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LECTURE 11   Strength and Rigidity of a Bar in Tension and Compression 
 

Tension and compression are the types of simple deformation in which only one 

internal force factor, a normal force xN , appears in the cross section of a bar: 0xN  , 

0z y x y zQ Q M M M     . The examples of tension-compression deformation of 

structural elements are represented in Figs 1–16. 
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Fig. 1   The vertical load P acting on the wheel 

compresses its vertical axis 

Fig. 2   A reinforced concrete slab is lifted by 

4 tensile cables 
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Fig. 3   The truss ABCDEFGH is part of a wood 

bridge. The truss members are hinged 

Fig. 4   A pump moves a piston up and down 

in a deep water well. Pump rod is periodically 

tensile or compressed 
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Fig. 5   The piston in an engine is attached to a 

connecting rod AB, which intern is connected to 

a crank arm BC. Both elements are compressed 

or tensile 

Fig. 6   A car is pulled slowly up a steep 

inclined track by a steel cable which is tensile 

  

Fig. 7   Cylinder with piston and clamping tensile 

bolts 

Fig. 8   A cable and strut assembly ABC 

supports a vertical load P. The cable and 

strut are in tension-compression. 

 
 

Fig. 9   A vertical load P is supported by the 

truss ABCD which are pinned connected and 

Fig. 10   A bungee cord is attached to pegs 
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therefore are tensile or compressed and pulled at its midpoint by a force P 

 

 

Fig. 11   A tubular post is guyed by two cables 

fitted with turnbuckles. The cables are tightened 

by rotating the turnbuckles 

Fig. 12   Lifeboat hanges from two ship’s 

davits. Cables attached to the lifeboat pass 

over the pulleys and are really tensile 

  

Fig. 13   An aluminum bar AB is attached to a 

support by a pin and is tensile by a P force 

Fig. 14   A ship’s spar is attached at the base 

of a must by a pin connection. It is 

compressed by a P force 
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A C

B

1.5 m

 

Fig. 15   A rigid bar AB is supported by two 

cables CE and BD which are tensile under P 

loading 

Fig. 16   A steel wire ABC supporting a lamp 

is tensile 

1   Hypothesis of Plane Sections 

If before loading the ends of the segments (left points a, c, e and also right ones 

b, d, f) (see Fig. 15) are situated at the planes A and B, then after loading they also will 

be situated at the planes, accordingly, 'A  and 'B  (left points 'a , 'c , 'e  and also right 

ones b , d  , f ). This fact is named as hypothesis of plane sections, i.e. 'A  A and 

'B  B. It is accepted as fundamental and confirmed by experimental tests. 

Note the experimentally proven fact that absolute elongations for all elementary 

segments (ab, cd, ef,...) taken in the portion dx are the same 

ab cd ef dx      ,         and strains x
dx

const
dx


   ,   (1) 

 

Fig.17 
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i.e. the state of strain is homogeneous over the cross-section of loaded bar. 

2   Calculation of Stresses in Tension-Compression 

It was mentioned above, that relation between normal force xN  and normal 

stress x  is 

x x

A

N dA  .     (2) 

According to Hooke's law 

x xE  ,      (3) 

( E const ) and taking into account the expression (1), we have 

x x x x

A

N E dA E A A     . 

Then 

x
x

N

A
  .      (4) 

As it is seen from expression (4) the normal stresses in tension (or compression) 

are distributed uniformly over the cross-section of a rod. The formula (4) means, that 

to find acting stresses in the cross-section it is necessary to know from normal force 

diagram the value of corresponding normal force in the cross-section and also cross-

sectional area of the rod. 

3   Condition of Strength in Tension-Compression 

To estimate the strength of the bar in tension and compression, it is necessary to 

create the condition of strength which states that the maximum stress max  in the 

bar must not exceed the allowable stress of the bar material   : 

 maxt t
  ,    and     maxc c

  ,    where   (5) 

 t  – allowable stress in tension;  c  – allowable stress in compression. 
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The section of the bar in which the stress max  acts is called the critical section. 

Noting that 

max
max

xN

A


 
  
 

     (6) 

and following the condition of strength 

 max
max

xN

A
 

 
  
 

,    (7) 

it is possible to solve three practical problems as follows: 

(1) check the strength of a bar for the specified load and cross-sectional area 

using condition 

 max      or     max
max

xN

A
 

 
  
 

;   (8) 

(2) determine the cross-sectional area A for the specified load and allowable 

stress   : 

 xA N  ;     (9) 

(3) determine the allowable load on a bar for specified cross-sectional area and 

allowable stress taking into account that 

   xN A  ,     (10) 

where  xN  – allowable normal force. 

4   Determination of Strains 

According to expression (3)    x xE  . 

Replace x  by xN A  and x  by 
dx

dx


 (see Fig. 17). We obtain then 

xN dx
dx

EA
  .     (11) 
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The total elongation of the bar along the length l is 

x

l l

N dx
dx

EA
       or    

0

l
xN dx

l
EA

   .   (12) 

When the bar is loaded at the ends of portions only, then normal force xN F  is 

independent of x. If in addition, the bar has constant cross-sectional area A, we obtain 

from expression (12): 

xN l
l

EA
  .     (13) 

For stepped bar total elongation will be as follows: 

1 1

i
n n

x i
i

i ii i

N l
l l

E A
 

 

   ,    (14) 

where i is number of portion. 

Internal loads are not the only sources of stresses and strains in a structure. 

Changes in temperature produce expansion or contraction of the material, resulting in 

thermal strains and thermal stresses. A simple illustration of thermal expansion is 

shown in Fig. 18, where the block of material is unrestrained and therefore free to 

expand. When the block is heated, 

every element of the material undergoes 

thermal strains in all directions, and 

consequently the dimensions of the block 

increase. If we take corner A as a fixed 

reference point and let side AB maintain 

its original alignment, the block will have 

the shape shown by the dashed lines. 

For most structural materials, 

thermal strains is proportional to the temperature change. In solving many practical 

problems, elongations due to temperature effects should be taken into account as well 

 

Fig. 18   Block of material subjected to an 

increase in temperature 
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as elongations resulting from stress  . In this case the method of superposition is 

used and total elongation may be written as the sum: 

 ,    x
t

N l
l N t t l

EA
    ,    (15) 

where t  is the linear coefficient of thermal expansion of the material; t  is a 

change of temperature. 

