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LECTURE 25   Buckling of Columns (Part 1) 
Elastic Column Behavior 

Introduction 

Load-carrying structures may fail in a variety of ways, depending upon the type 

of structure, the conditions of support, the kinds of loads, and the materials used. For 

instance, an axle in a vehicle may fracture suddenly from repeated cycles of loading, or 

a tensile member may stretch excessively, so that the structure is unable to perform its 

intended functions. These kinds of failures are prevented by designing structures so that 

the maximum stresses and maximum displacements (strains) remain within tolerable 

limits. Thus, strength and stiffness are important factors in design. 

The last type of failure is due to elastic instability of a structure. This type of 

failure is called buckling, which can be defined as the sudden, large, lateral deflection 

of a column owing to a small increase in an applied compressive load. This response 

leads to instability and collapse of the member. The buckling phenomenon may be 

illustrated using wooden or metal scale with a compressive load applied at its ends. The 

consideration only of material stress level is not sufficient to predict the behavior of 

such a member. 

Stability is the ability of a structure to support a given load without 

experiencing a sudden change in configuration. The principal difference between the 

theories of linear elasticity and linear stability is that, in the former, equilibrium is 

based upon the undeformed geometry, whereas in the latter, the deformed geometry 

must be considered. 

We will consider specifically the buckling of columns, which are long, slender 

structural members loaded axially in compression (Fig. 1a). If compressed member is 

relatively slender, it may fail by bending or deflecting laterally (Fig. 1b) rather than by 

direct compression of the material. When lateral bending occurs, we say that the 

column has buckled. Under an increasing axial load, the lateral deflections will increase 

too, and eventually the column will collapse completely. 

The phenomenon of buckling is not limited to columns. Buckling can occur in 

many kinds of structures and can take many forms. When you step on the top of an 
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empty aluminum can, the thin cylindrical walls buckle under your weight and the can 

collapses. In a few bridge failures, investigators found that failure was caused by the 

buckling of a thin steel plate that wrinkled under compressive stresses. Buckling is also 

encountered in machine linkages, signposts, supports for highway overpasses, and a 

wide variety of other structural and machine elements. Buckling is one of the major 

causes of failures in structures, and therefore the possibility of buckling should 

always be considered in design. 
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        (a)            (b) 

Fig. 1.   Buckling of a column due to an axial compressive load P 

The examples of buckling shown in Fig. 2. Before the buckling problem analysis, let us 

discuss the concept of the mechanical system stability, which is important in buckling 

problem description. 

                   
     (a)     (b)        (c) 

Fig. 2 (a) Unbuckled and (b) buckled configuration of compressed rods; (c) image of buckling tests 
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(a)             (b) 

 

Fig. 3 (a) Unbuckled and (b) buckled configuration of compressed posts; (c) image of buckled 

compressed skin 
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An ideal mechanical system is given a displacement from the position of 

equilibrium. If after removing the causes of the displacement the system returns to its 

initial state of equilibrium, the latter is considered stable. Otherwise it is unstable. 

These three equilibrium conditions are analogous to those of a ball placed upon a 

smooth surface (Fig. 4). If the surface is concave upward, the equilibrium is stable and 

the ball always returns to the low point when disturbed. If the surface is convex 

upward, the ball can theoretically be in equilibrium on top of the surface, but the 

equilibrium is unstable and in reality the ball rolls away. If the surface is perfectly flat, 

the ball is in neutral equilibrium and remains wherever it is placed. 

 

     concave surface       convex surface     perfectly flat surface 

Fig. 4   Ball in stable, unstable, and neutral equilibrium 

In mechanical structures analysis, we shall describe the critical, or buckling, 

load, the compressive load that causes the instability, and the effective lengths of 

columns with various restraints. The stresses associated with both elastic and inelastic 

buckling of columns under centric load will be considered too. Following this, we will 

treat eccentrically loaded columns and consider the problems of column design. 

The values of external compressed forces at which the stable position of 

equilibrium becomes unstable. Such forces are called critical loads and are regarded as 

limiting for a structure. 

It is evident, that 

 cr yF A ,     (1) 

where y  is the yield limit, A is the area of the bar. In buckling calculations the 

working load is assigned as the n-th fraction of the critical load. The quantity n is the 

stability factor of safety. Maximum working (allowable) value of compressive force 

may be calculated as 
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 crF
F

n
.      (2) 

1   Buckling of Pin-Ended Columns. The Euler’s Problem 

We begin our consideration of the stability behavior of columns by analyzing 

slender column with pinned ends (syn. slender pin-ended column) (Fig. 5a). The 

column is loaded by a vertical compressive force P that is applied through the centroid 

of the end cross section. The column is assumed to be perfectly straight and to be 

constructed of a linearly elastic material that follows Hooke's law. The column is 

assumed to have no imperfections, it is referred to as an ideal column. 

