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Introduction to Mechanics of Materials and
Theory of Stress-Strain State

Mechanics of materials is a branch of applied mechanics that deals with the
behavior of deformable solid bodies subjected to various types of loading. Another
name for this field of study is strength of materials. Rods with axia loads, shaftsin
torsion, beams in bending, and columns in compression belong to the class of de-
formable solid bodies.

In mechanics of materials, the general aimisto calculate the stresses, dtrains,
and displacements in structures and their components under external loading. If we
can find these quantities for all the values of applied loads up to the limiting loads that
cause fallure, we will have a complete picture of the mechanical behavior of these
structures or their components. Understanding the mechanical behavior of al types
of structuresis essentia to design airplanes, buildings, bridges, machines, engines able
to withstand an applied loads without failure. In mechanics of materials we will ex-
amine the stresses and strains inside real bodies, that is, bodies of finite dimensions
being deformed under loads. To determine stresses and strains, we use the physical
properties of materials as well as numerous theoretical laws and concepts, beginning
from the fundamenta laws of theoretical mechanics whose subject deals primarily
with the forces and motions associated with particles and rigid bodies.

In mechanics of materias, the most fundamental concepts are stress and
strain. These concepts can beillustrated in their most elementary form by consider-
ing a prismatic bar subjected to axial forces. A prismatic bar is a straight structural
member having a constant cross section throughout its length; an axial force is a
load directed along the axis of the member, resulting either in its tension or com-
pression. Other examples are the members of a bridge truss, connecting rods in
automobile engines, columnsin buildings.

Normal and shear stresses in beams, shafts, and rods can be calculated
from the basic formulas of mechanics of materials. For instance, the stressesin a
beam are given by the flexure and shear formulas (o(z)=Myz/Iy and

7(2) = st;/b(z) ), and the stresses in a shaft are given by the torsion formula

(z(p)=Myp/1p). However, the stresses calculated from these formulas act on

cross sections of the members, while sometimes larger stresses occur on inclined
sections. The principal topics of this course-book will deal with the states of stress
and strain at points located on inclined, or oblique, sections. The components of
stressed and strained states also depend upon the position of the point in a loaded
body.



6 Introduction

The discussions will be limited mainly to two-dimensional, or plane,
stress and plane strain. The formulas derived and graphic techniques are helpful
in analyzing the transformation of stress and strain at a point under various types
of loading. The graphical technique will help us to gain a stronger understanding
of the stress variation around a point. Also, the transformation laws will be estab-
lished to obtain an important relationship between E, G, and v for linearly elastic
materials.

We will derive expressions for the normal and shear stresses acting on in-
clined sections in both uniaxial stress and pure shear. In the case of uniaxia
stress, we will show that the maximum shear stresses occur on planes inclined at
45° to the axis, whereas the maximum normal stresses occur on the cross sections.
In the case of pure shear, we will find that the maximum tensile and compressive
stresses occur on 45° planes. Similarly, the stresses on inclined sections cut
through a beam may be larger than the stresses acting on a cross section. To cal-
culate these stresses, we need to determine the stresses acting on inclined planes
under amore general stress state known as plane stress.

In our discussions of plane stress, we will use infinitesimally small stress
elements to represent the state of stress at a point in a deformable solid. We will
begin our analysis by considering an element whose stresses are known, and then
we will derive the transformation relationships to calculate the stresses acting on
the sides of an element oriented in a different direction.

In stress analysis, we must always keep in mind that only one intrinsic
state of stress exists at a point in a stressed body, regardless of the orientation of
the element being used to portray that state of stress. When we have two el ements
with different orientations at the same point in the body, the stresses acting on the
faces of the two elements are different, but they still represent the same state of
stress, namely, the stress at the point under consideration.

The concept of stressis much more complex than vectors are, and in ma-
thematics stresses are called tensors. Other tensor quantities in mechanics are
strains and moments of inertia.

When studying stress-strain theory, our efforts will be divided naturally in-
to two parts: first, understanding the logical development of the concepts, and
second, applying those concepts to practical situations. The former will be accom-
plished by studying the derivations and examples that appear in each chapter, and
the latter will be accomplished by solving the problems at the ends of the chapters.

In keeping with current engineering practice, this book utilizes only Inter-
national System of Units (SI).



