LECTURE 10 Material Testing in Tension and Compression

1 Material Testing in Tension

Mechanical properties of materials are determined by testing the **specimens** of these materials which may have round or rectangular shape (see Figs 1–4).

Fig. 1 Instron testing machine

Stress σ , MPa

500

400 σ_{μ} D Scale N 300 В Scale M σ_{yp} 200 100 0.001 М 0.002 0 0.1 0.2 0.3 NStrain & (a)

Fig. 3 Types of test specimens

Fig. 4 Stress-strain diagram for ductile steel

The shapes and dimensions of test specimens are specified by a state standards. In Ukrainian industry they are shown in Fig. 5.

Fig. 5 1 – gauge portion, 2 – thickened portion which is needed for fastening in the grips of a testing machine.

Fig. 6 Typical tensile-test specimen with extensometer attached. The specimen has just fractured in tension.

There exist normal specimens for which $l_0 = 10d_0$ and shortened specimens with $l_0 = 5d_0$. In the case of a rectangular cross section $l_0 = 11.3\sqrt{b_0h_0}$ or $l_0 = 5.65\sqrt{b_0h_0}$.

The shape of broken specimen depends on the type of material (ideally plastic, elastoplastic or absolutely brittle (see Figs. 6, 7)). For both, ductile and brittle materials, stress-strain diagram has original elastic portion with linear dependence between stresses and strains (see Fig. 8).

Fig. 7 Types of material failure: a) ideally plastic; b) elastoplastic c) absolutely brittle.

Fig. 8 Difference between stress-strain diagrams for brittle and ductile materials

2 Tension Test Diagram

Consider the main features of a **tension test diagram**. Tension test diagram for soft steel specimen (**ductile material**) in the coordinates F (force), Δl (absolute elongation) is shown in Fig. 9. This can be done in the case of **law-carbon steel**. The curve obtained may be divided into the following four zones.

Fig. 9 Force-elongation diagram idealization

The zone *OA* is termed the **zone of elasticity** (see Fig. 9).

The zone *AB* is called the **yield area** (AB – zone of general yielding).

The zone BC is called the **zone of strain hardening**. At the stage of strain hardening the location of future rupture begins to show on the specimen (the local reduction of cross-sectional area in Fig. 10).

The portion *CD* of the curve is called the **zone of local yielding**. The point *D* corresponds to **fracture** of the specimen (see Figs 9, 11, 12).

If the test specimen is unloaded before it fractures (point *K* in Fig.13) then during unloading the relation between force *F* and elongation Δl will be represented by the straight line *KL*.

Experiments show that this straight line is parallel to the straight line *OA*. Upon unloading the elongation does not disappear completely. The segment $OM = \Delta l_{el} + \Delta l_{pl}$, where Δl_{pl} is **plastic elongation (plastic strain)**; Δl_{el} is **elastic elongation (elastic strain)**.

Fig. 13

Fig. 14 Typical stress-strain diagram for a brittle material showing the proportional limit (point *A*) and fracture force (point *C*)

Fig. 14 shows a tension test diagram for **brittle material**. The presence of the yield area *AB* is not characterized for this material.

3 Basic Mechanical Characteristics of Materials

Let us redesign the tension test diagram $F = f(\Delta l)$ in the coordinates σ and ε . To do this we reduce the ordinates by a factor A_0 and the abscissas by a factor l_0 , where A_0 and l_0 are respectively the **cross sectional area** and the **gauge length** of the specimen before loading:

$$\sigma_i = \frac{F_i}{A_0},\tag{1}$$

$$\varepsilon_i = \frac{\Delta l_i}{l_0}.$$
 (2)

Since these quantities A_0 , l_0 are constant, the diagram $\sigma = f(\varepsilon)$ (Figs. 15, 16) has the same shape as the tension test diagram but it characterizes the properties of the materials.

Fig. 15 Stress-strain diagram for a typical structural steel in tension (not to scale)

The maximum stress up to which the material follows Hook's law is called the **proportionality limit** σ_p (see Figs. 15, 16). The expression for σ_p is written as follows:

$$\sigma_p = \frac{F_p}{A_0},\tag{3}$$

where F_p corresponds to the value of the force up to which the material follows Hooke's law.