Let us construct a coordinate system with its origin at support A and with the x 

axis along the longitudinal axis of the column. The z axis is directed to the left in the 

figure. We assume that the xz plane is a plane of symmetry of the column (Fig. 5b). 

 

Fig. 5   Column with pinned ends: (a) ideal column, (b) buckled shape, and (c) axial force P and 

bending moment M acting at a cross section 

When the axial load P has a small value, the column remains perfectly straight 

and undergoes direct axial compression. The only stresses are the uniform compressive 

stresses obtained from the equation  P A . Under low loading, the column is in 

stable equilibrium, which means that it returns to the straight position after a 
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disturbance. For instance, if we apply a small lateral load and cause the column to bend, 

the deflection will disappear and the column will return to its original position when the 

lateral load is removed. 

As the axial load P is gradually increased, we reach a condition of neutral 

equilibrium (similar to Fig. 4) in which the column may have a bent shape. The 

corresponding value of the load is the critical load crP . At this load the column may 

undergo small lateral deflections with no change in the axial force. For instance, a small 

lateral load will produce a bent shape that does not disappear when the lateral load is 

removed. Thus, the critical load can maintain the column in equilibrium either in the 

straight position or in a slightly bent position. 

At higher values of the load, the column is unstable and may collapse by 

buckling in result of excessive bending. For the ideal case, the column will be in 

equilibrium in the straight position even when the axial force P is greater than the 

critical load. However, since the equilibrium is unstable, the smallest imaginable 

disturbance will cause the column to deflect sideways. Once that happens, the 

deflections will immediately increase and the column will fail by buckling. 

The behavior of an ideal column compressed by an axial load P (Figs. 5a and b) 

may be summarized as follows: 

If  crP P , the column is in stable equilibrium in the straight position. 

If  crP P , the column is in neutral equilibrium in either the straight or a 

slightly bent position. 

If  crP P , the column is in unstable equilibrium in the straight position and 

will buckle under the slightest disturbance. 

1.1   Differential Equation for Column Buckling 

To determine the critical loads and corresponding deflected shapes for an ideal 

pin-ended column (Fig. 5a), we will use the simplest of differential equations of the 

deflection curve of a beam. These equations are applicable to a buckled column 

because the column bends similar as a beam (Fig. 5b). We will use the second-order 
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equation (the bending-moment equation) because its general solution is the simplest. It 

is valid under stress level not exceeding the proportionality limit   pr  : 

 EIv M ,      (3) 

in which M is the bending moment at any cross section, v is the lateral deflection in 

the direction, and EI is the flexural rigidity for bending in the xz plane. 

The bending moment M at an arbitrary distance x 

from end A of the buckled column is shown acting in its 

positive direction in Fig. 4c, because we will believe that 

positive bending moment produces positive curvature 

(see Figs. 6 and 7). The axial force P acting at the cross 

section is also shown in Fig. 5. Since there are no 

horizontal forces acting at the supports, there are no 

shear forces in the column. Therefore, from equilibrium 

of moments about point A (see Fig. 5c), we obtain 

0 M Pv     or     M Pv ,  (4) 

where v is the deflection at the cross section. 

The same expression for the bending moment is 

obtained if we assume that the column buckles to the 

right instead of to the left (Fig. 8a). When the column 

deflects to the right, the deflection itself is   but the 

moment of the axial force about point A also changes 

sign. Thus, the equilibrium equation for moments about 

point A (see Fig. 8b) is 

  0  M P v ,     (5) 

which gives the same expression for the bending moment M as before. 

y

y

x

x

O

O

Positive
curvature

Negative
curvature

( )a

( )b  

Fig. 6   Sign convention for 

curvature 
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The differential equation of the deflection curve 

(Eq. 3) now becomes 

'' 0 Elv Pv ,    or    
2

2
0 

d v
EI Pv

dx
. (6) 

By solving this equation, which is a homogeneous, 

linear, differential equation of second order with 

constant coefficients, we can determine the magnitude 

of the critical load and the deflected shape of the buckled column. 
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Fig. 8   Column with pinned ends (alternative direction of buckling) 

Despite of that we investigate the buckling of columns by solving the same basic 

differential equation as are used in the calculations of beam deflections, the 

fundamental difference in these two types of analysis is evident. In the case of beam 

deflections, the bending moment M appearing in Eq. (3) is a function of the load only 

– it does not depend upon the deflections of the beam (assumption on relative rigidity 

of a rod). In buckling, the bending moment is a function of the deflections themselves 

(Eq. 4). In bending theory, the deflected shape of the structure was not considered, and 

the equations of equilibrium were based upon the geometry of the undeformed 

M M

 

Fig. 7    Sign conventions for 

bending moment M (positive 

moment produces positive 

curvature if z-axis is directed 

up) 
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structure. Now, however, the geometry of the deformed structure is taken into 

account when writing equations of equilibrium. 