Chapter 1 Concepts of Stress and Strain in Deformable Solid
1.1 Definition of Stress

A body subjected to external forces develops an associated system of
internal forces. To analyze the strength of any structural element it is necessary to
describe the intensity of those internal forces, which represents a particularly
significant quantity.

Consider one of the isolated segments of a body in equilibrium under the
action of a system of forces, as shown in Figs. 1.1 and 1.2. An element of area
AA, positioned on an interior surface passing through a point O, is acted upon by
force AF . Let the origin of the coordinate axes be located at O, with x normal and
v, z tangent to AA4. Generally AF' does not lie along x, y, or z. Components of AF'
parallel to x, y, and z are also indicated in the figure. The normal stress o (sigma)
and the shear, or shearing stress, v (tau) are then defined as

dF
Oy, =0, = lim —*=—2X
XX X AA—)O AA dA
(1.1)
AF, dF
Ty = lim —r -2 7= lim AF, =@.
AM—0 Ad  dA A—0 AA  dA
Cutting
| plane Internal
/forces
External
forces
@) (b)

Fig. 1.1 Aplication of the method of sections to a body under external loading

These relations represent the  stress
components at the point O to which area AA4 is
reduced in the limit.

The primary distinction between normal and
shearing stress is one of direction. From the
foregoing we observe that two indices are needed to
denote the components of stress. For the normal
stress component the indices are identical, while for Fig. 1.2 Components of an
the shear stress component they are mixed. The two internal force AF acting on a
indices are given in double subscript notation: the small area centered at point O
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first subscript indicates the direction of a normal to the plane, or face, on which
the stress component acts; the second subscript relates to the direction of the
stress itself. Repetitive subscripts will be avoided, so that the normal stress will be
designated o, as seen in Egs. (1.1). Note that a plane is defined by the axis
normal to it; for example, the x face is perpendicular to the x axis.

The limit A4 — 0 in Egs. (1.1) is, of course, an idealization, since the area
itself is not continuous on an atomic scale. Our consideration is with the average
stress on areas where size, while small as compared with the size of the body, are
large as compared with the distance between atoms in the solid body. Therefore
stress is an adequate definition for engineering purposes. Note that the values
obtained from Egs. (1.1) differ from point to point on the surface as AF
varies. The components of stress depend not only upon AF , however, but also
upon the orientation of the plane on which it acts at point O. Thus, even at a
specified point, the stresses will differ as different planes are considered. The
complete description of stress at a point therefore requires the specification of
stress on all planes passing through the point.

The units of stress (o or 7) consist of units of force divided by units of

area. In SI units, stress is measured in newtons per square meter (N / m? ) or in

pascals (Pa). Since the pascal is a very small quantity, the megapascal (MPa) and
gigapascal (GPa) are commonly used.

1.2 Components of Stress

In order to be able to determine stresses on an infinite number of planes
passing through a point O (Fig. 1.1), thus defining the state of stress at that point,
we need only specify the stress components on three mutually perpendicular
planes passing through the point. These planes, perpendicular to the coordinate
axes, contain three sides of an infinitesimal cubic element (stress element).

This three-dimensional state of stress acting on an isolated element within a
body is shown in Fig. 1.3. Stresses are considered to be identical at points O and
O' and are uniformly distributed on each face. They are indicated by a single
vector acting at the center of each face. We observe a total of nine components of
stress that compose three groups of stresses acting on the mutually perpendicular
planes passing through O. This representation of state of stress is called a stress
tensor. 1t is a tensor of second rank, requiring two indices to identify its elements
or components. Note: a vector is a tensor of first rank; a scalar is a tensor of
zero rank.
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Let us consider the property of shear stress from an examination of the
equilibrium of forces acting on the cubic element shown in Fig. 1.3. It is clear that
the first three of equations of equilibrium of a body in space (the sum of all forces
acting upon a body in any direction must be 0) are satisfied. Taking next three
equations of equilibrium as moments of the x,y- and z-directed forces about point
O, we find that > M, =0 results in

(~rydvedz) dx + (7 dvdz)dy =0,

from which
Ty = Tyx- (1.2)
Similarly, from » M,=0 and » M, =0, we obtain 7,, =7, and
Ty =Ty

The subscripts defining the shear stresses are commutative, and the stress
tensor is symmetric. This means that each pair of equal shear stresses acts on
mutually perpendicular planes. Because of this, no distinction will hereafter be

made between the stress components 7, and 7., 7., and 7,,, or 7,, and 7,,.

