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LECTURE 11 Strength and Rigidity of a Bar in Tension and Compression

Tension and compression are the types of simple deformation in which only one

internal force factor, a normal force N,, appears in the cross section of a bar: N, #0,

Q,=Qy =My =M, =M, =0. The examples of tension-compression deformation of

structural elements are represented in Figs 1-16.

P

Cables

Reinforced
concrete slab

Fig. 1 The vertical load P acting on the wheel Fig. 2 A reinforced concrete slab is lifted by

compresses its vertical axis 4 tensile cables
> ° D
NN
AA H G;P F 5 . Pump rod
RS | )

d

Piston

Fig. 3 The truss ABCDEFGH is part of awood  Fig. 4 A pump moves a piston up and down
bridge. The truss members are hinged in a deep water well. Pump rod is periodically

tensile or compressed
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2 V. DEMENKO MECHANICS OF MATERIALS 2020

rod crank

Fig. 5 The piston in an engine is attached to a Fig. 6 A car is pulled slowly up a steep
connecting rod AB, which intern is connected to  inclined track by a steel cable which is tensile
a crank arm BC. Both elements are compressed

or tensile

Bolt

Cylinder

Piston

Chamber

Fig. 7 Cylinder with piston and clamping tensile Fig. 8 A cable and strut assembly ABC
bolts supports a vertical load P. The cable and

strut are in tension-compression.

P

Fig. 9 A vertical load P is supported by the Fig. 10 A bungee cord is attached to pegs

truss ABCD which are pinned connected and

9/8/2020 2:16:39 PMW:\+MEXAHNKA MATEPVUANOB W\++HMK[ AHIMN082 LECTURES 2020\11 Strength and Rigidity of a Bar in Tension and Compression.doc



V. DEMENKO MECHANICS OF MATERIALS 2020

therefore are tensile or compressed and pulled at its midpoint by a force P

4 -
/’f’ Cabble
d .
Fig. 11 A tubular post is guyed by two cables Fig. 12 Lifeboat hanges from two ship’s

fitted with turnbuckles. The cables are tightened davits. Cables attached to the lifeboat pass

by rotating the turnbuckles over the pulleys and are really tensile

Mast

> Connecting
plate

Fig. 13 An aluminum bar AB is attached to a Fig. 14 A ship’s spar is attached at the base
support by a pin and is tensile by a P force of a must by a pin connection. It is
compressed by a P force
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F B
3

L | Lyr
2 4

I [ [

Fig. 15 Arrigid bar AB is supported by two Fig. 16 A steel wire ABC supporting a lamp
cables CE and BD which are tensile under P is tensile

loading

1 Hypothesis of Plane Sections

If before loading the ends of the segments (left points a, ¢, e and also right ones
b, d, f) (see Fig. 15) are situated at the planes A and B, then after loading they also will
be situated at the planes, accordingly, A' and B' (left points a', c¢', e' and also right

ones b', d’, f’). This fact is named as hypothesis of plane sections, i.e. A'|| A and

B'|| B. It is accepted as fundamental and confirmed by experimental tests.
Note the experimentally proven fact that absolute elongations for all elementary

segments (ab, cd, ef,...) taken in the portion dx are the same

: Adx
Ay = Ag = Aos = AdX, and strains &, = o const, (1)
Al A B |5
S
ay da bl LV \'
I
| .
7 cl ld dl ld _E_J*
|
el e’ fl 1 !
|
| dx+Adx
< X dx >
P [ AL
Fig.17
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I.e. the state of strain is homogeneous over the cross-section of loaded bar.

2 Calculation of Stresses in Tension-Compression

It was mentioned above, that relation between normal force N, and normal

stress oy is
Ny = [ oxdA. (2)
A
According to Hooke's law
oy =Eegy, 3)

(E =const) and taking into account the expression (1), we have

Ny = [ EexdA=E&yA=oyA.
A

Then

O'XZT- (4)

As it is seen from expression (4) the normal stresses in tension (or compression)
are distributed uniformly over the cross-section of a rod. The formula (4) means, that
to find acting stresses in the cross-section it is necessary to know from normal force
diagram the value of corresponding normal force in the cross-section and also cross-

sectional area of the rod.

3 Condition of Strength in Tension-Compression

To estimate the strength of the bar in tension and compression, it is necessary to

create the condition of strength which states that the maximum stress o5 in the

bar must not exceed the allowable stress of the bar material [a]:

Omaxt <[0],, and  omayx <[c]., where (5)

[o], —allowable stress in tension; [o] . —allowable stress in compression.
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The section of the bar in which the stress o4« acts is called the critical section.

Noting that

om=( ) ©)
and following the condition of strength

O'max :(N_Ai(jmax <[o], (7)

it is possible to solve three practical problems as follows:
(1) check the strength of a bar for the specified load and cross-sectional area

using condition

Nx

omax <[] or  omax :(Tj <[o]; (8)
max

(2) determine the cross-sectional area A for the specified load and allowable

stress [o]:

AN, /[o]; (9)

(3) determine the allowable load on a bar for specified cross-sectional area and

allowable stress taking into account that
[Nx]=Ale], (10)

where [N, ] — allowable normal force.

4 Determination of Strains

According to expression (3) oy, =Egy.

Replace oy by N, /A and &, by Ad_dx (see Fig. 17). We obtain then
X

N, dx

Adx = (11)
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The total elongation of the bar along the length | is

[adx =] Al:lj

N, dx N, dx

EA

(12)

When the bar is loaded at the ends of portions only, then normal force N, =F is

independent of x. If in addition, the bar has constant cross-sectional area A, we obtain

from expression (12):

NI
Al = E—Z\ (13)
For stepped bar total elongation will be as follows:
A3 a3l (14)
i1 iz Eif

where i is number of portion.

Internal loads are not the only sources of stresses and strains in a structure.
Changes in temperature produce expansion or contraction of the material, resulting in
thermal strains and thermal stresses. A simple illustration of thermal expansion is
shown in Fig. 18, where the block of material is unrestrained and therefore free to
expand. When the block is heated,

every element of the material undergoes

S —————————

// // : thermal strains in all directions, and

r ________ - : : consequently the dimensions of the block

| B | _/_/ increase. If we take corner A as a fixed

l._ ___________ |~ reference point and let side AB maintain

Fig. 18 Block of material subjected to an its original alignment, the block will have
increase in temperature the shape shown by the dashed lines.