1.2   Solution of the Differential Equation 

Setting the notation 

2 
P

k
EI

    or    
P

k
EI

,    (7) 

in which k is always taken as a positive quantity (k has units of the reciprocal of 

length), we can rewrite Eq. (6) in the form 

2 ( ) 0   v x k v x ,    or    
2

2
2

0 
d v

k v
dx

.   (8) 

The solution of this equation is 

1 2( ) sin cos v x C kx C kx ,    (9) 

which is a form of the familiar equation of simple harmonic motion. The constants of 

integration 1C  and 2C  are evaluated from the boundary conditions at the ends of the 

column (note that the number of arbitrary constants in the solution (two in this case) 

agrees with the order of the differential equation): the deflection is zero when 0x  and 

x L  (see Fig. 1b): 

(0) 0v ,    ( ) 0v L .    (10) 

The first condition gives 2 0C , and therefore 

1( ) sinv x C kx .     (11) 

The second condition gives 

1sin 0C kL .     (12) 

From this equation we conclude that either 1 0C  or sin 0kL . We will consider both 

of these possibilities. 
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1. If the constant 1C  equals zero, the deflection v is also zero (see Eq. 11), and 

therefore the column remains straight. In addition, when 1C  equals zero, Eq. (12) is 

satisfied for any value of the quantity kL. Consequently, the axial load P may also have 

any value (see Eq. 7b). 

2. The second possibility for satisfying Eq. (12) is given by the following 

equation, known as the buckling equation: 

sin 0kL .      (13) 

This equation is satisfied when 0kL ,  , 2 ,… . However, since 0kL  

means that 0P , this solution is not of interest. Therefore, the solutions we will 

consider are: 

kL n     ( 1, 2, 3, ...)n ,    (14) 

or (see Eq. 7a): 

2 2

2


n EI
P

L


    ( 1, 2, 3, ...)n .     (15) 

This formula gives the values of P that satisfy the buckling equation and provide 

solutions (other than the trivial solution) to the differential equation. 

The equation of the deflection curve (from Eqs. 11 and 14) is 

1 1( ) sin sin 
n x

v x C kx C
L


    ( 1, 2, 3, ...)n .  (16) 

Only when P has one of the values given by Eq. (15) it is theoretically possible for the 

column to have a bent shape (see Eq. 16). Therefore, the values of P given by Eq. (15) 

are the critical loads for the column. 

1.3   Euler’s Formula for Critical Loads 

Only the value for 1n  has physical significance, as it determines the smallest 

value of P for which a buckling shape can occur under static loading. Thus the critical 

load for a column with a pinned end is 
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2

2
cr

EI
P

L


,      (17) 

where L represents the original length of the column. The preceding result is 

attributable to Leonhard Euler (1707–1783). He was the first who investigated the 

buckling of a slender column and determined its critical load. He published his results 

in 1744. 

Eq. (17) is known as Euler's formula, the corresponding load is called the Euler 

buckling load. In Eq. (17), EI  is the flexural rigidity for bending in the xy plane, 

taken to be the plane of buckling owing to the restraints imposed by the end 

connections (Fig. 1a). However, if the column is free to deflect in any direction, it will 

tend to bend about the axis having the smallest principal centroidal moment of 

inertia I. 

The corresponding to crP  buckled shape (syn. a mode shape) is 

1( ) sin
x

v x C
L


,     (18) 

as shown in Fig. 7b. The constant 1С  represents the deflection at the midpoint of the 

column and may have any small value, either positive or negative. 

By taking higher values of the index n in Eqs. (15) and (16), we obtain an 

infinite number of critical loads and corresponding mode shapes. The mode shape for 

2n  has two half-waves, as pictured in Fig. 8c. The corresponding critical load is 

four times larger than the Euler’s critical load. The magnitudes of the critical loads 

are proportional to the square of n, and the number of half-waves in the buckled shape 

is equal to n. Buckled shapes for the higher modes are often of no practical interest 

because the column buckles when the axial load P reaches its lowest critical value. The 

only way to obtain modes of buckling higher than the first is to provide lateral support 

of the column at intermediate points, such as at the midpoint of the column shown in 

Fig. 9. 
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Fig. 9   Buckled shapes for an ideal column with pinned ends: (a) initially straight column, (b) buckled 

shape for 1n  , and (c) buckled shape for 2n   

From Eq. (16) we see that the critical load of a column is proportional to the 

flexural rigidity EI and inversely proportional to the square of the length. It’s 

interesting that the strength of the material (represented by a quantity such as the 

proportional limit or the yield stress), does not appear in the equation for the critical 

load. Therefore, increasing a strength property does not raise the critical load of a 

slender column. It can only be raised by increasing the flexural rigidity, reducing the 

length, or providing additional lateral support. 