It 1s verified that the foregoing is valid even when stress components vary from
one point to another.
We shall employ here a sign

zX’

convention that applies to both normal y\ G

and shear stresses and that is based A
upon the relationship between the = V—»Tyx
direction of an outward normal drawn -~ (0.4
to surface and the direction of the T

surface. When both the outer normal

) T i
stress components on the same 7 ; U Y c,
s~ 0
J

and the stress component point in a GZ//<_‘/V x
positive (or negative) direction relative a dz
to the coordinate axes, the stress is g dx *

positive. When the normal points in a
positive direction while the stress
points in a negative direction (or vice versa), the stress is negative. Accordingly,
tensile stresses are always positive and compressive stresses always negative.

It is clear that the same sign and the same notation apply no matter which
face of a stress element we choose to work with. Figure 1.3 depicts positive
normal and shear stresses. This sign convention for stress will be used throughout
the text.

Fig. 1.3 Three-dimensional state of stress
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Consider the projection on the xy plane of a thin element and assume that
Ox>0),Ty,  do mot vary throughout the thickness and that other stress
components are zero. When only one normal stress exists, the stress is referred to
as a unmiaxial, or one-dimensional, stress (Fig. 1.4a); when only two normal
stresses occur, the state of stress is called biaxial (Fig. 1.4b). An element
subjected to shearing stresses alone (Fig. 1.4c) is said to be in pure shear. The

combinations of these stress situations, two-dimensional stress (Fig. 1.4d), will be

analyzed below.
c
R
Oy Oy Ox
T T
(a) (b) (c) (d)

Fig. 1.4 Special cases of state of stress: (a) uniaxial; (b)biaxial; (c) pure shear; and (d) two-
dimensional.

1.3 Normal Stress

The condition under which the stress is constant or uniform at a section
within a body is known as simple stress. In many load-carrying members, the
internal actions on an imaginary cutting plane consist of either only the axial
force or only the shear force. Examples of such elements include cables, simple
truss members, centrally loaded brace rods and bars, and bolts, pins, and rivets
connecting two members. In these bodies, the values of the simple normal stress
and shearing stress associated with each action can be approximated directly from
the definition of stress and the conditions of equilibrium. However, to learn the
"exact" stress distribution, it is necessary to consider the deformations resulting
from the particular mode of application of the loads.

Consider, for example, the extension of a prismatic bar subject to an axial
force P. A prismatic bar or rod is a straight member having constant cross section
throughout its length. The front and top views of such a rod are shown in Fig.
1.5a. To obtain the algebraic expression for the normal stress, we make an
imaginary cut (section a-a) through the member at right angles to its axis. The
free-body diagram of the isolated segment of the bar is shown in Fig. 1.5b. The
stress is substituted on the cut section as a replacement for the effect of the
removed portion in accordance with method of sections. The equilibrium of axial
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forces requires that P = Ao, where A =bh is the cross-sectional area of the rod.
That is, the system of stress distribution in the rod is statically equivalent to the
force P. The normal stress is thus

When the rod is being stretched as shown in the figure, the resulting stress
1s a uniaxial tensile stress; if the direction of the forces is reversed, the rod is in
compression and uniaxial compressive stress occurs. In the latter case, Eq. (1.3) is
applicable only to short members, which are stable to buckling.

Equation (1.3) represents the value of the uniform stress over the cross
section rather than the stress at a specified point of the cross section. When a
nonuniform stress distribution occurs, then we must deal instead with the average
stress. A uniform distribution of stress is possible only if three conditions coexist:

1. The axial force P acts through the centroid of the cross section.

2. The rod is straight and made of a homogeneous material.

3. The cross section is remote from the ends of the rod, excluding so called
Saint-Venant’s zones.

Y la_
o OI | I O ) =3
P Y la P a
S i
- |
O | | O -
<_|—r.—\ + |Cl /—r.—|_> :_ \D P
P o I r T P .
(a) (b)