For most structural materials,
thermal strains is proportional to the temperature change. In solving many practical

problems, elongations due to temperature effects should be taken into account as well

9/8/2020 2:16:39 PMW:\+MEXAHNKA MATEPVUANOB W\++HMK[ AHIMN082 LECTURES 2020\11 Strength and Rigidity of a Bar in Tension and Compression.doc



8 V. DEMENKO  MECHANICS OF MATERIALS 2020

as elongations resulting from stress o. In this case the method of superposition is

used and total elongation may be written as the sum:
AI(N,At):N—XI+at-At-I, (15)
EA

where o; is the linear coefficient of thermal expansion of the material, At is a

change of temperature.

5 Condition of Rigidity in Tension-Compression

(a) in tension

N,I
Al oy = =% <(4ll; (16)
=gy ) <[
(b) in compression
_ |Nx|‘|j
Al = <{4ll, (17)
| =( ) <[

where [4l] is the allowable elongation.

Example 1 Stresses and elongations in statically determinate rod in tension-

compression.
Given: R =10kN, F, =40kN, F3=60kN, a=3m, b=4m, c=5m, E=2x10"Pa,

A=2x10"*m?.

R.D.: 1) calculate normal forces in the rod cross-sections and design the graph of their
distribution along the rod length;

2) calculate acting stresses in the rod cross-sections and design the graph of their
distribution along the rod length;

3) draw the graph of the rod cross-section displacements.

Solution

1) Calculating the normal forces in cross-sections of the rod using the method of

section:
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I-l1 O<x<c
Ny (x)=0;
-1l 0<x<b/3
Ny (X)=—F =—10kN;
-1l 0<x<2b/3
Ny (X)=—F + F3=—10+60=+50kN;
IV-IV 0O<x<a
Ny (X)=—F + F3 — F =10+ 60— 40 = +10kN.

2) Calculating the stresses in cross-sections of the rod:

I-l O<x<c
a)'((x)zo;
-1 0<x<Db/3
I 3
Ny (X
ol (x)= x (x) ___10x10 - =-25MPa;
2A 2x2x10"
=111 0<x<2b/3
1 3
N
ol (x)= o (X)_ 5010 ;= +125MPa;
2A 2x2x10"
IV-IV O<x<a
\Y 3
Ny (X
oy (x)=—= ( ):+1OX1O = +50 MPa.

A 2 x 10_4

3) Determination of the rod elongations.

N, X

To solve this problem, we will use the following formula: 4l(x)= =kx. Let us

begin determining the displacements of the portions boundaries (points E, D, C, A)
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calculating corresponding segments elongations. In this, we will use point B as the

origin. Corresponding displacements are

N, (x),kN c,(x),MPa  §(x),10 > m

10 50
a 1V }V (} :<>

é 0.75
A | E
2| I | mo o S
3 Aol o«
2.417

| te= sofFo] 12

C 10 25 225
B

w | S
=

[
(-
-

4 2.25

Fig. 19

v 3
Sop = Mge = 2y 10;;10 x3 7 =+0.75x10°m.
EA 2x107x2x10"

N 2b

x 2EA

5p.D = AIBD = AIBE + AIED = +0.75><1O_3 + = +0_75><]_O_3 +

50x10° x 2% 4
3><2><2><ZI.011><2><1O_4

— 4+0.75x10 2 +1.667x10 3 = +2.417x10 > m.

1
_ Ny b -3
S =Are = Alom + Ao =42.417x103 + —X 2 —412417x103 —
p.C BC BD DC 3% 2EA

B 1O><103><4
3><2><2><1011><2><10_4

= 42.417x107° —0.167x10% =+2.25x10 > m.
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Nic

Sp.a= A =Alpc + Alcp =+2.25x107 + 2 =42.25x10 3 +0=+2.25x10">m,

Note: “+” sign of the point displacement means the positive elongation of the
corresponding segment, i.e. down directed displacement of the point. In our example,
all cross-sections move downward.
Example 2 Calculation of allowable load for rod system

The contraption shown in Fig. 20a consists of a horizontal beam ABC supported by two
vertical bars BD and CE. Bar CE is pinned at both ends but bar BD is fixed to the
foundation at its lower end. The distance from A to B is 450 mm and from B to C is
225 mm. Bars BD and CE have lengths of 480 mm and 600 mm, respectively, and their
cross-sectional areas are 1020 mm? and 520 mm?, respectively. The bars are made of
steel having a modulus of elasticity E =205GPa. Assuming that beam ABC is rigid,

find the maximum allowable load B, if the displacement of point A is limited to

1.0 mm.

Solution To find the displacement of point A, we need to know the displacements of
points B and C. Therefore, we must find the changes in lengths of bars BD and CE,
using the general equation 6 = NL/EA. We begin by finding the forces in the bars from
a free-body diagram of the beam (Fig. 20b). Because bar CE is pinned at both ends, it is

a "two-force" member and transmits only a vertical force Fog to the beam. However,

bar BD can transmit both a vertical and a horizontal force. From equilibrium of beam
ABC in the horizontal direction, we see that the horizontal force vanishes.

Two additional equations of equilibrium enable us to express the forces Fgp and Fcg
in terms of the load P. Thus, by taking moments about point B and then summing
forces in the vertical direction, we find

FCE =2P and FBD =3P. (1)

Note that the force Fcg acts downward on bar ABC and the force Fgp acts upward.

Therefore, member CE is in tension and member BD is in compression.

The shortening of member BD is
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12 V. DEMENKO MECHANICS OF MATERIALS 2020
_ FBD LBD _ (3P)(480 mm)
EAgp (205 GPa)(1020 mm?)

= 6.887Px10~® mm (P = newtons) (2)

OBD

Note that the shortening ogp is expressed in millimeters provided the load P is

expressed in newtons. Similarly, the elongation of member CE is

Scg = Feelce _ (2P)(600 mm) —~=11.26P x107° mm (P =newtons)  (3)
EAcE (205 GPa)(520 mm®)

Again, the displacement is expressed in millimeters provided the load P is expressed in
newtons. Knowing the changes in lengths of the two bars, we can now find the
displacement of point A.

A diagram of displacements compatibility showing the relative positions of points A,
B, and C is sketched in Fig. 20c. Line ABC represents the original alignment of the
three points. After the load P is applied, member BD shortens by the amount 6gp and

point B moves to B'. Also, member CE elongates by the amount ocg and point C

moves to C'. Because the beam ABC is assumed to be rigid, points A', B', and C' lie on a
straight line.
For clarity, the displacements are highly exaggerated in the diagram. In reality, line
ABC rotates through a very small angle to its new position A'B'C'.