The **elastic limit** σ_e is defined as the maximum stress up to which no permanent deformation occurs (force F_e). The expression for σ_e is:

$$\sigma_e = \frac{F_e}{A_0}.$$
(4)

The stress σ_y is the **yield strength** at which the tested specimen is deformed without any noticeable increase of the load (see Figs. 15, 16). The expression for $\sigma_{y,t}$ is written as follows:

$$\sigma_{y,t} = \frac{F_y}{A_0}.$$
 (5)

The force F_y corresponds to point A in Fig. 9.

For brittle materials we have got the **conventional yield strength** (offset yield strength) which is called $\sigma_{0,2}$.

Fig. 16 Mechanical characteristics of ductile material determined by stressstrain diagram analysis.

The stress σ_u is the **ultimate strength**. The ratio of the maximum force to its original cross-sectional area and is termed the **ultimate tensile strength** (ultimate stress) and denoted by $\sigma_{u,t}$ ($\sigma_{u,c}$ in compression). It is important to note that $\sigma_{u,t}$ is

not the stress at which the specimen fractures.

The expression of the ultimate strength $\sigma_{u,t}$ is as follows:

$$\sigma_{u,t} = \frac{F_u}{A_0}.$$
 (6)

The value of the force F_u corresponds to the point C in Fig. 9.

The **relative elongation on rupture** δ , is the ratio of the increment of specimen length to the initial length:

$$\delta = \frac{\Delta l}{l_0} 100\% = \frac{l_r - l_0}{l_0} 100\% \tag{7}$$

where l_r is the length of the specimen on rupture, and l_0 is its initial length before the load application.

The **relative contraction** ψ is the ratio of the difference between the initial and final cross-sectional area in the point of rupture to the initial cross-sectional area:

$$\psi = \frac{A_r - A_0}{A_0} 100\% .$$
 (8)

4 True Tension Test Diagram

In the vicinity of the ultimate stress, the reduction in area of the bar becomes clearly visible and a **necking** of the bar occurs (see Figs 6, 7, 11, 17). If the actual cross-sectional area at the narrow part of the neck is used to calculate the stress, the **true stress-strain curve** (the dashed line *CE*' in Fig. 15 or *CD*₁-line in Fig. 18) is obtained. Corresponding true stress is determined by the formula

$$\sigma_{true} = \frac{F_{D_1}}{A_r},\tag{9}$$

where A_r is the cross-sectional area at the **neck** after rupture (see Fig. 18).

Fig. 17 Necking of a mild-steel bar in tension

Fig. 18 True stress-strain diagram

The total load the bar can carry does indeed diminish after the ultimate stress is reached (as shown by curve DE in Fig. 15), but *this reduction is due to the decrease in area of the bar and not to a loss in strength of the material itself*. In reality, the material withstands an increase in true stress up to failure (point E' in Fig. 15). Because most structures are expected to function at stresses below the proportional limit, the **conventional stress-strain curve** *OABCDE* (see Fig. 15), which is based upon the

original cross-sectional area of the specimen and is easy to determine, provides satisfactory information for use in engineering design.

5 Offset Method

Structural steel is an alloy of iron containing about 0.2% carbon, and therefore it is classified as a low-carbon steel. With increasing carbon contactm, steel becomes less ductile but stronger (higher yield stress and higher ultimate stress). The physical properties of steel are also affected by heat treatment, the presence of other metals, and

manufacturing processes such as rolling. Other materials that behave in a ductile manner (under certain conditions) include aluminum, copper, magnesium, lead, molybdenum, nickel brass, bronze, monel metal, nylon, and teflon.

Although they may have considerable ductility, aluminum alloys typically do not have a clearly definable yield point, as shown by the stress-strain diagram of Fig. 19. However, they do have an initial linear region with a recognizable proportional limit. Alloys produced for structural purposes have proportional limits in the range 70 to 410 MPa and ultimate stresses in the range 140 to 550 MPa.