5   Condition of Rigidity in Tension-Compression 

(a) in tension 

 max
max

xN l
l l

EA
 

 
  
 

;    (16) 

(b) in compression 

 max
max

| |xN l
l l

EA
 

 
  
 

,    (17) 

where  l  is the allowable elongation. 

Example 1   Stresses and elongations in statically determinate rod in tension-

compression. 

Given: 1 10F kN, 2 40F kN, 3 60F kN, 3a m, 4b m, 5c m, 112 10 E Pa, 

42 10 A m
2
. 

R.D.: 1) calculate normal forces in the rod cross-sections and design the graph of their 

distribution along the rod length; 

2) calculate acting stresses in the rod cross-sections and design the graph of their 

distribution along the rod length; 

3) draw the graph of the rod cross-section displacements. 

Solution 

1) Calculating the normal forces in cross-sections of the rod using the method of 

section: 
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I–I    0 x c   

  0I
xN x  ; 

II–II    0 /3x b   

  1 10   II
xN x F kN; 

III–III    0 2 /3x b   

  1 3 10 60 50       III
xN x F F kN; 

IV–IV    0 x a   

  1 3 2 10 60 40 10         IV
xN x F F F kN. 

2) Calculating the stresses in cross-sections of the rod: 

I–I    0 x c   

  0I
x x  ; 

II–II    0 /3x b   

 
  3

4

10 10
25

2 2 2 10


    
 

II
II x
x

N x
x

A
 MPa; 

III–III    0 2 /3x b   

 
  3

4

50 10
125

2 2 2 10


    
 

III
III x
x

N x
x

A
 MPa; 

IV–IV    0 x a   

 
  3

4

10 10
50

2 10


    


IV
IV x
x

N x
x

A
 MPa. 

3) Determination of the rod elongations. 

To solve this problem, we will use the following formula:   xN x
l x kx

EA
   . Let us 

begin determining the displacements of the portions boundaries (points E, D, C, A) 
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calculating corresponding segments elongations. In this, we will use point B as the 

origin. Corresponding displacements are 

 

Fig. 19 

3
3

. 11 4

10 10 3
0.75 10

2 10 2 10




 
      

  

IV
x

p E BE
N a

l
EA

  m. 

3 3
.

2
0.75 10 0.75 10

3 2

           


III
x

p D BD BE ED
N b

l l l
EA

   

3
3 3 3

11 4

50 10 2 4
0.75 10 1.667 10 2.417 10

3 2 2 10 2 10

  


  
        

    
m. 

3 3
. 2.417 10 2.417 10

3 2

           


II
x

p C BC BD DC
N b

l l l
EA

   

3
3 3 3

11 4

10 10 4
2.417 10 0.167 10 2.25 10

3 2 2 10 2 10

 


 
        

    
m. 
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3 3 3
. 2.25 10 2.25 10 0 2.25 10

3

               
I
x

p A BA BC CA
N c

l l l
EA

    m. 

Note: “+” sign of the point displacement means the positive elongation of the 

corresponding segment, i.e. down directed displacement of the point. In our example, 

all cross-sections move downward. 

Example 2   Calculation of allowable load for rod system 

The contraption shown in Fig. 20a consists of a horizontal beam ABC supported by two 

vertical bars BD and CE. Bar CE is pinned at both ends but bar BD is fixed to the 

foundation at its lower end. The distance from A to B is 450 mm and from B to C is 

225 mm. Bars BD and CE have lengths of 480 mm and 600 mm, respectively, and their 

cross-sectional areas are 1020 mm
2
 and 520 mm

2
, respectively. The bars are made of 

steel having a modulus of elasticity 205E GPa. Assuming that beam ABC is rigid, 

find the maximum allowable load maxP  if the displacement of point A is limited to 

1.0 mm. 

Solution To find the displacement of point A, we need to know the displacements of 

points B and C. Therefore, we must find the changes in lengths of bars BD and CE, 

using the general equation / NL EA . We begin by finding the forces in the bars from 

a free-body diagram of the beam (Fig. 20b). Because bar CE is pinned at both ends, it is 

a "two-force" member and transmits only a vertical force CEF  to the beam. However, 

bar BD can transmit both a vertical and a horizontal force. From equilibrium of beam 

ABC in the horizontal direction, we see that the horizontal force vanishes. 

Two additional equations of equilibrium enable us to express the forces BDF  and CEF  

in terms of the load P. Thus, by taking moments about point B and then summing 

forces in the vertical direction, we find 

2CEF P     and    3BDF P .    (1) 

Note that the force CEF  acts downward on bar ABC and the force BDF  acts upward. 

Therefore, member CE is in tension and member BD is in compression. 

The shortening of member BD is 
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6
2

(3 )(480 mm)
6.887 10 mm

(205 GPa)(1020 mm )

   BD BD
BD

BD

F L P
P

EA
    (P = newtons) (2) 

Note that the shortening BD  is expressed in millimeters provided the load P is 

expressed in newtons. Similarly, the elongation of member CE is 

6
2

(2 )(600 mm)
11.26 10 mm

(205 GPa)(520 mm )

CE CE
CE

CE

F L P
P

EA
        (P = newtons) (3) 

Again, the displacement is expressed in millimeters provided the load P is expressed in 

newtons. Knowing the changes in lengths of the two bars, we can now find the 

displacement of point A.  

A diagram of displacements compatibility showing the relative positions of points A, 

B, and C is sketched in Fig. 20c. Line ABC represents the original alignment of the 

three points. After the load P is applied, member BD shortens by the amount BD  and 

point B moves to B'. Also, member CE elongates by the amount CE  and point C 

moves to C'. Because the beam ABC is assumed to be rigid, points A', B', and C' lie on a 

straight line. 

For clarity, the displacements are highly exaggerated in the diagram. In reality, line 

ABC rotates through a very small angle to its new position A'B'C'. 

Using similar triangles, we can now find the relationships between the 

displacements at points A, B, and C. From triangles A'A''C' and B'B"C' we get 

A A B B

A C B C

   


   
    or    

450 225 225

A CE BD CE    



  (4) 

in which all terms are expressed in millimeters. Substituting for BD  and CE  from 

Eqs. (2) and (3) gives 

6 6 611.26 10 6.887 10 11.26 10

450 225 225

A P P P       



. 
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Finally, we substitute for A  its limiting 

value of 1.0 mm and solve the equation for 

the load P. The result is 

max 23,200 N (or 23.2 kN)P P  . 