Using similar triangles, we can now find the relationships between the

displacements at points A, B, and C. From triangles A'A"C' and B'B"C' we get

A'A" _ B'B” or 6A + 5CE _ 5BD + 5CE

A’C" B'C’ 450 + 225 225

(4)

in which all terms are expressed in millimeters. Substituting for dgp and ocg from

Egs. (2) and (3) gives

Sp+11.26Px10°  6.887Px107° +11.26P x107°
450 + 225 225 '
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Finally, we substitute for &, its limiting

A
‘: 1 Q% value of 1.0 mm and solve the equation for
P ' the load P. The result is
- 600 mon P =Py = 23,200 N (or 23.2kN).
' When the load reaches this value, the
120 mn? - downward displacement at point A is
@ 1.0 mm.
, Note 1: Since the structure behaves in a
| f«{ﬁ”—] % []] linearly elastic manner, the displacements
» Fan { Fer are proportional to the magnitude of the
1 450 mm 1 225 mm 1 load. For instance, if the load is one-half of
(b) Phax» that is, if P=11.6kN, the downward
B ol i i i
Ai 33 VSCE displacement of point A is 0.5 mm.
4 s, Note 2: To verify our assumption that line
8 4 ABC rotates through a very small angle, we
p can calculate the angle of rotation « from
450mm____ 225 mm the displacement diagram (Fig. 17c), as
© follows:
Fig. 20 Horizontal absolutely rigid beam ABC
supported by 2 vertical bars tan o = AA _ Oa +IcE _ (5)
A'C'  675mm

The displacement 64, of point A is 1.0 mm, and the elongation Scg of bar CE is found
from Eq. (3) by substituting P =23,200N; the result is Scg =0.261mm. Therefore,
from Eq. (5) we get

1.0mm+0.261mm 1.261mm

= =0.001868
675 mm 675 mm

fana =

from which «=0.11°. This angle is so small that if we tried to draw the displacement

diagram to scale, we would not be able to distinguish between the original line ABC
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and the rotated line A'B'C'. Thus, when working with displacement diagrams, we
usually can consider the displacements to be very small quantities, thereby simplifying
the geometry. In this example we were able to assume that points A, B, and C moved
only vertically, whereas if the displacements were large, we would have to consider

that they moved along curved paths.

6 Statically Indeterminate Rods and Rod Systems in Tension or Compression

By a statically determinate system is meant a system for which all the
reactions of the supports and internal force factors can be determined by means of
equations of equilibrium.

By a statically indeterminate system is meant a system for which the external
reactions and all the internal force factors cannot be determined by means of the
method of sections and equations of equilibrium. In this case, it is necessary to create
additional equations connecting displacements of points or cross-sections, taking into
account that displacements are connected with internal forces by Hooke’s law. These
equations are named as compatibility equations. The method of opening of static
indeterminacy is illustrated below.

Example 3 Singly statically indeterminate rod (see Fig. 21)

A P B
lo o o]

C

Fig. 21 The picture of statically indeterminate rod loaded by

concentrated force at point C. A and B — immobile hinged

supports

The sketch of this problem is presented on Fig. 22
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Given: F, a, b. A straight homogeneous bar

I A II
is rigidly fixed at the ends and subjected to
qd L a longitudinal force F.
C
, It is necessary to determine the
a
X normal force distribution and to draw the
RL Fl | ke diagram Ny(x).
o Note. Two reactions of supports R and
11 .
N, ! T , Rg cannot be determined from one
kN ) . A
\"{/ ath equation of equilibrium
(0] = ¢ z
a " F =0=RA+RB—F,
Fa+b M X
therefore the system is singly statically
Fig. 22 indeterminate.

It is necessary to have one more

equation. It is the displacement equation (syn. equation of compatibility) which

expresses the fact that the overall length of the bar remains unchanged:

Apg =Alpc +Acg=A' + 4" =0,

where
| Nla T NIp
A== AT =X,
EA EA
In Fig. 22 it is seen that
NJ =Ry, NJ =Rp-F.
Then
Ra—F)b
RAa+( A=F) :O—>RA:FL, RBzFi,
EA EA a+b a+b
NL()=F 2, NY -2

a+b a+b’
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I.e. the static indeterminacy is opened. Corresponding graph of normal force
distribution is shown in Fig. 22.
Example 4 Problem of thermal stresses

Given: |, A, o, E, 4At°, where o is linear

/ —————— A0 ] B coefficient of material thermal expansion, At° is
[ change in the rod temperature.
It is necessary to determine internal force N, in
L — ﬁ the rod when it is heated by At°.

(1) The equation of equilibrium
ZFX:O—)RA—RBIO, RA:RB;
(2) The displacement equation must express the fact that the length of the bar

remains unchanged:
Al = A(Ny, 4t) = AI(Ny ) + Al (4t) =0.
Note, that in deriving of this equation we used the superposition principle.

N

In this equation,  AlI(Ny )= A __RI;_AAI’ because Ny =—Rp.

Al(4t) = Al
Then
Rl o o
——+05tAt I =0-> RA = EAatAt .
EA

After that the diagram Nx(x) may be constructed easy. It is evident that all cross-

sections of the rod will be compressed.

Example 5 Design problem for statically indeterminate rod
Given: F =10kN, F, =40kN, F3=60kN, a=3m, b=4m, c=5m, E=2x10"Pa,
[cy]t =160MPa, [cy]C =200 MPa.
R.D.: 1) open static indeterminacy and design the graph of normal forces;

2) calculate cross-sectional area A;
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3) design the graph of acting stresses;

4) design the graph of rod cross-section displacements.
Solution

1) Calculation of normal forces in cross-sections of the rod.

Ra, Rg are unknown reactions. It is impossible to apply the method of sections and
determine normal forces without their preliminary calculation. For this, we will use:
a) equation of equilibrium: > F, =0=Rp—-F + R —F +Rg;

b) equation of segments elongations compatibility: Alag =0 or

Alpc + Alep + Alpg + Algg =0. (1)
Since  Ny(x)=+Ra, NJ(x)=+Ra—-F, N (x)=+Rp-F +F3,
N)'(V (x)=+Rp—F +F3—F, let us rewrite the compatibility equation (1) using the
equation of Hooke’s law:

N, |
A= )

Equation (1) becomes

RAC+(RA—F1)b/3+(RA—F1+F3)2b/3+(RA—F1+F3—F2)a:O.