The flexural rigidity can be increased by using a material with larger modulus of 

elasticity E or by distributing the material in such a way as to increase the moment of 

inertia I of the cross section, just as a beam can be made stiffer by increasing the 

moment of inertia. The moment of inertia is increased by distributing the material 

farther from the neutral axis of the cross section. Hence, a hollow tubular member is 

generally more economical for use as a column than a solid member having the same 

cross-sectional area. Reducing the wall thickness of a tubular member and increasing 

its lateral dimensions (while keeping the cross-sectional area constant) also increases 

the critical load because the moment of inertia is increased. This process has a practical 
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limit, however, because eventually the wall itself will become unstable. When that 

happens, localized buckling occurs in the form of small wrinkles in the walls of the 

column. Thus, we must distinguish between overall buckling of a column, and local 

buckling of its parts. 

Earlier we assumed that the xy plane was a plane of symmetry of the column and 

that buckling took place in that plane (Fig. 9). This assumption will be met if the 

column has lateral supports perpendicular to the plane of the figure, so that the column 

is constrained to buckle in the xy plane. If the column is supported only at its ends and 

is free to buckle in any direction, then bending will occur about the principal centroidal 

axis having the smaller moment of inertia. For instance, consider the rectangular, wide-

flange, and channel cross sections shown in Fig. 10. In each case, the moment of inertia 

xI  is greater than the moment of inertia yI ; hence the column will buckle in the x-x 

plane, and the smaller moment of inertia yI  should be used in the formula for the 

critical load. If the cross section is square or circular, all centroidal axes have the same 

moment of inertia and buckling may occur in any plane. 

C CC
x x x

y y y

 

Fig. 10   Cross sections of columns showing principal centroidal axes with x yI I  

1.4   Critical Stress 

If we know the critical load for a column, we can calculate the corresponding 

critical stress by dividing the critical load by the cross-sectional area. For the 

fundamental case of buckling (Fig. 10b), the critical stress is 
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2

2
 cr

cr
P EI

A AL


 ,    (19) 

in which I is the moment of inertia for the principal axis about which buckling occurs. 

This equation can be written in a more useful form by introducing the term 


I

i
A

,         (20) 

in which i is the radius of gyration of the cross section in the plane of bending. Then 

the equation for the critical stress becomes 

2

2( )


 cr

E

L i
,     (21) 

in which /L i  is a dimensionless ratio called the slenderness ratio  : 


L

i
 .     (22) 

After this, Euler’s formula Eq. (17) becomes 

 

2 2

2 2
 cr

EA EA
P

L i

 


.    (23) 

The slenderness ratio depends only on the dimensions of the column, including 

length and cross section. A column that is long and slender will have a high 

slenderness ratio and therefore a low critical force and stress. A short column will have 

a low slenderness ratio and will buckle at a high stress. Typical values of slenderness 

ratio for actual columns are between 30 and 200. 

A graph of critical stress as a function of the slenderness ratio is known as 

Euler's curve (Fig. 11). The curve shown in the figure is plotted for a structural steel 

with 207E GPa. The curve is valid only when the critical stress is less than the 

proportional limit of the steel, because the equations were derived using Hooke's law. 

Therefore, we draw a horizontal line on the graph at the proportional limit of the steel 
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(assumed to be 250 MPa) and limit Euler's curve at that level of stress. Really Euler’s 

curve is a plot of an equation of the third degree in two variables. 

 

Fig. 11   Graph of Euler’s curve (from Eq. 21) for structural steel with 207E  GPa and 

250pr  MPa 

1.5   Influence of Large Deflections and Imperfections on Critical Force 

The equations for critical loads mentioned above were created for ideal columns, 

that is, columns for which the loads are precisely applied, the construction is perfect, 

and the material follows Hooke's law. In result we found that the magnitudes of the 

small deflections at buckling were undefined. Thus, when  crP P , the column may 

have any small deflection. The theory for ideal columns is limited to small deflections 

because we used the second derivative v'' for the curvature. A more exact analysis is 

based upon the exact expression for curvature. The basic relationship stating that the 

curvature of a beam is proportional to the bending moment  1 k M EI  was first 

attained by Jacob Bernoulli, although he obtained an incorrect value for the constant of 

proportionality. The relationship was used later by Leonhard Euler, who solved the 

differential equation of the deflection curve for both large deflections, using 

 
3 2

2
1 1   

  
k v'' v'  and small deflections using 1 k v'' . 