When the load reaches this value, the 

downward displacement at point A is 

1.0 mm. 

Note 1: Since the structure behaves in a 

linearly elastic manner, the displacements 

are proportional to the magnitude of the 

load. For instance, if the load is one-half of 

maxP , that is, if 11.6P kN, the downward 

displacement of point A is 0.5 mm. 

Note 2: To verify our assumption that line 

ABC rotates through a very small angle, we 

can calculate the angle of rotation   from 

the displacement diagram (Fig. 17c), as 

follows: 

tan
675 mm

A CEA A

A C

 


  
 

 
. (5) 

The displacement A , of point A is 1.0 mm, and the elongation CE  of bar CE is found 

from Eq. (3) by substituting 23,200P N; the result is 0.261CE mm. Therefore, 

from Eq. (5) we get 

1.0 mm 0.261mm 1.261mm
tan 0.001868

675 mm 675 mm



    

from which 0.11  . This angle is so small that if we tried to draw the displacement 

diagram to scale, we would not be able to distinguish between the original line ABC 

 

Fig. 20   Horizontal absolutely rigid beam ABC 

supported by 2 vertical bars 
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and the rotated line A'B'C'. Thus, when working with displacement diagrams, we 

usually can consider the displacements to be very small quantities, thereby simplifying 

the geometry. In this example we were able to assume that points A, B, and C moved 

only vertically, whereas if the displacements were large, we would have to consider 

that they moved along curved paths. 

6   Statically Indeterminate Rods and Rod Systems in Tension or Compression 

By a statically determinate system is meant a system for which all the 

reactions of the supports and internal force factors can be determined by means of 

equations of equilibrium. 

By a statically indeterminate system is meant a system for which the external 

reactions and all the internal force factors cannot be determined by means of the 

method of sections and equations of equilibrium. In this case, it is necessary to create 

additional equations connecting displacements of points or cross-sections, taking into 

account that displacements are connected with internal forces by Hooke’s law. These 

equations are named as compatibility equations. The method of opening of static 

indeterminacy is illustrated below. 

Example 3   Singly statically indeterminate rod (see Fig. 21) 

 

 

Fig. 21   The picture of statically indeterminate rod loaded by 

concentrated force at point C. A and B – immobile hinged 

supports 

 

The sketch of this problem is presented on Fig. 22 
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Given: F, a, b. A straight homogeneous bar 

is rigidly fixed at the ends and subjected to 

a longitudinal force F. 

It is necessary to determine the 

normal force distribution and to draw the 

diagram  xN x . 

Note. Two reactions of supports AR  and 

BR  cannot be determined from one 

equation of equilibrium 

0    x A BF R R F , 

therefore the system is singly statically 

indeterminate. 

It is necessary to have one more 

equation. It is the displacement equation (syn. equation of compatibility) which 

expresses the fact that the overall length of the bar remains unchanged: 

0    I II
AB AC CBl l l l l     , 

where 

I
I xN a

l
EA

  ,     
II

II xN b
l

EA
  . 

In Fig. 22 it is seen that 

I
x AN R ,     II

x AN R F . 

Then 

 
0AA

A
R F bR a b

R F
EA EA a b


   


,    B

a
R F

a b



, 

  


I
x

b
N x F

a b
,     



II
x

a
N F

a b
, 

 

Fig. 22 
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i.e. the static indeterminacy is opened. Corresponding graph of normal force 

distribution is shown in Fig. 22. 

Example 4   Problem of thermal stresses 

Given: l, A, t , E, t , where t  is linear 

coefficient of material thermal expansion, t  is 

change in the rod temperature. 

It is necessary to determine internal force xN  in 

the rod when it is heated by t . 

(1) The equation of equilibrium 

0 0x A BF R R    ,    A BR R ; 

(2) The displacement equation must express the fact that the length of the bar 

remains unchanged: 

( , ) ( ) ( ) 0   x xl l N t l N l t      . 

Note, that in deriving of this equation we used the superposition principle. 

In this equation,        x A
x

N l R l
l N

EA EA
 , because  x AN R . 

   tl t t l    . 

Then 

0A
t A t

R l
t l R EA t

EA
          . 

After that the diagram  xN x  may be constructed easy. It is evident that all cross-

sections of the rod will be compressed. 

Example 5    Design problem for statically indeterminate rod 

Given: 1 10F kN, 2 40F kN, 3 60F kN, 3a m, 4b m, 5c m, 112 10 E Pa, 

  160
t

 MPa,   200
c

 MPa. 

R.D.: 1) open static indeterminacy and design the graph of normal forces; 

2) calculate cross-sectional area A; 

 

Fig. 23 
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3) design the graph of acting stresses; 

4) design the graph of rod cross-section displacements. 

Solution 

1) Calculation of normal forces in cross-sections of the rod. 

AR , BR  are unknown reactions. It is impossible to apply the method of sections and 

determine normal forces without their preliminary calculation. For this, we will use: 

a) equation of equilibrium: 1 3 20x A BF R F F F R      ; 

b) equation of segments elongations compatibility: 0ABl   or 

0AC CD DE EBl l l l       .    (1) 

Since     I
x AN x R  ,      1

II
x AN x R F   ,      1 3

III
x AN x R F F    , 

  1 3 2
IV
x AN x R F F F      let us rewrite the compatibility equation (1) using the 

equation of Hooke’s law: 

xN l
l

EA
  .      (2) 

Equation (1) becomes 

     1 3 1 3 21 2 /3/3
0

3 2 2

    
   A AAA R F F b R F F F aR F bR c

EA EA EA EA
. (3) 

After simplifying 13.5 AR kN, i.e. originally downdirected AR  must be changed on 

opposite. After this, statical indeterminacy is opened since it is possible to calculate 

normal forces in the portions: 

I–I    0 x c   

  13.5   I
x AactN x R kN; 

II–II    0 /3x b   

  1 13.5 10 23.5       II
x AactN x R F kN; 

III–III    0 2 /3x b   

  1 3 13.5 10 60 36.5         III
x AactN x R F F kN; 
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IV–IV    0 x a   

  1 3 2 13.5 10 60 40 3.5           IV
x AactN x R F F F kN. 