(3)
3EA 2EA 2EA EA

After simplifying Rp =—13.5kN, i.e. originally downdirected R, must be changed on

opposite. After this, statical indeterminacy is opened since it is possible to calculate
normal forces in the portions:

I-1 O<x<c
Ny (X)=—Rpgct = —13.5kN;
-1l 0<x<b/3
Ny (X)=—Raact — L =—13.5-10=-23.5kN;
-1l 0<x<2b/3
Ny (X) =—Rpact — F + F3 =—13.5-10+ 60 = +36.5kN;

9/8/2020 2:16:39 PMW:\+MEXAHNKA MATEPVUANOB W\++HMK[ AHIMN082 LECTURES 2020\11 Strength and Rigidity of a Bar in Tension and Compression.doc



18 V. DEMENKO  MECHANICS OF MATERIALS 2020

IV-IV 0O<x<a
Ny (X)=—Rpact — FL + F3 — Fp =—13.5-10+ 60— 40 = —3.5kN.

2) Calculation of cross-sectional area A from conditions of strength.

Note, that since ultimate strength of the rod material is different in tension and
compression, we will write the conditions of strength for both most tensile and most
compressed portions.

a) for one tensile portion

oo — oIl ——N)I(” <[O'] —> A= N)I(“ = 36.5x10° =1.14x10"*m?
max = Omax = S = = =1. ,
2 2[c], 2x160x10°

b) since there are three compressed portions in this rod it is necessary to determine
preliminary the most compressed one comparing two relations

i _ Ny 235x10° 11.75x10°
2A  2A A

and
WV _ Ny  35x10°
A A

we found that second portion is critical in compression since

11.75x10° N 3.5x103
A A

In result, for the most compressed part of the rod

] I 3
P = ol = <[] > A =l = 2D g 6gg10-4 .
2A 2[c]. 2x200x10~

Comparing two values A, =0.588x10~*m?and A =1.14x10"*m? we select the larger
one: A=1.14x10"*m?

3) Calculation in actual stresses in the portions of the rod:

! 3
N 195V _s947MPa<[o],,
3A 3x1.14x10

I _
Oy =

11 3
ot 2 Mhc 259 43 07MPa<[o],
2A 2x1.14x10"
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Il 3
G)|(||:NX . 36.5x10

= " =+160MPa:[c7]t,
2A 2x1.14%x10"

v 3
olv - Nx 3510 =-30.7MPa<[o]..

A 114x107%

The results show that the rod is strong since all its parts are strong.
4) Determination of the rod elongations.
To solve this problem, we will use the following formula:

Al (x) = % =kx i.e. the elongation is the binear function of the segment length
Let us begin determining the displacements of the portions boundaries (points C, D, E)
calculating corresponding segments elongations. In this, we will use point A as the
origin. Corresponding displacements are

Rp| p N (x),kN o, (x),MPa  §(x),10° m
Z
I 3.5 30.7
A
u 1V “IV @
| sz ¥ 365 |
A A E

70.461

i 11
S \ EO= ()
24
b F3 o235
11 D " 11 160 ~1.674
' X
1 C 103.07 0.987
Rl 34
cl 1 I )
A
X
Ract
| s
g v 13.5 39.47
Ry
X

Fig. 23
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Spc =4dac =

| 3
N,C _ 13.?;10 x5 - :—0_987x10_3m,
3EA 3x2x10"x1.14x10"

I
5p.D = AIAD = AIAC + AICD =-0.987 X10_3 + %EbA =-0.987 x]_O_?’ —

3
_ 23'5110 x4 ; —__0.987x103-0.687x10 2 =-1.674x103m,
3Ix2x2x107x1.14%x10

3 N|||2b
5p.E IAlAE IAlAD +A|DE =-1.674x10" +X—

—_1674x103 +
3x2EA

3
36'5”12 x2x4 4:—1.674><10_3+2.135><103:+O.461><10_3m,
3Ix2x2x10x1.14x10

v
Spp =Apg = Alpg + Algg = +0.461x107 +¥ —_+0.461x1073 -

B 3.5><103><3
2x10M x1.14x107%

— 4+0.461x10~2 - 0.461x10~3 =0.

Note, that the elongation of AB-segment is O since it is fixed between two absolutely
rigid supports.

Example 6 Problem of assembly stresses

during ! Al
assembly

-
—-—
-

= B | h 1B [ol
7 >R
IA f el | [C A -
a . al |

assembly assembly
(a) (b)

Fig. 24

A
]
<
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=
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—
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Y
A
Y

When assembling a bar system (Fig.24) it was found that there were

inaccuracies in the length of the bars (4 is inaccuracy in the length of the first bar).
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During assembly, the bar (1) was put into place by connecting the hinges C and C' to
one point.
It is necessary to determine the forces in the bars after assembly, i.e. when the

bar axis becomes equal to AC".

We have four unknown forces R', R'', RY, R and three equations of

equilibrium, which are not enough for determining internal forces in two elastic

supporting rods (RI : R' ). Consequently, the system is singly statically indeterminate.

Suppose that after assembly the hinge C has moved downward through a distance
Al (real elongation of the first rod) and took position C", and the hinge B has moved

upward to B" (B"'B is really shortening of this rod 4l . ).

From the condition of equilibrium
SMp=0: R'2a-R''a=0, R''=2r!.

Compatibility equation is

|
Lﬁ”:@:z, (*)
A a
where
I Iyl
AlI—NI, Alll:NI | N=+RI, NI = R
EA EA
Then
A_RII |
—EA_2, %‘IR':z, AEA-R'1=2R"1 = 4RI
R"I RVI
EA

_LAEA i _24EA

5 1 5 1

RI

Ny(x)=R", N (x)=-R",
It should be noted that relation (*) connects moduli of the displacements.
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7 Examples of engineering problems solution

Example 7 Stress analysis of tubular post with round core

A solid circular steel cylinder S is encased in a hollow circular copper tube C (Figs. 25a
and 25b). The cylinder and tube are compressed between the rigid plates of a testing
machine by compressive forces P. The steel cylinder has cross-sectional area Aq and

modulus of elasticity Eg, the copper tube has area A, and modulus E, and both parts

have length L.
Determine the following quantities: (a) the compressive normal forces Ng in the steel

cylinder and N, in the copper tube; (b) the corresponding compressive stresses oy and
o and (c) the shortening ¢ of the assembly.