A more exact analysis shows that there is no indefiniteness in the magnitudes of 

the deflections at buckling. Instead, for an ideal, linearly elastic column, the load-
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deflection diagram goes upward in accordance with curve B of Fig. 12. Thus, after a 

linearly elastic column begins to buckle, an increasing load is required to cause an 

increase in the deflections. 

Next problem is connected with the column 

non-perfection. If for instance, the column has an 

imperfection in the form of a small initial 

curvature, i.e. the unloaded column is not perfectly 

straight. Such imperfections produce deflections 

from the onset of loading, as shown by curve C in 

Fig. 12. For small deflections, curve C approaches 

line A as an asymptote. However, as the deflections 

become large, it approaches curve B. The larger the 

imperfections, the further curve C moves to the 

right, away from the vertical line. Conversely, if the 

column is constructed with considerable accuracy, 

curve C approaches the vertical axis and the 

horizontal line labeled A. By comparing lines A, B, 

and C, we see that for practical purposes the critical 

load represents the maximum load-carrying capacity of an elastic column, because 

large deflections are not acceptable in most applications. 

1.6   Optimum Shapes of Columns 

First of all, we will we analyze only prismatic columns, because compressed 

members usually have the same cross sections throughout their lengths. Prismatic 

columns are not the optimum shape if minimum weight is desired. The critical load of a 

column consisting of a given amount of material may be increased by varying the shape 

so that the column has larger cross sections in those regions where the bending 

moments are larger. Consider, for instance, a column of solid circular cross section 

with pinned ends. A column shaped as shown in Fig. 13a will have a larger critical load 

than a prismatic column made from the same volume of material. As a means of 

 

Fig. 12   Load-deflection diagram for 

columns: line A, ideal elastic column 

with small deflections; curve B, ideal 

elastic column with large deflections; 

curve C, elastic column with 

imperfections 
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approximating this optimum shape, prismatic columns may be reinforced over part of 

their lengths (Fig. 13b). 

Now consider a prismatic column with pinned ends that is free to buckle in any 

lateral direction. Let assume that the column has a solid cross section, such as a circle, 

square, triangle, rectangle, or hexagon (Fig. 14). Problem is to find the cross section 

which gives the largest critical load. To solve it we will calculate the critical load from 

the Euler formula 2 2crP EI L  using the smallest moment of inertia for the cross 

section, which will be different for all cross sections under consideration. 

The circle shape as answer is common, but not correct. The solutions show that a 

cross section in the shape of an equilateral triangle gives a 21% higher critical load than 

does a circular cross section of the same area. The critical load for an equilateral 

triangle is also higher than the loads obtained for the other shapes; hence, an 

equilateral triangle is the optimum cross section (based only upon theoretical 

considerations). 

P P

(a) (b)

 
              (a)                            (b) 

(a) (b)

P

 

Fig. 13   Nonprismatic columns Fig. 14   Different cross-sectional shapes for a 

prismatic column to select the most stable at 

specified weight 

2   Classification of Columns and Limitations on Euler’s Formula 
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The behavior of an ideal column was earlier represented as a plot of average 

compressive stress /P A  versus slenderness ratio  L i  (Fig. 15), which is based on 

Euler’s curve (Eq. 21, Fig. 11). Such a representation offers a clear basis for the 

classification of compressed bars. Tests of columns verify each portion of the curve. 

The range of   is a function of the material under consideration. 

2.1   Long Columns 

For a long column, that is, a member of sufficiently large slenderness ratio, 

buckling occurs elastically at a stress that does not exceed the proportional limit of 

the material. Hence the Euler's load is appropriate to this case, and the critical stress is 

 

2

2
 cr

cr
P E

A L i


 .       (24) 

The corresponding portion CD of the curve (Fig. 15) was earlier labeled as 

Euler's curve. The critical value of slenderness ratio that fixes the lower limit of this 

curve is found by equating cr  to the proportional limit ( pr ) of the specified 

material: 

2
 

  
 

cr
prcr

L E

i





.    (25) 

For example, in the case of a structural steel with 207E GPa and 

250pr MPa (see Fig. 10), the foregoing results in ( ) 91crL i . The term in (Eq. 25) 

is called critical slenderness ratio cr . Above this value, an ideal column buckles 

elastically and the Euler load is valid. Below this value, the stress in the column 

exceeds the proportional limit and the column buckles inelastically. 