Fig. 19 Typical stress-strain diagram for an aluminum alloy

Fig. 20 Arbitrary yield stress determined by the offset method

When a material such as aluminum does not have an obvious yield point and yet undergoes large strains after the proportional limit is exceeded, an **arbitrary yield stress** may be determined by the **offset method**. A straight line is drawn on the stress-strain diagram parallel to the initial linear part of the curve (Fig. 20), but offset by some standard strain, such as 0.002 (or 0.2%). The intersection of the offset line and the stress-strain curve (point *A* in Fig. 20) defines the yield stress. Because this stress is determined by an arbitrary rule and is not an inherent physical property of the material, it should be distinguished from a true yield stress by referring to it as the **offset yield stress**. For a material such as aluminum, the offset yield stress is slightly above the proportional limit. In the case of structural steel, with its abrupt transition from the

linear region to the region of plastic stretching, the offset stress is essentially the same as both the yield stress and the proportional limit.

6 Material Testing in Compression

In **compression test**, short cylindrical (square) specimens are used. Their height is not more than twice the diameter of the cross section:

The compression test diagram for low-carbon steel has a shape such as represented in Fig. 22.

Fig. 22 Stress-strain diagram for cooper in compression

Stress-strain curves for materials in compression differ from those in tension. Ductile metals such as steel, aluminum, and proportional limits cooper have in compression very close to those in tension, and the initial regions of their compressive and tensile stress-strain diagrams are about the same. However, after yielding begins, the behavior is quite different, In a tension test, the specimen is stretched, necking may occur, and fracture ultimately takes place. When the material is compressed, it bulges outward on the sides and becomes barrel-

shaped, because friction between the specimen and the end plates prevents lateral

expansion. With increasing load, the specimen is flattened out and offers greatly increased resistance to further shortening, which means that the stress-strain curve becomes very steep). This characteristics are illustrated in Fig. 22, which shows a compressive stress-strain diagram for cooper. Since the actual cross-sectional area of a specimen tested in compression is larger than the initial area, the true stress in a compression test is smaller than the nominal stress.

Brittle materials loaded in compression typically have an initial linear region followed by a region in which the shortening increases at a slightly higher rate than does the load. The stress-strain curves for compression for compression and tension often have similar shapes, but the ultimate stresses in compression are much higher than those in tension. Also, unlike ductile materials, which flatten out when compressed, brittle materials actually brake at the maximum load.

A comparison of the ultimate tensile strength $\sigma_{u,t}$ and the ultimate compressive strength $\sigma_{u,c}$ of brittle materials shows that these materials possess, as a rule, higher strength indices in compression than in tension. The magnitude of the ratio

 $K = \sigma_{u,t} / \sigma_{u,c} = 0.2 \div 0.4 \text{ for cast iron.}$ But for low-carbon steel $K = \frac{\sigma_{y,t}}{\sigma_{y,c}} \cong 1$.

7 Limiting Stress. Allowable Stress

It is customary to take either the yield strength $\sigma_{y,t}$ (for the ductile material) or the ultimate tensile strength $\sigma_{u,t}$ (for the brittle material) as the limiting stress σ_{\lim} .

The quantity
$$[\sigma] = \frac{\sigma_{lim}}{n}$$
. (10)

is called the **allowable stress**:

(a) for the ductile material
$$[\sigma] = \frac{\sigma_{y,t}}{n};$$
 (11)

(b) for the brittle material
$$[\sigma] = \frac{\sigma_{u,t}}{n}$$
, (12)

where *n* is a number greater, than unit. It is called the **factor of safety**.

Mechanical characteristics for main classes of engineering materials are shown in Table

1.