Solution (a) Compressive forces in the steel cylinder and copper tube. We begin by
removing the upper plate of the assembly in order to expose the compressive forces P

and P, acting on the steel cylinder and copper tube, respectively (Fig. 25c). The normal
force N, =Py is the resultant of the uniformly distributed stresses acting over the cross
section of the steel cylinder, and the normal force N, =P, is the resultant of the

stresses acting over the cross section of the copper tube.

Equation of equilibrium. A free-body diagram of the upper plate is shown in Fig. 22d.
This plate is subjected to the force P and to the unknown compressive forces P and
P. ; thus, the equation of equilibrium is

D> Fert=0, Py+P,—P=0. 1)

(b)

(a) (c)

Fig. 25 Analysis of a statically indeterminate structure
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This equation, which is the only nontrivial equilibrium equation available, contains two
unknowns. Therefore, we conclude that the structure is statically indeterminate.

Equation of compatibility. Because the end plates are rigid, the steel cylinder and
copper tube must shorten by the same amount. Denoting the shortenings of the steel

and copper parts by o5 and o, respectively, we obtain the following equation of
compatibility:

5 =0 (2)
Force-displacement relations. The changes in lengths of the cylinder and tube can be
obtained from the general equation 6 = NyL/EA. Therefore, in this example the force-

displacement relations are

P.L P.L
5S:ES , 5C:EC
sAs cAc

Substituting these relations into the equation of compatibility (Eq. 2) gives

since  P,=Ng and P.=N;. (3, 4)

PS _ PC
EsAs  EcAc

This equation gives the compatibility condition in terms of the unknown forces.

()

Solution of equations. We now solve simultaneously the equations of equilibrium and
compatibility (Egs. 1 and 5) and obtain the axial forces in the steel cylinder and copper
tube:

PS:P[ Ess j PczP( Soi j 6,7)
EsAs + EcA EsAs + EcA

These equations show that the compressive forces in the steel and copper parts are
directly proportional to their respective axial rigidities and inversely proportional to the
sum of their rigidities.

(b) Compressive stresses in the steel cylinder and copper tube. Knowing the axial

internal forces, we can now obtain the compressive stresses in the two materials:
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Ng PE, Nc PE.
GS = = ) GC = = .
As  EsAs+EA A EsAs+ECA

Note that the stresses are proportional to the moduli of elasticity of the respective

(8,9)

materials. Therefore, the "stiffer" material has the larger stress.
(c) Shortening of the assembly. The shortening & of the entire assembly can be
obtained from either Eq. (3) or Eq. (4). Thus, upon substituting the forces (from Egs. 6
and 7), we get

RL FRL PL
EsA EcAc EsA+EcA

This result shows that the shortening of the assembly is equal to the total load divided

(10)

by the sum of the stiffness of the two parts.

Example 8 Analysis of a statically indeterminate structure with absolutely
rigid element

A horizontal rigid bar AB is pinned at end A and supported by two wires (CD and EF)
at points D and F (Fig. 26a). A vertical load P acts at end B of the bar. The bar has

length 3b and wires CD and EF have lengths Ly and L,, respectively. Also, wire CD
has diameter d; and modulus of elasticity E;, wire EF has diameter d, and modulus
E,.

(a) Obtain formulas for the allowable load P if the allowable stresses in wires CD and

EF, respectively, are o; and o . (Disregard the weight of the bar itself).
(b) Calculate the allowable load P for the following conditions: wire CD is made of

aluminum with modulus E; =72GPa, diameter d; =4.0mm, and length Ly =0.40m.
Wire EF is made of magnesium with modulus E, =45GPa, diameter d, =3.0mm, and
length L, =0.30m. The allowable stresses in the aluminum and magnesium wires are

o1 =200MPa and o, =175MPa, respectively.
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o Solution Equations of equilibrium. We

L E_\L begin the analysis by drawing a free-

/(1)) D_ i - ’ BI body diagram of bar AB (Fig. 26b). In

ey b b this diagram T; and T, are the unknown

| (a) Yp tensile forces in the wires and Ry and

Ry 14 D+T1 F*Tz p Ry are the horizontal and vertical
—3 | o) g ) 2]

i components of the reaction at the

%RV (b) F support. The structure is statically

A D81 Fg; B indeterminate because there are four

2 unknown forces (Ty, To, Ry, and Ry)

(c) B but only three independent equations of

Fig. 26 Analysis of a statically indeterminate equilibrium. Taking moments about point
structure . . .
A (with counterclockwise moments being

positive) yields
2. Ma=0,
Tb+T5(2b)-P(3b)=0 or T;+2T,=3P. (1)

The other two equations, obtained by summing forces in the horizontal direction and
summing forces in the vertical direction, are of no benefit in finding T; and T .

Equation of compatibility. To obtain an equation pertaining to the displacements, we
observe that the load P causes bar AB to rotate about the pin support at A, thereby
stretching the wires. The resulting displacements are shown in the displacement
diagram of Fig. 26¢, where line AB represents the original position of the rigid bar and

line AB' represents the rotated position. The displacements 6, and &, are the

elongations of the wires. Because these displacements are very small, the bar rotates
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through a very small angle (shown highly exaggerated in the figure) and we can make
calculations on the assumption that points D, F, and B move vertically downward
(instead of moving along the arcs of circles).

Because the horizontal distances AD and DF are equal, we obtain the following

geometric relationship between the elongations:
5y =285,. ()

Equation (2) is the equation of compatibility.
Force-displacement relations. Since the wires behave in a linearly elastic manner, their

elongations can be expressed in terms of the unknown forces T; and T, by means of
the following expressions:

T L ToL
51: 11’ 52: 22’
B A EoA

in which A and A, are the cross-sectional areas of wires CD and EF, respectively; that

IS,

For convenience in writing equations, let us introduce the following notation for

the flexibilities of the wires:

f, = b fy = L (3,4)
EiA EoAy
Then the force-displacement relations become
& =Mh, & =1, (5)

Substituting these expressions into the equation of compatibility (Eq. 1) gives
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foT, =2fTy. (6)

We now have expressed the equation of compatibility in terms of the unknown forces.
Solution of equations. The equation of equilibrium (Eg.1) and the equation of

compatibility (Eq. 6) each contain the forces T; and T, as unknown quantities. Solving

the two equations simultaneously yields

3f,P 61,P
To = :
4f1+ f2

_4f1+ f2’

1 (7, 8)

Knowing the forces T; and T,, we can easily find the elongations of the wires from the

force-displacement relations.
(a) Allowable load P. Now that the statically indeterminate analysis is completed and
the forces in the wires are known, we can determine the permissible value of the load P.