Fig. 1.5 (a) Prismatic bar with clevised ends in tension and (b) free-body diagram of the bar
segment

In practice, the force P is applied to clevised-forked-ends of the rod through
a connection such as shown in Fig. 1.6a. This joint consists of a clevis 4, a
bracket B, and a pin C. As the force P is applied, the bracket and the clevis press
against the rivet in bearing, and a nonuniform pressure develops against the pin
(Fig. 1.6b). The average value of this pressure is determined by dividing the force
transmitted by the projected area of the pin into the bracket (or clevis). This is
called the bearing stress. The bearing stress in the bracket then equals
o} = P/ (#1d). Here 1, is the thickness of the bracket and d is the diameter of the

pin. Similarly, the bearing stress in the clevis is given by o}, = P/ (Zm’ )
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N
PA2td)

|
'JT
T
==
E=

ol e bl e
P/t d) P/(td)

P
(a) (b) (c)

Fig. 1.6 (a) A clevis-pin connection; (b) pin in bearing; and (c) pin in double shear
1.4 Average Shear Stress

A shear(ing) stress is produced whenever the applied forces cause one
section of a body to tend to slide past its adjacent section. An example is shown in
Fig. 1.6, where the pin resists the shear across the two cross-sectional areas at b-b
and c-c. This rivet is said to be in double shear. Since the pin as a whole is in
equilibrium, any part of it is also in equilibrium. At each cut section, a shear force
Q equivalent to P/2, as shown in Fig. 1.6¢, must be developed. Thus the shear

occurs over an area parallel to the applied load. This condition is termed direct
shear.

Unlike normal stress, the distribution of shearing stresses 7 across a section
cannot be taken as uniform. Dividing the total shear force O by the cross-sectional
area 4 over which it acts, we can determine the average shear stress in the
section:

ra =2, (1.4)
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o
Id%€
F ¢ —~ A
- | B F
[ — . ] —
t
(a)
F N\
- [T
0
(b) (c)

Fig. 1.7 Single shear of a rivet

Two other examples or direct shear are depicted in Figs. 1.7 and 1.8.
Figure 1.7a illustrates a connection where plates 4 and B are joined by a rivet.
The rivet resists the shear across its cross-sectional area, a case of single shear.
The shear force Q in the section of the rivet is equal to F' (Fig. 1.7b). The average

shearing stress is therefore 7, = F / (ﬂ'd 2 / 4).

The rivet exerts a force F' on plate 4 equal and opposite to the total force
exerted by the plate on the rivet (Fig. 1.7¢). The bearing stress in the plate is
obtained by dividing the force F' by the area of the rectangle representing the
projection of the rivet on the plate section. As this area is equal to 7d, we have
op=F / (td). On the other hand, the average normal stress in the plate on the

section through the hole is o=F /[t(b—d)], while on any other section
o=F /(bt).

Direct shear stresses evidently applied to a plate specimen as shown in
Fig. 1.8a. A hole is to be punched in the plate. The force applied to the punch is
designated P. Equilibrium of vertically directed forces requires that O = P (Fig.
1.8b). The area resisting the shear force Q is analogous to the edge of a coin and
equals 7z¢d . Equation (1.4) then yields 7, = P/(7d).
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|
l P
L Punch /_]J)ﬁ
R = Plate
Y
| l - / | 1 | T 0
Die M’

(a) (b)

Fig. 1.8 Direct-shear testing in a cutting fixture

1.5 Deformations

Consider a body subjected to external forces, as shown in Fig. 1.1a. Qwing
to the loading, all points in the body are displaced to new positions. The
displacement of any point may be a consequence of deformation, rigid-body
motion (translation and rotation), or some combination of the two. If the relative
positions of points in the body are altered, the body has experienced deformation.
If the distance between any two points in the body remains fixed, yet
displacement is evident, the displacement is attributable to rigid-body motion. We
shall not treat rigid-body displacements because this problem is one of the most
important in theoretical mechanics. Only small displacements by deformation,
commonly found in engineering structures, will be considered.

Extension, contraction, or change of shape of a body may occur as a result
of deformation. In order to determine the actual stress distribution within a
member, it 1s necessary to understand the type of the deformation taking place in
that member. Examination of the deformations caused by loading, or by a change
in temperature in various members within a structure, makes it possible to
compute statically indeterminate forces, i.e. open the statical indeterminacy of
structural members.