Table 1Yield Strength, Tensile Strength, and Ductility (Percent Elongation)Values for Main Classes of Engineering Materials (Room-Temperature
Conditions)

Material/ Condition	Yield Strength (MPa	Tensile Strength (MPa	Percent
	[ksi])	[ksi])	Elongation
1	2	3	4
META	LS AND METAL AL	LOYS	
Plain (Carbon and Low Alloy	Steels	
Steel alloy A36			
• Hot rolled	220-250 (32-36)	400-500 (58-72.5)	23
Steel alloy 1020			
• Hot rolled	210 (30) (min)	380 (55) (min)	25 (min)
Cold drawn	350 (51) (min)	420 (61) (min)	15 (min)
• Annealed (@ 870°C)	295 (42.8)	395 (57.3)	36.5
• Normalized (@ 925°C)	345 (50.3)	440 (64)	38.5
Steel alloy 1040			
• Hot rolled	290 (42) (min)	520 (76) (min)	18 (min)
Cold drawn	490 (71) (min)	590 (85) (min)	12 (min)
• Annealed (@ 785°C)	355 (51.3)	520 (75.3)	30.2
• Normalized (@ 900°C)	375 (54.3)	590 (85)	28.0
Steel alloy 4140			
• Annealed (@ 815°C)	417 (60.5)	655 (95)	25.7
• Normalized (@ 870°C)	655 (95)	1020 (148)	17.7
• Oil-quenched and tempered (@	1570 (228)	1720 (250)	11.5
315°C)			
Steel alloy 4340			
• Annealed (@ 810°C)	472 (68.5)	745 (108)	22
• Normalized (@ 870°C)	862 (125)	1280 (185.5)	12.2
• Oil-quenched and tempered (@	1620 (235)	1760 (255)	12
315°C)			
Stainless Steels			
Stainless alloy 304			
 Hot finished and annealed 	205 (30) (min)	515 (75) (min)	40 (min)
• Cold worked (1/4 hard)	515 (75) (min)	860 (125) (min)	10 (min)
Stainless alloy 316			
• Hot finished and annealed	205 (30) (min)	515 (75) (min)	40 (min)
 Cold drawn and annealed 	310 (45) (min)	620 (90) (min)	30 (min)
Stainless alloy 405			
Annealed	170 (25)	415 (60)	20
Stainless alloy 440A			
• Annealed	415 (60)	725 (105)	20

9/8/2020 2:15:56 PMW:\+MEXAHИKA MATEPИAЛOB W\++HMKД АНГЛ\082 LECTURES 2020\10 Material Testing in Tension and Compression.doc

V. DEMENKO MECHANICS OF MATERIALS 2	2020
-------------------------------------	------

• Tempered @ 315°C	1650 (240)	1790 (260)	5
Stainless alloy 17-7PH	1210 (175) (min)	1380 (200) (min)	1 (min)
Cold rolled			
Precipitation hardened @ 510°C	1310 (190) (min)	1450 (210) (min)	3.5 (min)
	Cast Irons		
Gray irons			
• Grade G1800 (as cast)		124 (18) (min)	—
• Grade G3000 (as cast)		207 (30) (min)	—
• Grade G4000 (as cast)		276 (40) (min)	
Ductile irons			10 ()
• Grade 60-40-18 (annealed)	276 (40) (min)	414 (60) (min)	18 (min)
• Grade 80-55-06 (as cast)	3/9 (55) (min)	552 (80) (min)	6 (min)
• Grade 120-90-02 (oil quenched and	621 (90) (min)	827 (120) (min)	2 (min)
tempered)			
A 11 1 100	Aluminum Alloys	-	
Alloy 1100	24(5)	00 (12)	40
• Annealed (O temper)	54(5) 117 (17)	90 (13)	40
• Strain nardened (H14 temper)	$\frac{11}{(1)}$	124 (18)	15
Alloy 2024	75 (11)	185 (27)	20
• Hast treated and aged (T2 temper)	245(50)	185 (70)	10
• Heat treated and aged (T351	343(30) 325(47)	465 (70)	10
• fieat treated and aged (1551	323 (47)	470 (08)	20
Allov 6061			
• Annealed (O temper)	55(8)	124 (18)	30
• Heat treated and aged (T6 and	276(40)	310(45)	17
T651 tempers)	270 (10)	510 (15)	17
Allov 7075			
• Annealed (O temper)	103 (15)	228 (33)	17
• Heat treated and aged (T6 temper)	505 (73)	572 (83)	11
Alloy 356.0			
• As cast	124 (18)	164 (24)	6
• Heat treated and aged (T6 temper)	164 (24)	228 (33)	3.5
Copper Alloys			
C11000 (electrolytic tough pitch)			
• Hot rolled	69 (10)	220 (32)	50
• Cold worked (H04 temper)	310 (45)	345 (50)	12
C17200 (beryllium-copper)			
Solution heat treated	195-380 (28-55)	415-540 (60-78)	35-60
• Solution heat treated, aged (a)	965-1205 (140-175)	1140-1310 (165-190)	4-10
330°C			
C26000 (cartridge brass)	75 150 (11 00)	200 265 (42 5 52 0)	54.69
• Annealed	/5-150 (11-22)	300-365 (43.5-53.0)	54-68
• Cold worked (H04 temper)	435 (63)	525 (76)	8
C36000 (free-cutting brass)	125 (19)	240 (40)	52
• Annealed • Cold worked (U02 towner)	125(18) 210(45)	340 (49)	55 25
• Cold worked (H02 temper)	510 (45)	400 (38)	23
C/1500 (copper-mcker, 50%)			
• Hot rolled	140 (20)	380 (55)	45
• Cold worked (H80 temper)	545 (79)	580 (84)	3
C93200 (bearing bronze)	125 (18)	240 (35)	20
Sand cast			