The stress o7 in wire CD and the stress o, in wire EF are readily obtained from the

forces (Egs. 7 and 8):

T, 3P f T 6P f
A A4+ 1) Ay Al4fi+ 1)

From the first of these equations we solve for the permissible force P}, based upon the

allowable stress oy in the aluminum wire:

4f, + f
Fi:o-lAl( 1+ 2). (11)
31,

Similarly, from the second equation we get the permissible force P, based upon the

allowable stress o in the magnesium wire:

o _ 2R (41 + o)
- 6 '

(12)
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The smaller of these two values of the load is the maximum allowable load [P].
(b) Numerical calculations for the allowable load. Using the given data and the

preceding equations, we obtain following numerical values:

B 7zd12 7r(4.0mm)2

2
= =12.57mm*,
A 4 4
7d? 7r(3.0mm)2 9
Ay ="2 —7.069mm*~,
4 4
| 0.40m —0.4420x10m/N |

f = =
Y"EA  (726Pa)(12.57mm?)

L, 0.30m
f, = =

_ _ . —0.9431x10~%m/N..
ExA>  (45GPa)(7.069mm*~)

Also, the allowable stresses are

0'12200 MPa, (o)) =175MPa.

Therefore, substituting into Egs. (11) and (12) gives

R =2.41kN, P,=126kN.

The first result is based upon the allowable stress o7 in the aluminum wire and the
second is based upon the allowable stress o, the magnesium wire. The allowable load
Is the smaller of the two values:

[P]=1.26 kN.

At this load the stress in the magnesium is 175 MPa (the allowable stress) and the stress

in the aluminum is (1.26/2.41)(200MPa) =105MPa. As expected, this stress is less

than the allowable stress of 200 MPa.
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Example 9 Calculation of internal forces in statically indeterminate rod

system with absolutely rigid element

A 3
D!
D!I
BII
(c)
D B
kg
Dﬂ 81 az 82
e B
OCB
D! B!
(d) (e)

Fig. 27 Analysis of a statically indeterminate

structure

summing moments about point A:

A horizontal rigid bar ADB of length
2b is pinned to a support at A and held
by two inclined wires CD and CB
(Fig. 27a). The wires are attached to a
support at point C, which is located at
a vertical distance b above point A.
Both wires are made of the same
material and have the same diameter.

Determine the tensile forces T; and T,

in wires CD and CB, respectively, due
to the vertical load P acting at the end
of the bar.

Solution Equation of equilibrium. A
free-body diagram of bar AB (Fig. 24b)
shows that there are four unknown

forces, namely, the tensile forces Ty
and T, in the wires and the two
reaction components (Ry and Ry ) at

the pin support. Since there are only

three  independent equations of
equilibrium, the structure is singly
statically indeterminate. We can obtain
an equation of equilibrium containing

only T; and T, as unknowns by

2Ma=0,
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bT]_Sin 0{1+2bT23in (049) —2bP =0 (1)

in which oq and «, are the angles between the wires and the bar.

From the geometry of the structure (Fig. 27a) we see that

singy = A_Db 1
1"cp b2 V2
: CA b 1
Sinap = = = : 2
2 CB b\/g Jg (2)
Substituting these values into Eqg. (1) and rearranging, we get
T, 2T,
L1 2-_2p 3
NG 3)

which is the final form of the equation of equilibrium.

Equation of compatibility. An equation of compatibility can be obtained by considering
the displacements of points D and B. For this purpose, we draw the displacement
diagram shown in Fig. 27c. Line AB represents the original position of bar AB and line
AB' represents the rotated position. Since the angle of rotation of bar AB is very small,

the displacements &, and o, of points D and B, respectively, can be treated as small

vertical displacements. Because the distance from A to B is twice the distance from A to

D, we see that

5y, =28 (4)
which is the equation of compatibility.
Force-displacement relations. Now we need to relate the forces T; and T, in the wires
to the vertical displacements &, and o, at points D and B, respectively. Let us begin by

considering wire CD, which rotates from its original position CD to its final position
CD' (Fig. 27c). We draw a perpendicular DD" from point D to line CD'. Because the
displacements and angle changes are very small, we can assume that the distance CD"
is equal in length to the distance CD. (That is, a circular arc DD" with point C as its

center is indistinguishable from the perpendicular line DD".)
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The displacement triangle DD'D" in Fig. 27c is redrawn for clarity in Fig. 27d.
The distance DD' is the vertical displacement &; of point D and the distance D'D" is the

elongation 6. of wire CD. The angle ¢ appears in the triangle as angle DD'D". To

prove this, we note that line DD' is perpendicular to line AB, and line DD" is
perpendicular to line CD (for small angles of rotation). Therefore, from the

displacement triangle DD'D" we get
5CD =§_|_Sina1=%. (5)

This equation provides the geometric relation between the elongation of wire CD and
the downward displacement of point D.

The elongation & of wire CD is related to the force in the wire by the following

force-displacement relation:

dcp = = (6)

in which Lcp =b+/2, is the length of wire CD. Combining the last two equations for

ocp, We get

_ M
q=22 ™

In a similar manner, we can relate the displacement &, to the elongation ocg of wire

CB (see Fig. 27e) and obtain

5bT,
Oy =—"1°2¢ 8
2= Ep (8)

Equations (7) and (8) are the force-displacement relations that give the displacements

of points D and B in terms of the unknown forces in the wires.

Substituting 61 and &, from the force-displacement relations into the equation of
compatibility (Eq. 4) yields
STy =4Tq 9)
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which is the equation of compatibility in terms of the unknown forces.
Solution of equations. As the final step in this example we solve simultaneously the

equation of equilibrium (Eqg. 3) and the equation of compatibility (Eq. 9). The results

are
lewzmoep, T, :ﬂ:mzsp. (10, 11)
8«/§+5\/§ S

Thus, we have found the tensile forces in the wires by solving the statically
indeterminate structure.

Knowing the tensile forces in the wires, we can easily determine all other force

and displacement quantities. For instance, the reactions at support A can be found from
equilibrium equations and the displacements 6; and &, can be found from Egs. (7) and
(8).
Note: In this example, the final solution for the forces does not involve the axial
rigidity EA of the wires. (This fact is readily apparent in a symbolic solution but might
escape notice in a numerical solution.) The reason is that both wires have the same
axial rigidity, and therefore EA cancels out of the solution. If each wire had a different
rigidity, the rigidities would appear in the final expressions.