We shall designate the total axial deformations by oJ (delta). The
components of displacement at a point within a body in the x, y, z directions are
denoted by u, v, and w, respectively. The strains resulting from small
deformations are small compared with unity, and their products (higher-order
terms) are omitted. This assumption leads to one of the fundamentals of solid
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mechanics, the principle of superposition. It is valid whenever the quantity
(deformation or stress) to be determined is directly proportional to the applied
loads. In such cases, the total quantity owing to all the loads acting
simultaneously on a member may be found by determining separately the quantity
due to each load and then combining the results obtained. The superposition
principle permits a complex loading to be replaced by two or more simpler loads.

1.6 Definition of Strain

The concept of normal strain is illustrated by considering the deformation
of a prismatic bar (Fig. 1.9a(. The initial length of the member is L. After
application of a load F, the length increases an amount 6 (Fig. 1.9b(. Defining
the normal strain ¢ (epsilon) as the unit change in length, we obtain

E= T (1.5)
A positive sign applies to elongation, a negative sign to contraction.

The shearing strain is the tangent of the total change in angle occurring
between two perpendicular lines in a body during deformation. To illustrate,
consider the deformation involving a change in shape (distortion) of a rectangular
plate (Fig. 1.10). Note that the deformed state is shown by the dashed lines in the
figure, where @' represents the angle between the two rotated edges. Since the

displacements considered are small, we can set the tangent of the angle of
distortion equal to the angle. Thus the shearing strain y (gamma) measured in

radians, 1s defined as

T
=Z_0". 1.6
=3 (1.6)

The shearing strain is positive if the right angle between the reference lines
decreases, as shown in the figure; otherwise, the shearing strain is negative.

When uniform changes in angle and length occur, Egs. (1.5) and (1.6) yield
results of acceptable accuracy. In cases of nonuniform deformation, the strains are
defined at a point. This state of strain at a point will be discussed below.

Both normal and shear strains are indicated as dimensionless quantities. In
practice, the normal strains are also frequently expressed in terms of meter (or
micrometer) per meter, while shear strains are expressed in radians (or
microradians). For most engineering materials, strains seldom exceed values of

0.002 or 2000 xz (2000 10_6) in the elastic range.
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L
A~ B (a) —_—————
/ /
X Ax / /
— [ I3 /
) PN )
/ o
’ [ — e
) — —> (b)
U u+tdu
Fig. 1.9 Deformation of a prismatic bar Fig. 1.10 Distortion of a rectangular plate

1.7 Components of Strain

When uniform deformation does not occur, the strains vary from point to
point in a body. Then the expressions for uniform strain must relate to a line 48
of length Ax (Fig. 7.9a). Under the axial load, the end point of the line
experiences displacements u# and u+Au to become A' and B’, respectively
(Fig. 1.9b). That is, an elongation Au takes place. The definition of normal strain

(1.7)

In view of the limit, the foregoing represents the strain at a point to which Ax
shrinks.

In the case of two-dimensional, or plane, strain, all points in the body,
before and after application of load, remain in the same plane. Thus the
deformation of an element of dimensions dx, dy and of unit thickness can contain
linear strains (Fig. 1.11a) and a shear strain (Fig. 1.11b). For instance, the rate of
change of u in the y direction is Ou/dy, and the increment of u becomes

is thus &= lim —

(6u/oy)/dy. Here 0u/dy represents the slope of the initially vertical side of the
infinitesimal element. Similarly, the horizontal side tilts through an angle ov/ox.

The partial derivative notation must be used since u or v is a function of x and y.
Recalling the basis of Egs. (1.6) and (1.7), we can use Fig. 1.11 to come to
ou ov ov Ou
Ex=—13) &, =—; =— 4+ —. 1.8
Yol Y oy Ty ox Oy (1.8)

Clearly, 7, represents the shearing strain between the x and y (or y and x)

9

axes. Hence we have y,, =7,,.
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Strains at a point in a rectangular prismatic element of sides dx, dy, and dz
are obtained in a like manner. The three-dimensional strain components are
Ex, €y, Vyy and

g oW v ow. _Ou 0w (1.9)
e Y e oy T ez ox
where y,, =y, and y,, =y,,. Equations (1.8, 1.9) express the strain tensor in a

manner like that of the stress tensor. If the values of the above strains are known
at a point, the increase in size and the change of shape of an element at that point
are completely determined.