13

9/8/2020 2:15:56 PMW:\+MEXAHИKA MATEPИAЛOB W\++HMKД АНГЛ\082 LECTURES 2020\10 Material Testing in Tension and Compression.doc

Magnesium Alloys			
Alloy AZ31B			
• Rolled	220 (32)	290 (42)	15
• Extruded	200 (29)	262 (38)	15
Alloy AZ91D			1
• As cast	97-150 (14-22)	165-230 (24-33)	3
	Titanium Allovs		
Commercially pure (ASTM grade 1)	v		
• Annealed	170 (25) (min)	240 (35) (min)	30
Allov Ti-5Al-2.5Sn	1, ° (<u>1</u> 0) ()	2.0 (00) ()	
• Annealed	760 (110) (min)	790 (115) (min)	16
Allov Ti-6Al-4V	, (110) ()	())) (110) ()	10
• Annealed	830 (120) (min)	900 (130) (min)	14
• Solution heat treated and aged	1103(160)	1172(170)	10
Solution neut treated and aged	Precious Metals	11/2 (1/0)	10
Gold (commercially pure)	I I CCIOUS IVICIAIS		
• Annealed	nil	130 (10)	45
• Cold worked (60% reduction)	205(30)	130(19) 220(22)	43
Platinum (commercially pure)	203 (30)	220 (32)	-+
• A model	(12.9(2))	125 165 (19 24)	20.40
• Annealed	<13.8 (2)	123-103(10-24) 205, 240(20, 25)	30-40
• Cold Worked (50%)		205-240 (30-35)	1-5
Silver (commercially pure)		170 (24 ()	4.4
• Annealed		1/0 (24.6)	44
• Cold worked (50%)		296 (43)	3.5
	Refractory Metals		25
Molybdenum (commercially pure)	500 (72.5)	630 (91)	25
Tantalum (commercially pure)	165 (24)	205 (30)	40
Tungsten (commercially pure)	760 (110)	960 (139)	2
Misce	llaneous Nonferrous A	Alloys	
Nickel 200 (annealed)	148 (21.5)	462 (67)	47
Inconel 625 (annealed)	517 (75)	930 (135)	42.5
Monel 400 (annealed)	240 (35)	550 (80)	40
Haynes alloy 25	445 (65)	970 (141)	62
Invar (annealed)	276 (40)	517 (75)	30
Super invar (annealed)	276 (40)	483 (70)	30
Kovar (annealed)	276 (40)	517 (75)	30
Chemical lead	6-8 (0.9-1.2)	16-19 (2.3-2.7)	30-60
Antimonial lead (6%) (chill cast)	—	47.2 (6.8)	24
Tin (commercially pure)	11 (1.6)		57
Lead-Tin solder (60Sn-40Pb)	—	52.5 (7.6)	30-60
Zinc (commercially pure)			
• Hot rolled (anisotropic)		134-159 (19.4-23.0)	50-65
• Cold rolled (anisotropic)		145-186 (21-27)	40-50
Zirconium, reactor grade 702			
Cold worked and annealed	207 (30) (min)	379 (55) (min)	16 (min)
GRAPHITE, CERAMIC	S, AND SEMICOND	UCTING MATERIALS ^a	
Aluminum oxide			
• 99.9% pure	—	282-551 (41-80)	
• 96%	—	358 (52)	
• 90%	—	337 (49)	—