Example 10 Thermal effects in statically indeterminate rod systems
A sleeve in the form of a circular tube of length L is placed around a bolt and fitted
between washers at each end (Fig. 28a). The nut is then turned until it is just snug. The
sleeve and bolt are made of different materials and have different cross-sectional areas.
(a) If the temperature of the entire assembly is raised by an amount AT , what stresses

os and oy, are developed in the sleeve and bolt, respectively? (b) What is the increase

o in the length L of the sleeve and bolt? (Assume that the coefficient of thermal

expansion oy of the sleeve is greater than the coefficient ¢, of the bolt).

Solution Because the sleeve and bolt are of different materials, they will elongate by
different amounts when heated and allowed to expand freely. However, when they are

held together by the assembly, free expansion cannot occur and thermal stresses are
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developed in both materials. To find these stresses, we use the same concepts as in any
statically indeterminate analysis — equilibrium equations, compatibility equations, and
displacement relations. However, we cannot formulate these equations until we
disassemble the structure.

A simple way to cut the structure is to remove the head of the bolt, thereby allowing the
sleeve and bolt to expand freely under the temperature change AT (Fig. 28b). The

resulting elongations of the sleeve and bolt are denoted &, and o5, respectively, and the

corresponding temperature-displacement relations are
A =as(AT)L, Oy =ap(4T)L. (1)

Since a4 is greater than oy, the elongation & is greater than J5, as shown in Fig. 28b.

The axial forces in the sleeve and bolt must be such that they shorten the sleeve
and stretch the bolt until the final lengths of the sleeve and bolt are the same. These

forces are shown in Fig. 28c, where Py denotes the compressive force in the sleeve and
R, denotes the tensile force in the bolt. The corresponding shortening o3 of the sleeve
and elongation &, of the bolt are
53: PSL ’ 54:i (2)
EsAs Ep Ay

in which EgAg and E,A, are the respective axial rigidities. Equations (2) are the load-

displacement relations.

Now we can write an equation of compatibility expressing the fact that the final
elongation ¢ is the same for both the sleeve and the bolt. The elongation of the sleeve
is 61 — o3 and of the bolt is 55 + d,; therefore,

S=8-33=05,+5. (3)

Substituting the temperature-displacement and load-displacement relations (Egs. 1 and
2) into this equation gives

5 = oty (AT)L - EPS"

AL
=ap(4T)L 4
A b (4T) +Eb9 (4)
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from which we get

PL  RL B
EsSAs + Eo Ay =ag(AT)L —ap(4T)L, (5)

which is the final form of the compatibility equation. Note that it contains the forces Py

and R, as unknowns.

An equation of equilibrium is obtained from Fig. 28c, which is a free-body
diagram of the part of the assembly remaining after the head of the bolt is removed.

Summing forces in the horizontal direction gives
P=Hh, (6)

which expresses the obvious fact that the compressive force in the sleeve is equal to the

tensile force in the bolt.
Nut Washer Sleeve Bolt head

(a)

: s B I l
(b) 5 L; |
i |

(©)

Fig. 28 Sleeve and bolt assembly with uniform temperature increase AT
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We now solve simultaneously the equations of compatibility and equilibrium

(Egs. 5 and 6) and obtain the axial forces in the sleeve and bolt:

(as _ab)(AT)EsAsEb'Ab . (7)
EsAs +EpAy

When deriving this equation, we assumed that the temperature increased and that the

Ps=h =

coefficient oy was greater than the coefficient . Under these conditions, P is the
compressive force in the sleeve and R, is the tensile force in the bolt.

The results will be quite different if the temperature increases but the coefficient
as 1s less than the coefficient ¢, . Under these conditions, a gap will open between the
bolt head and the sleeve and there will be no stresses in either part of the assembly.

(a) Stresses in the sleeve and bolt. Expressions for the stresses o and oy, in the sleeve
and bolt, respectively, are obtained by dividing the corresponding forces by the

appropriate areas:

& (as _ab)(AT)EsEbAb ’ (8)
A EsAs +EpAy
R

(s —ap (AT ) EsEpAs |
Ay EsAs + EpAy

Under the assumed conditions, the stress oy in the sleeve is compressive and the stress

9)

o}, in the bolt is tensile. It is interesting to note that these stresses are independent of
the length of the assembly and their magnitudes are inversely proportional to their
respective areas (that is, o5/ oy = Ay 1 AS).

(b) Increase in length of the sleeve and bolt. The elongation ¢ of the assembly can be

found by substituting either Py or B, from Eq. (7) into Eq. (4), yielding

EsAs + Ep/p

With the preceding formulas available, we can readily calculate the forces, stresses, and

displacements of the assembly for any given set of numerical data. Note: As a partial
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check on the results, we can see if Egs. (7), (8), and (10) reduce to known values in
simplified cases. For instance, suppose that the bolt is rigid and therefore unaffected by

temperature changes. We can represent this situation by setting o, =0 and letting Ej

become infinitely large, thereby creating an assembly in which the sleeve is held

between rigid supports. Substituting the stated values of o} and Ep into Egs. (7), (8),
and (10), we find
Py =EsAa(AT), og=Esas(4AT), 6=0.
As a second special case, suppose that the sleeve and bolt are made of the same
material. Then both parts will expand freely and will lengthen the same amount when
the temperature changes. No forces or stresses will be developed. To see if the derived
equations predict this behavior, we will assume that both parts have properties «, E,
and A. Substituting these values into Egs. (7 — 10) we get
P,=R =0, o5=0,=0, Jd=a(dl)L,

which are the expected results.

As a third special case, suppose we remove the sleeve so that only the bolt

remains. The bolt is then free to expand and no forces or stresses will develop. We can

represent this case by setting A; =0 in Egs. (7), (9), and (10), which then gives
R =0, op,=0, S=ap(4l)L.

8 Examples of statically indeterminate rod systems

IA i c—2L *dZI
—

N | B~
N | B

A

! P w
‘b b 2b

y

Fig. 29 Fig. 30
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37

Fig. 32

Fig. 35 Fig. 36
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Course
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HOME PROBLEM 7

Design problem for statically indeterminate rod in tension-compression

Name of student:
Group:

Advisor:

Data of submission:

Mark:




National aerospace university

D“Khatfkiv tAVfiain" lflzsftitute’;h General method in statically

epartment o1 aircrait streng - .