W
u—i—a—udx ou
TU ox —dy )
——————— OV Oy B ___ -~
4+ —dy - /
: i oy B 7 ¢ //
ay| | | al |/ D; ov
_____ | o == /—r—dx
jv . A ox
dx X A dx D
(a) (b)

Fig. 1.11 Deformations of an element: (a) linear strain and (b) shear strain

Six strain components depend linearly on the derivatives of the three
displacement components. Therefore the strains cannot be independent of one
another. Six expressions, known as the equations of compatibility, can be derived
to show the interrelationships among &y, €, €,, 7y, 7y, and yy,. The number of

such equations becomes one for a two-dimensional problem. The expressions of
compatibility state that the deformation of a body is continuous. Physically, this
means that no voids are created in the body. The approach of the theory of
elasticity is based upon the requirement of strain compatibility as well as on
stress equilibrium and on the general relationships between stresses and
strains.

In the method of mechanics of materials, basic assumptions are made
concerning the distribution of strains in the body as a whole so that the difficult
task of solving Eqgs. (1.8, 1.9) and of satisfying the equations of compatibility is
simplified. The assumptions regarding the strains are based upon the measured
strains.
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1.8 Measurement of Strains (Beginning)

Various mechanical, electrical, and optical systems have been developed
for measuring the normal strain on the free surface of a member where a state of
plane stress exists. An extensively used and the most accurate method employs
electrical strain gages.

Strain gage consists of a grid of fine wire or foil filament cemented between
two sheets of treated paper foil or plastic backing (Fig. 1.12a). The backing serves
to insulate the grid from the metal surface on which it is to be bonded. Generally,
0.03-mm-diameter wire or 0.003-mm foil filament is used. As the surface is
strained, the grid is lengthened or shortened, which changes the electrical
resistance of the gage. A bridge circuit, connected to the gage by means of wires,
1s then used to translate variations in electrical resistance into strains. An
instrument used for this purpose is the Wheatstone bridge.

/ Backing j

\
Filament

(a)

Fig. 1.12 Strain gage
1.9 Engineering Materials

In the case of the one-dimensional problem of an axially loaded member,
stress-load and strain-displacement relations represent two equations involving
three unknown values—stress o, strain ¢,, and displacement u. The insufficient

number of available expressions is compensated for by a material-dependent
relationship connecting stress and strain. Hence the loads acting on a member,
the resulting displacements, and the mechanical properties of the materials can be
associated.
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It is necessary to define some important characteristics of commonly used
engineering materials (for example, various metals, plastics, wood, ceramics,
glass, and concrete). The tensile test provides information on material behavior.

An elastic material is one which returns to its original (unloaded) size and
shape after the removal of applied forces. The elastic property, or so-called
elasticity, thus excludes permanent deformation. Usually the elastic range
includes a region throughout which stress and strain are related linearly. This
portion of the stress-strain variation ends at a point called the proportional limit.
Materials having this elastic range are said to be linearly elastic.

In the case of plasticity, total recovery of the size and shape of a material
does not occur. Our consideration in this text will be limited to elastic materials.

A material is said to behave in a ductile manner if it can undergo large
strains prior to fracture. Ductile materials, which include structural steel (a low-
carbon steel or mild steel), many alloys of other metals, and nylon, are
characterized by their ability to yield at normal temperatures. The converse
applies to brittle materials. That is, a brittle material (for example, cast iron and
concrete) exhibits little deformation before rupture and, as a result, fails suddenly
without visible deformation. A member that ruptures is said to fracture. It should
be noted that the distinction between ductile and brittle materials is not so simple.
The nature of stress, the temperature, and the rate of loading all play a role in
defining the boundary between ductility and brittleness (so called ductile-to-brittle
transition).