V. DEMENKO MECHANICS OF MATERIALS 2020

Concrete		37.3-41.3 (5.4-6.0)	
Diamond			
• Natural		1050 (152)	
• Synthetic		800-1400 (116-203)	
Gallium arsenide			
• {100} orientation, polished surface		$66 (9.6)^{c}$	
• {100} orientation as-cut surface		$57(8.3)^{c}$	
Glass, borosilicate (Pyrex)		69 (10)	
Glass soda-lime		69 (10)	
Glass ceramic (Pyroceram)		$123_{-}370(18_{-}54)$	
Graphite		125 570 (10 54)	
• Extruded (with the grain direction)		128245(2050)	
• Extruded (with the grant direction)		13.6-54.5(2.0-5.0)	
• Isostatically molded		31-09 (4.5-10)	
Silica, fused		104 (15)	
Silicon			
• {100} orientation, as-cut surface		130 (18.9)	
• {100} orientation, laser scribed	—	81.8 (11.9)	
Silicon carbide			
• Hot pressed		230-825 (33-120)	
• Sintered		96-520 (14-75)	
Silicon nitride			
• Hot pressed		700-1000 (100-150)	
Reaction bonded		250-345 (36-50)	
Sintered		414-650 (60-94)	
Zirconia 3 mol% V2O3 (sintered)		800-1500 (116-218)	
	DOLVMEDS	800-1300 (110-218)	
Electomere			
Elastomers		(0.241(1.0.25))	100 600
• Butadiene-acryionitrile (nitrile)		6.9-24.1 (1.0-3.5)	400-600
• Styrene-butadiene (SBR)		12.4-20.7 (1.8-3.0)	450-500
• Silicone		10.3 (1.5)	100-800
Ероху		27.6-90.0 (4.0-13)	3-6
Nylon 6,6			
• Dry, as molded	55.1-82.8 (8-12)	94.5 (13.7)	15-80
• 50% relative humidity	44.8-58.6 (6.5-8.5)	75.9 (11)	150-300
Phenolic		34.5-62.1 (5.0-9.0)	1.5-2.0
Polybutylene terephthalate (PBT)	56 6-60 0 (8 2-8 7)	56 6-60 0 (8 2-8 7)	50-300
Polycarbonate (PC)	62 1 (9)	62 8-72 4 (9 1-10 5)	110-150
Polyester (thermoset)		A1 A-89 7 (6 0-13 0)	<26
Polyetheretherketone (PEEK)	91 (13 2)	70 3-103 (10 2-15 0)	30-150
Polyethylene	91 (15.2)	70.5 105 (10.2 15.0)	50 150
• Low density (LDPF)	9.0-14.5(1.3-2.1)	8 3-31 4 (1 2-4 55)	100-650
• High density (HDPE)	262-331(38-48)	$221_{-31} 0 (32_{-4} 5)$	10-1200
• Illtrahigh molecular weight	20.2 - 35.1 (3.0 - 4.0)	22.1-31.0(5.2-4.3) 38.6/18.3(5.6.7.0)	350 525
(IHMW/DE)	21.4-27.0 (3.1-4.0)	38.0-48.3 (5.0-7.0)	550-525
Delvethylene terenthelete (DET)	50 3 (8 6)	18 3 72 4 (7 0 10 5)	20, 200
Polymethyl methoerwlete (DMMA)	57.5(0.0)	48.3 - 72.4 (7.0 - 10.3)	30-300
Dolypropylene (DD)	$\begin{array}{c} 33.0 \\ 31.0 \\ 37.2 \\ (1.6 \\ 10.0 \\ 10$	40.3 - 12.4 (1.0 - 10.3) 31 0 11 1 (1 5 6 0)	2.0-3.3 100 600
Dolyotyrono (DS)	31.0-37.2 (4.3-3.4)	31.0-41.4 (4.3-0.0) 35 0 51 7 (5 2 7 5)	100-000
Polystyrelle (PS)		33.9-31.7(3.2-7.3)	1.2-2.3
Polytetralluoroethylene (PIFE)		20.7-34.3 (3.0-3.0)	200-400
roiyvinyi chioride (PVC)	$\frac{40.7-44.8(3.9-0.3)}{\text{EDED MATERIAL G}}$	40.7-31.7 (3.9-7.3)	40-80
FIBER MATERIALS			
Aramid (Keviar 49)		2600 4100 (505 600)	<u> </u>
		3600-4100 (525-600)	2.8
Carbon (PAN precursor)		3600-4100 (525-600)	2.8