From Fig. 15 we observe that very slender columns buckle at low levels of 

critical stress; they are much less stable than short columns. 
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A B

C

D

P/A

0

Strength limit

Inelastic 
stability
limit

Elastic 
stability
limit

Long columns

Short
columns
(struts)

Intermediate
columns

max

pr

cr  

Fig. 15   Average stress in columns versus slenderness ratio 

2.2   Short Columns 

Compressed members having low slenderness ratios (for example, steel rods with 

30L i ) exhibit essentially no instability and are referred to as short columns or 

struts. For these bars, failure occurs by yielding or by crushing, without buckling, at 

stresses exceeding the proportional limit of the material. Thus the maximum stress 

max 
P

A
       (27) 

is the strength limit (failure stress) of such a column, represented by horizontal line 

AB in Fig. 15. It is equal to the yield stress y  for ductile materials or ultimate stress 

in compression u  for brittle materials. 

2.3   Intermediate Columns 

Most structural columns lie in a region between short and long classifications. 

Such intermediate-length columns do not fail by direct compression or by elastic 

instability. Consequently, Eqs. (25) and (27) do not apply, and a additional non-elastic 

analysis is required. The failure of an intermediate column occurs by inelastic 
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buckling at stress levels exceeding the proportional limit. The particularities of 

inelastic buckling will be considered in future. 

3   Columns with other Support Conditions and Concept of an Effective Length 

It is evident that the critical load is dependent upon the end restraints. Buckling 

of a column with pinned ends is usually considered as the most basic case of buckling. 

However, in practice we deal with many other end conditions, such as fixed ends, free 

ends, and elastic supports. The critical loads for columns with various kinds of 

support conditions can be determined from the differential equation of the deflection 

curve. 

The procedure is as follows. First, with the column assumed to be in the buckled 

state, we obtain an expression for the bending moment in the column. Second, we set 

up the differential equation of the deflection curve, using the bending-moment equation 

( ) EIv M . Third, we solve the equation and obtain its general solution, which 

contains two constants of integration plus other unknown quantities. Fourth, we apply 

boundary conditions pertaining to the deflection v and the slope v' and obtain a set of 

simultaneous equations. Finally, we solve those equations to obtain the critical load and 

the deflected shape of the buckled column. This procedure is illustrated for three 

different types of columns. 

3.1   Column Fixed at the Base and Free at the Top 

We will consider an ideal column that is fixed at the base, free at the top, and 

subjected to an axial load P (Fig. 16a). This column is one first analyzed by L. Euler in 

1744. The deflected shape of the buckled column is shown in Fig. 16b. From this figure 

we see that the bending moment at distance x from the base is 

( ) M P v ,     (28) 

where   is the deflection at the free end of the column. The differential equation of the 

deflection curve then becomes 

( )   EIv M P v ,    (29) 
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in which I is the moment of inertia for buckling in the xy plane. 

Using the notation 2 k P EI  (Eq. 7), we can rewrite Eq. (29) into the form 

2 2  v k v k  ,     (30) 

which is a linear differential equation of second order with constant coefficients. It is 

a more complicated equation than the equation for a column with pinned ends (see 

Eq. 8) because it has a nonzero term on the right-hand side. The general solution of 

Eq. (29) consists of two parts: (1) the homogeneous solution, which is the solution of 

the homogeneous equation obtained by replacing the right-hand side with zero, and (2) 

the particular solution, which is the solution of Eq. (29) that produces the term on the 

right-hand side. 

The homogeneous solution (also called the complementary solution) is the 

same as the solution of Eq. (8); hence 

1 2( ) sin cos hv x C kx C kx ,     (31) 

where 1C  and 2C  are constants of integration. Note that when Нv  is substituted into the 

left-hand side of the differential equation (Eq. 29), it produces zero. 
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Fig. 16   Ideal column fixed at the base and free at the top: (a) initially straight column, (b) buckled 

shape for 1n  , (c) buckled shape for 3n  , and (d) buckled shape for 5n   
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The particular solution of the differential equation is 

pv  .      (32) 

When pv  is substituted into the left-hand side of the differential equation, it produces 

the right-hand side, that is, it produces the term 2k  . Consequently, the general 

solution of the equation, equal to the sum of hv  and pv , is 

1 2( ) sin cos   v x C kx C kx .    (33) 

This equation contains three unknown quantities ( 1C , 2C  and  ), and therefore three 

boundary conditions are needed to complete the solution. 

At the base of the column, the deflection and slope are each equal to zero. 

Therefore, we obtain the following boundary conditions: 

(0) 0v ,    (0) 0 v .    (34) 

Applying the first condition to Eq. (32), we find 

2  C  .      (4.8) 

To apply the second condition, we first differentiate Eq. (32) to obtain the slope: 

1 2( ) cos sin  v x C k kx C k kx .    (35) 

Applying the second condition to this equation, we find 1 0C . 