Under certain circumstances, the deformation of a material may continue
with time while the load remains constant. This deformation, beyond that
experienced when the material is initially loaded, is called creep. On the other
hand, a loss of stress is also observed with time even though the strain level
remains constant in a member. Such loss is called relaxation, it is basically a
relief of stress through the mechanism of internal creep. In materials such as /ead,
rubber, and certain plastics, creep may occur at ordinary temperatures. Most
metals, on the other hand, manifest appreciable creep only when the absolute
temperature is roughly 35 to 50 percent of the melting temperature. The rate at
which creep proceeds in a given material is dependent not only on temperature
but on stress and history of loading as well. In any event, stresses must be kept
low in order to prevent intolerable deformations caused by creep.

A composite material is made up of two or more distinct constituents.
Composites usually consist of a high-strength material (for example, fibers made
of steel, glass, graphite, or polymers) embedded in a surrounding material (for
example, resin, concrete, or nylon), which is termed a matrix. Thus a composite
material exhibits a relatively large strength-to-weight ratio compared with a
homogeneous material; composite materials generally have other desirable
characteristics and are widely used in various structures, pressure vessels, and
machine components.
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We assume that materials are homogeneous and isotropic. A homogeneous
solid displays identical properties throughout. If the properties are identical in all
directions at a point, the material is isotropic. A nonisotropic, or anisotropic,
material displays direction-dependent properties. Simplest among these are those
in which the material properties differ in fwo mutually perpendicular directions. A
material so described (for example, wood) is orthotropic. Mechanical processing
operations such as cold-rolling may contribute to minor anisotropy, which in
practice is often ignored. Mechanical processes and/or heat treatment may also
cause high (as large as 70 or 105 MPa) internal stress within the material. This is
termed residual stress. In the cases treated below, materials are assumed to be
entirely free of such stress.

1.10 Allowable Stress and Factor of Safety

To account for uncertainties in various aspects of analysis and design of
structures—including those related to service loads, material properties,
maintenance, and environmental factors — it is of practical importance to select
an adequate factor of safety. A significant area of uncertainty is connected with
the assumptions made in the analysis of stress and deformation. In addition, one is
not likely to have sure knowledge of the stresses that may be introduced during
the manufacturing and shipment of a part.

The factor of safety is used to provide assurance that the load applied to a
member does not exceed the largest load it can carry. This factor is the ratio of the
maximum load the member can sustain under testing without failure to the load
allowed under service conditions. When a linear relationship exists between the
load and the stress caused by the load, the factor of safety fs may be expressed as

maximum usable stress

Factor of safety =
allowable stress
or (1.10)
a.
f, =—max
Coay

The maximum usable stress o, represents either the yield stress or the
ultimate stress. The allowable stress o,y 1s the working stress. If the factor of

safety used is too low and the allowable stress is too high, the structure may prove
weak in service. On the other hand, when the working stress is relatively low and
the factor of safety relatively high, the structure becomes unnecessarily heavy and
uneconomical.



Chapter 1 CONCEPTS OF STRESS AND STRAIN IN DEFORMABLE SOLID 21

Values of the factor of safety are usually 1.5 or greater. The value is
selected by the designer on the basis of experience and judgment. For the majority
of applications, pertinent factors of safety are found in various construction and
manufacturing codes.

In the field of aeronautical engineering, the margin of safety is used instead
of the factor of safety. The margin of safety is defined as the factor of safety
minus 1, or f; —1.

EXAMPLES

Example 1.1

A pin-connected truss composed of members AB and BC is subjected to a
vertical force P =40kN at joint B (see figure). Each member is of constant cross-
sectional area: 4,5 =0.004 m? and Apc =0.002 m? . The diameter d of all pins
is 20 mm, clevis thickness 7 1s 10 mm, and the thickness # of the bracket is

15 mm. Determine the normal stress acting in each member and the shearing and
bearing stresses at joint C.

-

Ay I E= | —>
+ & ©)
{ C Clevised

- % ends

2m

(a) (b)
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Solution A free-body diagram of the truss is shown in Fig. b. The
magnitudes of the axially directed end forces of members AB and BC, which are
equal to the support reactions at 4 and C, are labeled Fy and F, respectively.
For computational convenience the x and y components of the inclined forces are
used rather than the forces themselves. Hence force ¢ is resolved into /o and

FCy , as shown.