2) Calculation of cross-sectional area A from conditions of strength. 

Note, that since ultimate strength of the rod material is different in tension and 

compression, we will write the conditions of strength for both most tensile and most 

compressed portions. 

a) for one tensile portion 

 
 

3
4

max max 6

36.5 10
1.14 10

2 2 2 160 10


       

 

III III
tens III x x

tt
t t

N N
A

A
  


m

2
; 

b) since there are three compressed portions in this rod it is necessary to determine 

preliminary the most compressed one comparing two relations 

3 323.5 10 11.75 10

2 2

II
II xN

A A A


 
    

and 

33.5 10IV
IV xN

A A



   

we found that second portion is critical in compression since 

3 311.75 10 3.5 10

A A

 
 . 

In result, for the most compressed part of the rod 

 
 

3
4

max max 4

23.5 10
0.588 10

2 2 2 200 10





       

 

II II
comp II x x

cc
c c

N N
A

A
  


m

2
. 

Comparing two values 40.588 10 cA m
2
 and 41.14 10 tA m

2
 we select the larger 

one: 41.14 10 A m
2
. 

3) Calculation in actual stresses in the portions of the rod: 

 
3

4

13.5 10
39.47MPa

3 3 1.14 10


     
 

I
I x
x c

N

A
  , 

 
3

4

23.5 10
103.07MPa

2 2 1.14 10


     
 

II
II x
x c

N

A
  , 
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 
3

4

36.5 10
160MPa

2 2 1.14 10


     
 

III
III x
x t

N

A
  , 

 
V 3

4

3.5 10
30.7MPa

1.14 10


     


I
IV x
x c

N

A
  . 

The results show that the rod is strong since all its parts are strong. 

4) Determination of the rod elongations. 

To solve this problem, we will use the following formula: 

  xN x
l x kx

EA
    i.e. the elongation is the binear function of the segment length 

Let us begin determining the displacements of the portions boundaries (points C, D, E) 

calculating corresponding segments elongations. In this, we will use point A as the 

origin. Corresponding displacements are 

 
Fig. 23 
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3
3

. 11 4

13.5 10 5
0.987 10

3 3 2 10 1.14 10




 
      

   

I
x

p C AC
N c

l
EA

  m, 

3 3
. 0.987 10 0.987 10

3 2

           


II
x

p D AD AC CD
N b

l l l
EA

   

3
3 3 3

11 4

23.5 10 4
0.987 10 0.687 10 1.674 10

3 2 2 10 1.14 10

  


 
         

    
m, 

3 3
.

2
1.674 10 1.674 10

3 2

           


III
x

p E AE AD DE
N b

l l l
EA

   

3
3 3 3

11 4

36.5 10 2 4
1.674 10 2.135 10 0.461 10

3 2 2 10 1.14 10

 


  
        

    
m, 

3 3
. 0.461 10 0.461 10            

IV
x

p B AB AE EB
N a

l l l
EA

   

3
3 3

11 4

3.5 10 3
0.461 10 0.461 10 0

2 10 1.14 10

 


 
      

  
. 

Note, that the elongation of AB-segment is 0 since it is fixed between two absolutely 

rigid supports. 

Example 6   Problem of assembly stresses 

 

Fig. 24 

When assembling a bar system (Fig. 24) it was found that there were 

inaccuracies in the length of the bars (  is inaccuracy in the length of the first bar). 
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During assembly, the bar (1) was put into place by connecting the hinges C and C' to 

one point. 

It is necessary to determine the forces in the bars after assembly, i.e. when the 

bar axis becomes equal to AC''. 

We have four unknown forces IR , IIR , vR , hR  and three equations of 

equilibrium, which are not enough for determining internal forces in two elastic 

supporting rods ( IR , IIR ). Consequently, the system is singly statically indeterminate. 

Suppose that after assembly the hinge C has moved downward through a distance 

Il  (real elongation of the first rod) and took position C'', and the hinge B has moved 

upward to B'' (B'''B is really shortening of this rod IIl ). 

From the condition of equilibrium 

0 AM :    2 0 I IIR a R a ,    2II IR R . 

Compatibility equation is 

| | 2
2

| |

I

II

l a

al

 




  ,     (*) 

where 

I I
I N l

l
EA

  ;    
II II

II N l
l

EA
  ,     I IN R ,     II IIN R . 

Then 

2




I

II

R l

EA

R l

EA


,    2




I

II

EA R l

R l


,    2 4I II IEA R l R l R l    ; 

1

5

I EA
R

l


 ,    

2

5

II EA
R

l


 ; 

 I I
xN x R ,     II II

xN x R  . 

It should be noted that relation (*) connects moduli of the displacements. 
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7   Examples of engineering problems solution 

Example 7   Stress analysis of tubular post with round core 

A solid circular steel cylinder S is encased in a hollow circular copper tube C (Figs. 25a 

and 25b). The cylinder and tube are compressed between the rigid plates of a testing 

machine by compressive forces P. The steel cylinder has cross-sectional area sA  and 

modulus of elasticity sE , the copper tube has area cA  and modulus cE , and both parts 

have length L. 

Determine the following quantities: (a) the compressive normal forces sN  in the steel 

cylinder and cN  in the copper tube; (b) the corresponding compressive stresses s  and 

c  and (c) the shortening   of the assembly. 

Solution (a) Compressive forces in the steel cylinder and copper tube. We begin by 

removing the upper plate of the assembly in order to expose the compressive forces sP  

and cP  acting on the steel cylinder and copper tube, respectively (Fig. 25c). The normal 

force x sN P  is the resultant of the uniformly distributed stresses acting over the cross 

section of the steel cylinder, and the normal force c cN P  is the resultant of the 

stresses acting over the cross section of the copper tube. 

Equation of equilibrium. A free-body diagram of the upper plate is shown in Fig. 22d. 

This plate is subjected to the force P and to the unknown compressive forces sP  and 

cP ; thus, the equation of equilibrium is 

0vertF  ,    0s cP P P   .    (1) 

  
Fig. 25   Analysis of a statically indeterminate structure 
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This equation, which is the only nontrivial equilibrium equation available, contains two 

unknowns. Therefore, we conclude that the structure is statically indeterminate. 