Now we can substitute the expressions for 1C  and 2C  into the general solution 

(Eq. 32) and obtain the equation of the deflection curve for the buckled column: 

( ) (1 cos ) v x ks .     (36) 

Note that this equation gives only the shape of the deflection curve – the 

amplitude   remains undefined. Thus, when the column buckles, the deflection given 

by Eq. (36) may have any arbitrary magnitude, except that it must remain small 

(because the differential equation is based upon small deflections). 

The third boundary condition applies to the upper end of the column, where the 

deflection v is equal to  : 
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( ) v L .     (37) 

Using this condition with Eq. (36), we get 

cos 0kL .     (38) 

From this equation we conclude that either 0  or cos 0kL . If 0 , there is no 

deflection of the bar (see Eq. 36) and we have the trivial solution – the column remains 

straight and buckling does not occur. In that case, Eq. (38) will be satisfied for any 

value of the quantity kL, that is, for any value of the load P. 

The other possibility for solving Eq. (38) is 

cos 0kL ,      (39) 

in which case Eq. (38) is satisfied regardless of the value of the deflection  . Thus, as 

already observed,   is undefined and may have any small value. The equation 

cos 0kL , which is the buckling equation, is satisfied when 

2




n
kL     ( 1, 3, 5, ...)n .    (40) 

Using the expression 2 k P EI , we obtain the following formula for the critical 

loads: 

2 2

24


cr

n EI
P

L
    ( 1, 3, 5, ...)n     (41) 

Also, the buckled mode shapes are obtained from Eq. (36): 

1 cos
2



 

  
 

n x
v

L
    ( 1, 3, 5, ...)n .   (42) 

The lowest critical load is obtained by substituting 1n  in Eq. (41): 

2

24
cr

EI
P

L


.     (43) 

The corresponding buckled shape (from Eq. 42) is 
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( ) 1 cos
2



 

  
 

x
v x

L
,     (44) 

it is shown in Fig. 16b. 

By taking higher values of the index n, we can theoretically obtain an infinite 

number of critical loads from Eq. (41). The corresponding buckled mode shapes have 

additional waves in them. For instance, when 3n  the buckled column has the shape 

shown in Fig. 16c and crP  is nine times larger than for 1n . Similarly, the buckled 

shape for 5n  has even more waves (Fig. 16d) and the critical load is twenty-five 

times larger. 

3.2   Effective Lengths of Columns 

The critical loads for columns with various support conditions can be related to 

the critical load of a pinned-end column through the concept of an effective length. To 

demonstrate this idea, consider the deflected shape of a column fixed at the base and 

free at the top (Fig. 17a). This column buckles in a curve that is one-quarter of a 

complete sine (or cosine) wave. If we extend the deflection curve (Fig. 17b), it becomes 

one-half of a complete sine wave, which is the deflection curve for a pinned-end 

column. 

The effective length eL  for any column is 

the length of the equivalent pinned-end column, 

that is, it is the length of a pinned-end column 

having a deflection curve that exactly matches all 

or part of the deflection curve of the original 

column. Another way of expressing this idea is to 

say that the effective length of a column is the 

distance between the inflection points on its 

elastically deflected curve, or points of zero 

moment, assuming that the curve is extended (if 

necessary) until points of inflection are reached. 

Thus, for a fixed-free column (Fig. 17), the 

L

P

P

P

LLe 2

( )a

( )b  

Fig. 17   Deflection curves showing the 

effective length eL  for a column fixed at 

the base and free at the top 
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effective length is 

2eL L .          (45) 

Since the effective length is the length of an equivalent pinned-end column, we 

can write a general formula for critical loads as follows: 

2

2
cr

e

EI
P

L


.     (46) 

Thus, if we know the effective length of a column (no matter how complex the 

end conditions may be), we can substitute into this equation and determine the critical 

load. For instance, in the case of a fixed-free column, we can substitute 2eL L  and 

obtain Eq. (43). 

The effective length is often expressed in terms of an effective-length factor  : 

eL L ,     (47) 

where L is the actual length of the column. Thus, the critical load is 

2

2( )




cr

EI
P

L
 .    (48) 

The factor   equals 2 for a column fixed at the base and free at the top and 

equals 1 for a pinned-end column. 

3.3   Column with Both Ends Fixed against Rotation 

Let us consider a column with both ends fixed against rotation (Fig. 18a). Upper 

rigid block in Fig. 18 shows the constraint in such a manner that rotation and horizontal 

displacement are prevented but vertical movement can occur. 