Subject: mechanics of materials |ndEterm|nate rOdS and rOd SyStem

Document: home problem . H H

Topic: Stresses and elongations in statically indeterminate rods in analy_SIS IS 1N flndlng Complement_ary

fensin Sunpreion equations of deformation

Full name of the student, group e ey - . .
compatibility to determine internal

Variant: | Complexity: 1 forces in the rod. The number of

compatibility equations depends on

M . ' degree of static indeterminacy.
, — 3F In our case, degree of static
R LY T P s |indeterminacy k=m-n, where
x m=2 — total number of constraints
et | 3] N —¥ (reactions), n=1 — number of
S i equations of equilibrium.

After substituting

k=2-1=1.
Given: [o], =160 MPa; [o]. =200 MPa; | . . h d . . |
P,= 10KN; P, = 50kN, P, =80kN; C_onc usion: the rod is singly
a=3mb=4mc=5m. statically indeterminate.
Goal: H : :
1) open static indeterminacy and design the graph on normal forces; Due to aXIaI Ioadlng’ Only aXIaI
2) calculate cross-sectional area F; i i
3) calculate acting stresses in the portions of the rod and design the graph reactions RA and RE take place In
of their distribution along the length of the rod; this prob'em_

4) design the graph of the rod elongations;
5) estimate stress state in critical cross-section.

Full name of the lecturer signature

Mark: Mark:

Solution
1. Calculating the support reactions R, and Rg (see Fig. 1).
(a) from condition of equilibrium > F, =0. Direction to the right is assumed to be
positive (see Fig. 1).
> Fy=0=Rg —P4—P3+ P, +Rp =0.
(b) designing the compatibility equation.
It is evident that this deformable rod has two immobile cross-sections A and E. Therefore
total elongation of the rod is zero, i.e. Alpyg =0
Alpg =Alpg +Alge + Alcp +Alpg .
The elongations of particular portions AB, BC, CD, DE are generated by corresponding
normal forces. According to the method of sections the equations of normal forces are the
following:

I-1 (O<x<c) -1l (O<x<al4)

NJ (X)=+Rp. NI (x) =+Rp + P, — ;.
-1 (0<x<Db) IV-IV (0<x<3a/4)

Ny (X)=+Ra +Py. NIV (X)=+Rp+ P, — Py — Py,
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Corresponding elongations of the portions are:

| [ III(X)( j
e NEO© NP .
ABTT3aE 0 TBCT oA TP A
3
N)lv(x)(élaj
AIDE: AE ;
5 3 9
_)gRA+2(RA+P2)+Z(RA+P2_P3)+Z(RA+PZ_P3_P4):O_>
3360

—>80RA =—60P; + 36P; + 27P; =—600 +1800 + 2160 = 3360 — Rp = = = +42 kN.
80

"+" sign of Rp reaction supports the conclusion that R, reaction is actually determined to
the right. After Rp finding, static indeterminacy is opened and normal forces may be

determined.
2. Calculating the normal forces in an arbitrary cross-section of each portion.

NJ (X) =Rp =+42 kN,
NY (X) =+Rp + Py =+42+10=52 kN,
NI (x) =Rp+ P, — P3 =+42+10-50=+2 kN,

NXV (X)=Rp+P, —P;—P; =+42+10-50-80=-78 KkN.
The graph of normal force distribution is shown on Fig. 1.

3. Calculating the cross-sectional area A from condition of strength in critical portion.
Due to [o] +#[o]., it will be necessary to design two conditions of strength — for critically
tensile and critically compressed portions. In our case,

(a) for three tensile portions II-11 portion is evidently critical after comparing the relations
42 52 d —. That is why
3A° 2A A
Il Il 3
Cmaxt = Oh = N ( X) o] s A= ) 52107y 6o, 1074 m2;

[G] . 2x160x10°
(b) for compressed portion:
‘N (X)‘ NV (x)  78x10°
c —‘ ‘ <[c] - A =% =
omaxc| A lol. > A [c].  200x10°

For future calculating, we should select larger of two cross-sectional areas which will
satisfy both conditions of strength:

Amax = A. =3.9x107%

4. Calculating the acting stresses.
Ny(x)  42x10°
3Amax  3x3.9x1074
oll Ny () 52x108
2 Amax 2><E’>.9><10_4

—=3.9%x10* m?.

o) = =+35.9 MPa,

=+66.7 MPa,
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S N)I(“(X) _ +2x10°
* " Amx 3.9x107%

v NY(x) —78x10°
GX = =

=+5.1 MPa,

A Taaugd - 200OMPa.

Graph of stress distribution is shown on Fig. 1.
5. Analysis of stress state type in an arbitrary point K of critical section.

point K .
AV oy =200.0 MPa
. 4 oy = o3 =—200 MPa,
________ Remaining principal stresses are:
’ 01=092 = O
Fig. 2

Conclusion: stress state is uniaxial, deformation is tension.

6. Drawing the graph of displacements.
E point is selected as the origin. The displacements of particular points are designated by
5. Therefore, g =0. Due to Hook's law, the displacement function is linear, that is why

the displacements of each portion tip are numerically equal to the portion elongation or
shortening. Elasticity modulus value E = 2x10M Pa is used in this calculation.

\Y% B 3
5p = Algp = Nx (X3 _ 78X1110 x3x3 7=-225x10 m=-2.25mm.
A4EAmax  4x2x10x3.9x10™
Il
Sc = Alee = Alep + Alpe =—22.5x10~4 + N K3 _ 59 51074,
ax

3
2 ﬁo x3 = —225x107% +0.19%x10™% = —22.31x10 4 m=-2.23mm.
4x2x10"x3.9x10"
1
g =Algg = Algc + Alcg =—22.31x107% N OB _ 55 3151074+
2E Ay

3
+ >2 >1<110 x4 1= —22.31x10* +13.33x10™% =-8.98x10™* m =-0.898 mm .
2x2x107"x3.9x10"

I
5p = Alga = Algg + Algs = -8.98x1074 +;\'Exﬂ __8.98x1074 +
ax

42><103><5

3-2x10M1x3.9x1074 o _ _
Let us estimate the error of calculating, since really the displacement of A point must be

zero according to compatibility equation:
—4
A =%xloo%:0.ll%.
8.97x10° o
Due to negligibly little error, the calculation is true.

The graph of displacements is also shown on Fig. 1.

—_8.98x104+8.97x10 4 =0.01x10"% m.
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