Equation of compatibility. Because the end plates are rigid, the steel cylinder and 

copper tube must shorten by the same amount. Denoting the shortenings of the steel 

and copper parts by s  and c , respectively, we obtain the following equation of 

compatibility: 

s c        (2) 

Force-displacement relations. The changes in lengths of the cylinder and tube can be 

obtained from the general equation / xN L EA . Therefore, in this example the force-

displacement relations are 

s
s

s s

P L

E A
  ,    c

c
c c

P L

E A
      since    s sP N     and    c cP N . (3, 4) 

Substituting these relations into the equation of compatibility (Eq. 2) gives 

s c

s s c c

P P

E A E A
      (5) 

This equation gives the compatibility condition in terms of the unknown forces. 

Solution of equations. We now solve simultaneously the equations of equilibrium and 

compatibility (Eqs. 1 and 5) and obtain the axial forces in the steel cylinder and copper 

tube: 

s s
s

s s c c

E A
P P

E A E A

 
  

 
,    c c

c
s s c c

E A
P P

E A E A

 
  

 
.  (6, 7) 

These equations show that the compressive forces in the steel and copper parts are 

directly proportional to their respective axial rigidities and inversely proportional to the 

sum of their rigidities. 

(b) Compressive stresses in the steel cylinder and copper tube. Knowing the axial 

internal forces, we can now obtain the compressive stresses in the two materials: 
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s s
s

s s s c c

N PE

A E A E A
  


,    c c

c
c s s c c

N PE

A E A E A
  


.  (8, 9) 

Note that the stresses are proportional to the moduli of elasticity of the respective 

materials. Therefore, the "stiffer" material has the larger stress. 

(c) Shortening of the assembly. The shortening   of the entire assembly can be 

obtained from either Eq. (3) or Eq. (4). Thus, upon substituting the forces (from Eqs. 6 

and 7), we get 

s c

s s c c s s c c

P L P L PL

E A E A E A E A
   


    (10) 

This result shows that the shortening of the assembly is equal to the total load divided 

by the sum of the stiffness of the two parts. 

Example 8   Analysis of a statically indeterminate structure with absolutely 

rigid element  

A horizontal rigid bar AB is pinned at end A and supported by two wires (CD and EF) 

at points D and F (Fig. 26a). A vertical load P acts at end B of the bar. The bar has 

length 3b  and wires CD and EF have lengths 1L  and 2L , respectively. Also, wire CD 

has diameter 1d  and modulus of elasticity 1E , wire EF has diameter 2d  and modulus 

2E . 

(a) Obtain formulas for the allowable load P if the allowable stresses in wires CD and 

EF, respectively, are 1  and 2 . (Disregard the weight of the bar itself). 

(b) Calculate the allowable load P for the following conditions: wire CD is made of 

aluminum with modulus 1 72E GPa, diameter 1 4.0d mm, and length 1 0.40L m. 

Wire EF is made of magnesium with modulus 2 45E GPa, diameter 2 3.0d mm, and 

length 2 0.30L m. The allowable stresses in the aluminum and magnesium wires are 

1 200 MPa and 2 175 MPa, respectively. 
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Solution Equations of equilibrium. We 

begin the analysis by drawing a free-

body diagram of bar AB (Fig. 26b). In 

this diagram 1T  and 2T  are the unknown 

tensile forces in the wires and HR  and 

VR  are the horizontal and vertical 

components of the reaction at the 

support. The structure is statically 

indeterminate because there are four 

unknown forces ( 1T , 2T , HR , and VR ) 

but only three independent equations of 

equilibrium. Taking moments about point 

A (with counterclockwise moments being 

positive) yields 

0AM  , 

   1 2 2 3 0T b T b P b       or    1 22 3T T P  .  (1) 

The other two equations, obtained by summing forces in the horizontal direction and 

summing forces in the vertical direction, are of no benefit in finding 1T  and 2T . 

Equation of compatibility. To obtain an equation pertaining to the displacements, we 

observe that the load P causes bar AB to rotate about the pin support at A, thereby 

stretching the wires. The resulting displacements are shown in the displacement 

diagram of Fig. 26c, where line AB represents the original position of the rigid bar and 

line AB' represents the rotated position. The displacements 1  and 2  are the 

elongations of the wires. Because these displacements are very small, the bar rotates 

 

Fig. 26   Analysis of a statically indeterminate 

structure 



V. DEMENKO      MECHANICS OF MATERIALS    2020 
 

 

9/8/2020 2:16:39 PMW:\+МЕХАНИКА МАТЕРИАЛОВ W\++НМКД АНГЛ\082 LECTURES 2020\11 Strength and Rigidity of a Bar in Tension and Compression.doc 

26 

through a very small angle (shown highly exaggerated in the figure) and we can make 

calculations on the assumption that points D, F, and B move vertically downward 

(instead of moving along the arcs of circles). 

Because the horizontal distances AD and DF are equal, we obtain the following 

geometric relationship between the elongations: 

2 12  .      (2) 

Equation (2) is the equation of compatibility. 

Force-displacement relations. Since the wires behave in a linearly elastic manner, their 

elongations can be expressed in terms of the unknown forces 1T  and 2T  by means of 

the following expressions: 

1 1
1

1 1

T L

E A
  ,    2 2

2
2 2

T L

E A
  , 

in which 1A  and 2A  are the cross-sectional areas of wires CD and EF, respectively; that 

is, 

2
1

1
4

d
A


 ,    

2
2

2
4

d
A


 . 

For convenience in writing equations, let us introduce the following notation for 

the flexibilities of the wires: 

1
1

1 1

L
f

E A
 ,      2

2
2 2

L
f

E A
 .    (3, 4) 

Then the force-displacement relations become 

1 1 1f T  ,    2 2 2f T  .     (5) 

Substituting these expressions into the equation of compatibility (Eq. 1) gives 
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2 2 1 12f T f T .     (6) 

We now have expressed the equation of compatibility in terms of the unknown forces. 

Solution of equations. The equation of equilibrium (Eq. 1) and the equation of 

compatibility (Eq. 6) each contain the forces 1T  and 2T  as unknown quantities. Solving 

the two equations simultaneously yields 

2
1

1 2

3

4

f P
T

f f



,    1

2
1 2

6

4

f P
T

f f



.   (7, 8) 

Knowing the forces 1T  and 2T , we can easily find the elongations of the wires from the 

force-displacement relations. 