The buckled shape of the column in the first mode is shown in Fig. 18c. The 

deflection curve is symmetrical (with zero slope at the midpoint) and has zero slope at 

the ends. Because rotation at the ends is prevented, reactive moments 0M  appear at the 

supports. These moments, as well as the axial forces, are shown in the figure. 
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Fig. 18   Buckling of a column with both ends fixed against rotation 

From previous solutions of the differential equation, it is evident that the 

equation of the deflection curve involves sine and cosine functions. Also the curve is 

symmetric about the midpoint. Therefore, we see that the curve must have inflection 

points at distances 4L  from the ends. It follows that the middle portion of the 

deflection curve has the same shape as the deflection curve for a pinned-end column. 

Thus, the effective length of a column with fixed ends, equal to the distance between 

inflection points, is 

2
e

L
L .     (49) 

Substituting into Eq. (46) gives the critical load: 

2

2

4
cr

EI
P

L


.     (50) 

This formula shows that the critical load for a column with fixed ends is four 

times that for a column with pinned ends. As a check, this result may be verified by 

solving the differential equation of the deflection curve. 

3.4  Column Fixed at the Base and Pinned at the Top 

The critical load and buckled mode shape for a column that is fixed at the base 

and pinned at the top (Fig. 19a) can be determined by solving the differential equation 
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of the deflection curve. When the column buckles (Fig. 19b), a reactive moment 0M  

develops at the base because there can be no rotation at that point. Then, from the 

equilibrium of the entire column, we know that there must be horizontal reactions R at 

each end such that 

0 M RL .      (51) 

The bending moment in the buckled column, at distance x from the base, is 

0 ( )      M M Pv Rx Pv R L x    (52) 

and therefore the differential equation is 

( )     EIv M Pv R L x .    (53) 

A A A

L

B B B

P P

P
( )a ( )b ( )c

y
R

v

R

x

0M

LLe 699.0

2

19.20

L

EL
Pcr 

 

Fig. 19   Column fixed at the base and pinned at the top 

Substituting 2 k P EI  and rearranging, we get 

2 ( )   
R

v k v L x
EI

.    (54) 

The general solution of this equation is 

1 2( ) sin cos ( )   
R

v x C kx C kx L x
P

,   (55) 

in which the first two terms on the right-hand side constitute the homogeneous solution 

and the last term is the particular solution. As earlier, the general solution can be 

verified by substitution into the differential equation. 
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Because the solution contains three unknown quantities ( 1C , 2C , and R ), we 

need three boundary conditions. They are 

(0) 0v ,    (0) 0 v ,    ( ) 0v L .   (56) 

Applying these conditions to Eq. (4.29) yields 

2 0 
RL

C
P

,    1 0 
R

C k
P

,    1 2tan 0 C kL C .  (57) 

All three equations are satisfied if 1 2 0  C C R , in which case we have the 

trivial solution and the deflection is zero. To obtain the solution for buckling, we must 

solve Eqs. (57) in a more general manner. One method of solution is to eliminate R 

from the first two equations, which yields 

1 2 0 C kL C     or    2 1 C C kL .    (58) 

Next, we substitute this expression for 2C  into last Eq. (57) and obtain the 

buckling equation: 

tankL kL .      (59) 

The solution of this equation gives the critical load. 

Since the buckling equation is a transcendental equation, it cannot be solved 

plainly. Nevertheless, the values of kL that satisfy the equation can be determined 

numerically. The smallest nonzero value of kL  that satisfies Eq. (59) is 

4.4934kL .     (60) 

The corresponding critical load is 

2

2 2

20.19 2.046
 cr

EI EI
P

L L


,    (61) 

which is higher than the critical load for a column with pinned ends and lower than the 

critical load for a column with fixed ends (see Eqs. 17 and 50). 

The effective length of the column may be obtained by comparing Eqs. (61) and 

(46); thus, 

0.699 0.7 eL L L .    (62) 
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This length is the distance from the pinned end of the column to the point of inflection 

in the buckled shape (Fig. 19c). 

The equation of the buckled mode shape is obtained by substituting 2 1 C C kL  

(Eq. 58) and 1R P C k  (Eq. 57) into the general solution (Eq. 55): 

 1( ) sin cos ( )   v x C kx kL kx k L x ,   (63) 

in which 4.4934k L . The term in brackets gives the mode shape for the deflection of 

the buckled column. However, the amplitude of the deflection curve is undefined 

because 1C  may have any value (within the usual limitation that the deflections must 

remain small). 

In addition to the requirement of small deflections, the Euler buckling theory 

is valid only if the column is perfectly straight and the material follows Hooke's law. 

The lowest critical loads and corresponding effective lengths for the four widely 

used columns are summarized in Fig. 20. 

 

Fig. 20   Critical loads, effective lengths, and effective-length factors for ideal columns 


