe, 459
Rate of extension at high temperature,
467 :
Rectangular plate, 155
buckling of, 224

Reduced width, 57
Reduced modulus, 365, 369
Reduction of area, 401
Residual stresses due to plastic flow, 379,
386, 392, 416
experimental determination of, 382
Reversed stress, 429
Rings, circular, bending by two opposite
forces, 8o
circular, bending by forces perpendicu-
lar to the plane of the ring, 112
circular, buckling of, 216
elliptical, go
stresses in rotating, 248
symmetrical, submitted to uniform
pressure, 89
with parallel sides and semicircular
ends, 87
Rollers, stresses in, 355
fatigue failure of, 454
Rotating discs, of variable thickness, 253
solid of uniform thickness, 245
with the hole at the center, 246
Rotor, stresses produced by inertia forces,
in 249, 252
Roughness of surface, 455

Season cracking, 418
Sensitivity index, 448
Separation failure, 418
Shaft, fatigue failure of, 443
non-circular, 265
of variable cross section, 329
stress concentration in, 329
Shear center, §3, 292
Shear theory, 475
application to thick-walled cylinders,
v 240
Shearing force, effect on critical load, 209
Shell, thin, 159
local bending in, 164
Shrink fit stresses, 241
Single crystal, mechanical properties of,
413
strain hardening of, 413
‘Size effect in fatigue tests, 449

.Slenderness of a strut, 189

Reduced length, 189

Sliding failure, 418

7
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Slip bands, 415, 461
Speed effect, in compression tests, 424
in tensile tests, 425
Spherical shell, thin, 160
Spherical seat, 356
Spiral spring, go
Spring, Belleville, 182
spiral, go
helical, 304
fatigue failure of, 445
Square plate, rectangular plate, 115
Stability, elastic, Chapter IV, 184
Standard specimens, 396
Strain energy, 476
Strain hardening, at room temperature,
406
at high temperature, 471
of aluminum, 407
of copper, 409
of single crystals, 412
of wire, 411
Strength theories, 473
Strength at high temperature, 465
Stress concentration, Chapter VI, 312
and fatigue, 442
at the point of load application, 352
in bending, 335
in tension, 313
in torsion, 324, 329
Stresses, residual, 379, 386, 392, 416
thermal, 133, 258
Struts, 184
approximate formulas for deflections of,
49
laterally loaded, 25
latticed, 211 .
trigonometric series applied to bending
of, 44
Superposition method, 29
limitation of, 59
Surface failure, 454
Surface rolling, 453
Surface roughness, 453

Tank, conical, 161

cylindrical, 173
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Temperature effects, on the elastic prop-
erties, 462
on the modulus of elasticity, 464
Tensile test, 396
Thermal stresses, in cylinders, 258
in cylindrical shells, 174
in plates, 133
Theory of strength, 473
maximum shear, 475§
maximum strain, 474
maximum strain energy, 476
maximum stress, 474
Thick-walled cylinder, 236
plastic deformation of, 389
Thin-walled cylinder, 162
local bending in, 164
Three moment equation, 36
Thrust, on columns, 184
of an arch, 94
Tie-rods laterally loaded, 39
Time effect, in tension, 423, 465
at high temperature, 463
Torsion, beyond elastic limit, 383
hydrodynamic analogy in, 324
membrane analogy in, 267
of a circular ring, 177
of channels, 275, 288
of I-beams, 275, 283
of non-circular shafts, 265
of rolled profile sections, 274
of shafts of variable diameter, 329
of thin strips, 301
of tubular sections, 278
Torsion and tension, 299
Torsion at high temperature, 472
Torsional buckling, 295
Trigonometric series, application to bend-
ing, 44
Tubes, local bending in, 164
thermal stresses in, 173
Twist center, §3, 292

Ultimate strength, 397
effect of high temperature on, 465
in shear, for cast iron, 482
Ultimate value of bending moment, 370,

371
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Ultimate load, on a beam, 377 for ductile materials, 485
for simultaneous bending and torsion,
Variable cross section, buckling of bars 492
of, 198, 207 | for variable stresses, 487

shafts of, 329
Vessels, subjected to internal pressure, 159

local bending in thin, 164 Yield point, 397, 398

at high temperature, 464

Working stresses, 482 bending beyond, 362
for brittle materials, 486 raising of the, 406
for combined bending and compression, speed effect on, 425

32 under combined stress, 473