(a) Allowable load P. Now that the statically indeterminate analysis is completed and 

the forces in the wires are known, we can determine the permissible value of the load P. 

The stress 1  in wire CD and the stress 2  in wire EF are readily obtained from the 

forces (Eqs. 7 and 8): 

1 2
1

1 1 1 2

3

4

T P f

A A f f


 
   

 
,    2 1

2
2 2 1 2

6

4

T P f

A A f f


 
   

 
.  (9, 10) 

From the first of these equations we solve for the permissible force 1P , based upon the 

allowable stress 1  in the aluminum wire: 

 1 1 1 2
1

2

4

3

A f f
P

f

 
 .    (11) 

Similarly, from the second equation we get the permissible force 2P  based upon the 

allowable stress 2  in the magnesium wire: 

 2 2 1 2
2

1

4

6

A f f
P

f

 
 .    (12) 
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The smaller of these two values of the load is the maximum allowable load [P]. 

(b) Numerical calculations for the allowable load. Using the given data and the 

preceding equations, we obtain following numerical values: 

 
22

21
1

4.0mm
12.57mm

4 4

d
A


   , 

 
22

22
2

3.0mm
7.069mm

4 4

d
A


   , 

61
1 2

1 1

0.40m
0.4420 10 m/N

(72GPa)(12.57mm )

L
f

E A

    , 

62
2 2

2 2

0.30m
0.9431 10 m/N

(45GPa)(7.069mm )

L
f

E A

    . 

Also, the allowable stresses are 

1 200 MPa,    2 175 MPa. 

Therefore, substituting into Eqs. (11) and (12) gives 

1 2.41P kN,    2 1.26P kN. 

The first result is based upon the allowable stress 1  in the aluminum wire and the 

second is based upon the allowable stress 2  the magnesium wire. The allowable load 

is the smaller of the two values: 

[ ] 1.26P kN. 

At this load the stress in the magnesium is 175 MPa (the allowable stress) and the stress 

in the aluminum is (1.26/ 2.41)(200MPa) 105 MPa. As expected, this stress is less 

than the allowable stress of 200 MPa. 
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Example 9   Calculation of internal forces in statically indeterminate rod 

system with absolutely rigid element 

A horizontal rigid bar ADB of length 

2b  is pinned to a support at A and held 

by two inclined wires CD and CB 

(Fig. 27a). The wires are attached to a 

support at point C, which is located at 

a vertical distance b above point A. 

Both wires are made of the same 

material and have the same diameter. 

Determine the tensile forces 1T  and 2T  

in wires CD and CB, respectively, due 

to the vertical load P acting at the end 

of the bar. 

Solution Equation of equilibrium. A 

free-body diagram of bar AB (Fig. 24b) 

shows that there are four unknown 

forces, namely, the tensile forces 1T  

and 2T  in the wires and the two 

reaction components ( HR  and VR ) at 

the pin support. Since there are only 

three independent equations of 

equilibrium, the structure is singly 

statically indeterminate. We can obtain 

an equation of equilibrium containing 

only 1T  and 2T  as unknowns by 

summing moments about point A: 

0AM  , 

 

Fig. 27   Analysis of a statically indeterminate 

structure 
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1 1 2 2sin 2 sin 2 0  bT bT bP      (1) 

in which 1  and 2  are the angles between the wires and the bar. 

From the geometry of the structure (Fig. 27a) we see that 

1
1

sin
2 2

CA b

CD b
    , 

2
1

sin
5 5

CA b

CB b
    .         (2) 

Substituting these values into Eq. (1) and rearranging, we get 

1 22
2

2 5

T T
P            (3) 

which is the final form of the equation of equilibrium. 

Equation of compatibility. An equation of compatibility can be obtained by considering 

the displacements of points D and B. For this purpose, we draw the displacement 

diagram shown in Fig. 27c. Line AB represents the original position of bar AB and line 

AB' represents the rotated position. Since the angle of rotation of bar AB is very small, 

the displacements 1  and 2 of points D and B, respectively, can be treated as small 

vertical displacements. Because the distance from A to B is twice the distance from A to 

D, we see that 

2 12        (4) 

which is the equation of compatibility. 

Force-displacement relations. Now we need to relate the forces 1T  and 2T  in the wires 

to the vertical displacements 1  and 2  at points D and B, respectively. Let us begin by 

considering wire CD, which rotates from its original position CD to its final position 

CD' (Fig. 27c). We draw a perpendicular DD'' from point D to line CD'. Because the 

displacements and angle changes are very small, we can assume that the distance CD'' 

is equal in length to the distance CD. (That is, a circular arc DD'' with point C as its 

center is indistinguishable from the perpendicular line DD''.) 
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The displacement triangle DD'D'' in Fig. 27c is redrawn for clarity in Fig. 27d. 

The distance DD' is the vertical displacement 1  of point D and the distance D'D'' is the 

elongation СD  of wire CD. The angle 1  appears in the triangle as angle DD'D''. To 

prove this, we note that line DD' is perpendicular to line AB, and line DD'' is 

perpendicular to line CD (for small angles of rotation). Therefore, from the 

displacement triangle DD'D'' we get 

1
1 1sin

2
CD


    .     (5) 

This equation provides the geometric relation between the elongation of wire CD and 

the downward displacement of point D. 

The elongation СD  of wire CD is related to the force in the wire by the following 

force-displacement relation: 

1 1 2CD
CD

T L T b

EA EA
        (6) 

in which 2CDL b , is the length of wire CD. Combining the last two equations for 

CD , we get 

1
1

2bT

EA
  .      (7) 

In a similar manner, we can relate the displacement 2  to the elongation CB  of wire 

CB (see Fig. 27e) and obtain 

2
2

5bT

EA
  .      (8) 

Equations (7) and (8) are the force-displacement relations that give the displacements 

of points D and B in terms of the unknown forces in the wires. 

Substituting 1  and 2  from the force-displacement relations into the equation of 

compatibility (Eq. 4) yields 

2 15 4T T      (9) 
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which is the equation of compatibility in terms of the unknown forces. 