9/8/2020 2:15:56 PMW:\+MEXAH/KA MATEP/AADB W\++HMKJ AHF/J\082 LECTURES 2020\10 Material Testing in Tension and Compression.doc

Intermediate modulus		4650-6350 (675-920)	1.8
(longitudinal)			
High modulus (longitudinal)		2500-4500 (360-650)	0.6
E Close		2450 (500)	4.2
E Glass		<u> </u>	4.3
LU	WIPUSITE MATERIA		
Aramid fibers-epoxy matrix (anglied,			
$V_f = 0.6$)			
 Longitudinal direction 		1380 (200)	1.8
Transverse direction		30 (4.3)	0.5
High modulus carbon fibers-epoxy			
matrix (aligned, $V_f = 0.6$)			
 Longitudinal direction 	—	760 (110)	0.3
Transverse direction	—	28(4)	0.4
E glass fibers-epoxy matrix (aligned,			
$V_f = 0.6$)			
 Longitudinal direction 	—	1020 (150)	2.3
Transverse direction		40 (5.8)	0.4
Wood			
• Douglas fir (12% moisture)	—		
Parallel to grain		108 (15.6)	—
Perpendicular to grain	—	2.4 (0.35)	
• Red oak (12% moisture)			
Parallel to grain	—	112 (16.3)	_
Perpendicular to grain		7.2 (1.05)	

 $^{a}_{b}$ The strength of graphite, ceramics, and semiconducting materials is taken as flexural strength. The strength of concrete is measured in compression.

^c Flexural strength value at 50% fracture probability.

8 Strain Hardening

If the material remains within the elastic rauge, it can be loaded, unloaded, and loaded again without significantly changing the behavior (Fig. 23, left). However when loaded into the plastic range, the internal structure of the material is altered and its properties change. It was observed earlier that a permanent strain exists in the specimen after unloading from the plastic region (Fig. 23, right). Now suppose that material is reloaded after such an unloading (Fig. 24). The new loading begins at point C on the diagram and continues upward to point B, the point at which unloading began during the first loading cycle. The material then follows the original stress-strain diagram toward point F. Thus, for the second loading, we can imagine that we have a new stress-strain curve with its origin at point C. During the second loading, the material behaves in a linearly elastic manner from *C* to *B* with the slope on line *CB*, being the same as the slope of the tangent to the original loading curve at the origin *O*. The proportional limit is now at point *B*, which is at a higher stress than the original elastic limit (point *E*). Thus, by stretching a material such as steel or aluminum into the inelastic or plastic range, the properties of the material are changed – the linearly elastic region in increased, the proportional limit is raised, and the elastic limit is raised. However, the ductility is reduced because in the "new material" the amount of yielding beyond the elastic limit (from *B* to *F*) is less than in the original material (from *E* to *F*). This effect is called **strain hardening**.

Note, that the study of material behavior under various environmental and loading conditions is an important branch of applied mechanics

Fig. 23 Stress-strain diagrams illustrating: (a) elastic behavior, and (b) partially elastic behavior

Fig. 24 Reloading of a material and raising of the elastic and proportional limits