Solution of equations. As the final step in this example we solve simultaneously the 

equation of equilibrium (Eq. 3) and the equation of compatibility (Eq. 9). The results 

are 

1
10 10

1.406
8 2 5 5

P
T P 


,    1

2
4

1,125
5

T
T P  .  (10, 11) 

Thus, we have found the tensile forces in the wires by solving the statically 

indeterminate structure. 

Knowing the tensile forces in the wires, we can easily determine all other force 

and displacement quantities. For instance, the reactions at support A can be found from 

equilibrium equations and the displacements 1  and 2  can be found from Eqs. (7) and 

(8). 

Note: In this example, the final solution for the forces does not involve the axial 

rigidity EA of the wires. (This fact is readily apparent in a symbolic solution but might 

escape notice in a numerical solution.) The reason is that both wires have the same 

axial rigidity, and therefore EA cancels out of the solution. If each wire had a different 

rigidity, the rigidities would appear in the final expressions. 

Example 10   Thermal effects in statically indeterminate rod systems 

A sleeve in the form of a circular tube of length L is placed around a bolt and fitted 

between washers at each end (Fig. 28a). The nut is then turned until it is just snug. The 

sleeve and bolt are made of different materials and have different cross-sectional areas. 

(a) If the temperature of the entire assembly is raised by an amount T , what stresses 

s  and b  are developed in the sleeve and bolt, respectively? (b) What is the increase 

  in the length L of the sleeve and bolt? (Assume that the coefficient of thermal 

expansion s  of the sleeve is greater than the coefficient b  of the bolt). 

Solution Because the sleeve and bolt are of different materials, they will elongate by 

different amounts when heated and allowed to expand freely. However, when they are 

held together by the assembly, free expansion cannot occur and thermal stresses are 
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developed in both materials. To find these stresses, we use the same concepts as in any 

statically indeterminate analysis – equilibrium equations, compatibility equations, and 

displacement relations. However, we cannot formulate these equations until we 

disassemble the structure. 

A simple way to cut the structure is to remove the head of the bolt, thereby allowing the 

sleeve and bolt to expand freely under the temperature change T  (Fig. 28b). The 

resulting elongations of the sleeve and bolt are denoted 1  and 2 , respectively, and the 

corresponding temperature-displacement relations are 

1 ( )s T L   ,    2 ( )b T L   .    (1) 

Since s  is greater than b , the elongation 1  is greater than 2 , as shown in Fig. 28b. 

The axial forces in the sleeve and bolt must be such that they shorten the sleeve 

and stretch the bolt until the final lengths of the sleeve and bolt are the same. These 

forces are shown in Fig. 28c, where sP  denotes the compressive force in the sleeve and 

bP  denotes the tensile force in the bolt. The corresponding shortening 3  of the sleeve 

and elongation 4  of the bolt are 

3
s

s s

P L

E A
  ,    4

b

b b

P L

E A
      (2) 

in which s sE A  and b bE A  are the respective axial rigidities. Equations (2) are the load-

displacement relations. 

Now we can write an equation of compatibility expressing the fact that the final 

elongation   is the same for both the sleeve and the bolt. The elongation of the sleeve 

is 1 3   and of the bolt is 2 4  ; therefore, 

1 3 2 4        .    (3) 

Substituting the temperature-displacement and load-displacement relations (Eqs. 1 and 

2) into this equation gives 

( ) ( )s b
s b

s s b b

P L P L
T L T L

E A E A
           (4) 
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from which we get 

( ) ( )s b
s b

s s b b

P L P L
T L T L

E A E A
      ,   (5) 

which is the final form of the compatibility equation. Note that it contains the forces sP  

and bP  as unknowns. 

An equation of equilibrium is obtained from Fig. 28c, which is a free-body 

diagram of the part of the assembly remaining after the head of the bolt is removed. 

Summing forces in the horizontal direction gives 

s bP P       (6) 

which expresses the obvious fact that the compressive force in the sleeve is equal to the 

tensile force in the bolt. 

 
Fig. 28   Sleeve and bolt assembly with uniform temperature increase T  
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We now solve simultaneously the equations of compatibility and equilibrium 

(Eqs. 5 and 6) and obtain the axial forces in the sleeve and bolt: 

( )( )s b s s b b
s b

s s b b

T E A E A
P P

E A E A

  
 


.    (7) 

When deriving this equation, we assumed that the temperature increased and that the 

coefficient s  was greater than the coefficient b . Under these conditions, sP  is the 

compressive force in the sleeve and bP  is the tensile force in the bolt. 

The results will be quite different if the temperature increases but the coefficient 

s  is less than the coefficient b . Under these conditions, a gap will open between the 

bolt head and the sleeve and there will be no stresses in either part of the assembly. 

(a) Stresses in the sleeve and bolt. Expressions for the stresses s  and b  in the sleeve 

and bolt, respectively, are obtained by dividing the corresponding forces by the 

appropriate areas: 

( )( )s s b s b b
s

s s s b b

P T E E A

A E A E A

  



 


,    (8) 

  s b s b sb
b

b s s b b

T E E AP

A E A E A

  



 


.    (9) 

Under the assumed conditions, the stress s  in the sleeve is compressive and the stress 

b  in the bolt is tensile. It is interesting to note that these stresses are independent of 

the length of the assembly and their magnitudes are inversely proportional to their 

respective areas (that is, / /s b b sA A   ). 

(b) Increase in length of the sleeve and bolt. The elongation  of the assembly can be 

found by substituting either sP  or bP  from Eq. (7) into Eq. (4), yielding 

( )( )s s s b b b

s s b b

E A E A T L

E A E A

  






.   (10) 

With the preceding formulas available, we can readily calculate the forces, stresses, and 

displacements of the assembly for any given set of numerical data. Note: As a partial 
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check on the results, we can see if Eqs. (7), (8), and (10) reduce to known values in 

simplified cases. For instance, suppose that the bolt is rigid and therefore unaffected by 

temperature changes. We can represent this situation by setting 0b   and letting bE  

become infinitely large, thereby creating an assembly in which the sleeve is held 

between rigid supports. Substituting the stated values of b  and bE  into Eqs. (7), (8), 

and (10), we find 

( )s s s sP E A T  ,    ( )s s sE T   ,    0  . 

As a second special case, suppose that the sleeve and bolt are made of the same 

material. Then both parts will expand freely and will lengthen the same amount when 

the temperature changes. No forces or stresses will be developed. To see if the derived 

equations predict this behavior, we will assume that both parts have properties  , E, 

and A. Substituting these values into Eqs. (7 – 10) we get 

0s bP P  ,    0s b   ,    ( )T L   , 

which are the expected results. 

As a third special case, suppose we remove the sleeve so that only the bolt 

remains. The bolt is then free to expand and no forces or stresses will develop. We can 

represent this case by setting 0sA   in Eqs. (7), (9), and (10), which then gives 

0bP  ,    0b  ,    ( )b T L   . 

8   Examples of statically indeterminate rod systems 

 

 

Fig. 29 Fig. 30 
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Fig. 31 Fig. 32 

 
 

Fig. 33 Fig. 34 

 

 

Fig. 35 Fig. 36 
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Fig. 37 Fig. 38 

 
 

Fig. 39 Fig. 40 

 

 

Fig. 41 Fig. 42 
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Fig. 43 Fig. 44 

 
 

Fig. 45 Fig. 46 
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General method in statically 

indeterminate rods and rod system 

analysis is in finding complementary 

equations of deformation 

compatibility to determine internal 

forces in the rod. The number of 

compatibility equations depends on 

degree of static indeterminacy. 

In our case, degree of static 

indeterminacy k m n  , where 

2m   – total number of constraints 

(reactions), 1n   – number of 

equations of equilibrium. 

After substituting 

2 1 1k    . 

Conclusion: the rod is singly 

statically indeterminate. 

Due to axial loading, only axial 

reactions AR  and ER  take place in 

this problem. 
 

 

 

 

 

 

 Solution 

1. Calculating the support reactions AR  and ER  (see Fig. 1). 

(а) from condition of equilibrium 0xF  . Direction to the right is assumed to be 

positive (see Fig. 1). 

4 3 20 0x E AF R P P P R       . 

(b) designing the compatibility equation. 

It is evident that this deformable rod has two immobile cross-sections A and E. Therefore 

total elongation of the rod is zero, i.e. 0AEl  : 

AE AB BC CD DEl l l l l      . 

The elongations of particular portions AB, BC, CD, DE are generated by corresponding 

normal forces. According to the method of sections the equations of normal forces are the 

following:  

 

 I–I   (0 x c  )      III–III   (0 / 4x a  ) 

 ( )I
x AN x R  .      2 3( )III

x AN x R P P    . 
 

 II–II   (0 x b  )      IV–IV   (0 3 / 4x a  ) 

 2( )II
x AN x R P   .     2 3 4( )IV

x AN x R P P P     . 
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Fig. 1 
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Corresponding elongations of the portions are: 

 
( )( )

3

I
x

AB
N x c

l
AE

  ;   
( )( )

2

II
x

BC
N x b

l
AE

  ;   

1
( )

4

III
x

CD

N x a

l
AE

 
 
   ;   

3
( )

4

IV
x

DE

N x a

l
AE

 
 
   ; 

 2 2 3 2 3 4
5 3 9

2( ) ( ) ( ) 0
3 4 4

A A A AR R P R P P R P P P             

2 3 4
3360

80 60 36 27 600 1800 2160 3360 42
80

A AR P P P R               kN. 

"+" sign of AR  reaction supports the conclusion that AR  reaction is actually determined to 

the right. After AR  finding, static indeterminacy is opened and normal forces may be 

determined. 
2. Calculating the normal forces in an arbitrary cross-section of each portion. 

 ( ) 42I
x AN x R    kN, 

 2( ) 42 10 52II
x AN x R P        kN, 

 2 3( ) 42 10 50 2III
x AN x R P P          kN, 

 2 3 4( ) 42 10 50 80 78IV
x AN x R P P P            kN. 

The graph of normal force distribution is shown on Fig. 1. 
 

3. Calculating the cross-sectional area A from condition of strength in critical portion.  
Due to [ ] [ ]t c  , it will be necessary to design two conditions of strength – for critically 

tensile and critically compressed portions. In our case,  
(а) for three tensile portions II-II portion is evidently critical after comparing the relations 

42

3A
, 

52

2A
 and 

2

A
. That is why 

  
 

3
4 2

max 6

( ) ( ) 52 10
1.625 10 m

2 2 2 160 10

II II
II x x

t x t t
t t

N x N x
A

A


          

  
; 

 

(b) for compressed portion: 

  
 

3
4 2

max 6

( ) ( ) 78 10
3.9 10 m

200 10

IV
IVxIV x

c x сс
c с

N x N x
A

A


          

 
. 

For future calculating, we should select larger of two cross-sectional areas which will 

satisfy both conditions of strength: 
4 2

max 3.9 10 mсA A    . 

4. Calculating the acting stresses. 
3

4
max

( ) 42 10
35.9

3 3 3.9 10

I
I x
x

N x

A 


    

 
 MPa, 

3

4
max

( ) 52 10
66.7

2 2 3.9 10

II
II x
x

N x

A 


    

 
 MPa, 
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3

4
max

( ) 2 10
5.1

3.9 10

III
III x
x

N x

A 

 
    


 MPa, 

3

4
max

( ) 78 10
200.0 MPa

3.9 10

IV
IV x
x

N x

A 

 
    


. 

Graph of stress distribution is shown on Fig. 1. 
 

5. Analysis of stress state type in an arbitrary point K of critical section. 
 

 

 

IV
3 200 MPa,x     

 
 

1 2 0.    

Fig. 2 
 

Conclusion: stress state is uniaxial, deformation is tension. 
 

6. Drawing the graph of displacements. 
E point is selected as the origin. The displacements of particular points are designated by 
 . Therefore, 0E  . Due to Hook's law, the displacement function is linear, that is why 

the displacements of each portion tip are numerically equal to the portion elongation or 

shortening. Elasticity modulus value 112 10 PaE    is used in this calculation. 

 
3

4
11 4

max

( )3 78 10 3 3
22.5 10 m 2.25 mm

4 4 2 10 3.9 10

IV
x

D ED
N x a

l
EA




   
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Let us estimate the error of calculating, since really the displacement of A point must be 
zero according to compatibility equation:  

4

4

0.01 10
100% 0.11%

8.97 10







  


. 

Due to negligibly little error, the calculation is true.  
The graph of displacements is also shown on Fig. 1. 

 
 

point K 

Remaining principal stresses are: 