(1) Calculation of support reactions. Relative dimensions are shown by a
small triangle on the member BC in Fig. b. From the similarity of force and
relative-dimension triangles,

3 4
ch=§Fca e, =§FC- (*)

It follows then that F, :gFCy' Application of equilibrium conditions to

the free-body diagram in Fig. b leads to
DM, =0: P(1.5)-F4(2)=0; Fy :%P:30kN (right directed),
=0: - P=0; =P= up directed),
F\,=0: Fg,—-P=0; Fg,=P=40kN di d

YF.=0: —Fo,+F,;=0; Fc,=F,;=30kN (left directed).
We thus have
Fp= %P = 50kN .

Note. The positive sign of F, and F- means that the sense of each of
the forces was assumed correctly in the free-body diagram.

(2) Calculation of internal forces. If imaginary cutting planes are passed
perpendicular to the axes of the members AB and BC, separating each into two
parts, it is observed that each portion is a two-force member. Therefore the
internal forces in each member are the axial forces Fj =30 kN and F- =50 kN.

(3) Calculation of stresses. The normal stresses in each member are

o gt 2 3010
AB= g, 0004 T
3
aBC:jC :583(1)2 = 25MPa,
BC .

where the minus sign indicates compression. Referring to Fig. ¢, we see that the
double shear in the pin C'is

1

Sfe 25x103
TC‘_ =

=== 5—="79.6MPa.
nd” /4 7(0.02)°/4
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For the bearing stress in the bracket at joint C, we have
F. 50%10°

_ Cc __
1d (0.015)(0.02)
while the bearing stress in the clevis at joint C is given by
_F,_ 50x10°

~2td 2(0.01)(0.02)

The shear and bearing stresses in the other joints may be determined in a
like manner.

o) =166.7MPa,

=125MPa.

Op

Example 1.2

A force P of magnitude 200 N is applied to the handles of the bolt cutter
shown in Fig. a. Compute (1) the force exerted on the bolt and rivets at joints A4,
B, and C and (2) the normal stress in member 4D, which has a uniform cross-

: 4 2 : .
sectional area of 2x10 ™ m”. Dimensions are given in millimeters.

480 jl

(©)

Solution The conditions of equilibrium must be satisfied by the entire
cutter. To determine the unknown forces, we consider component parts. Let the
force between the bolt and the jaw be Q. The free-body diagrams for the jaw and
the handle are shown in Figs. b and c. Since AD is a two-force member, the
orientation of force F, is known. Note, that the force components on the two

members at joint B must be equal and opposite, as indicated in the diagrams.
(1) Referring to the free-body diagram in Fig. b, we have

ZFXZO: FBxZO,
> F,=0: Q-F,+Fg, =0, Fy=0+Fpy,

> Mp=0: 0(0.1)- F4(0.075)=0, FA:O—Q75,
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from which Q =3F By - Using the free-body diagram in Fig. ¢, we obtain

ZFXZO: —FBx-l-FCx:O, FCXZO,
S F,=0: —Fp,+Fg,-02=0, FCy=%+0.2,

D> Mc=0: Fg,(0.025)- Fp, (0.012)+0.2(0.48), Fp, =8kN.
It follows that O = 3(8) = 24 kN. Therefore the shear forces on the rivet at
the joints 4, B, and C are Fy=32kN, Fp :FBy =8kN, and F- = FCy =8.2kN,

respectively.
(2) The normal stress in the member 4D is given by
3
o=t 32X104 =160MPa.
4 2x10”

The shear stress in the pins of the cutter is investigated as described in
Example 1.1. Note that the handles and jaws are subject to combined flexural
and shearing stresses.

250 kN Example 1.3
A short post constructed from a hollow circular
tube of aluminum supports a compressive load of 250
N———— kN (see figure). The inner and outer diameters of the
tube are dy=9cm and d, =13cm, respectively, and

its length is 100 cm. The shortening of the post due to
the load is measured as 0.5 mm. Determine the
compressive stress and strain in the post. (Disregard
the weight of the post itself, and assume that the post
does not buckle under the load).

Solution Assuming that the compressive load
acts at the center of the hollow tube, we can use the
equation o = P/ A to calculate the normal stress. The
Hollow aluminum post in force P equals 250kN, and the cross-sectional areca A
compression is

A= %(dzz -4 )= %[(13 em)? —(9 cm)ﬂ ~69.08 cm?.

-

100 cm

Therefore, the compressive stress in the post is
P -250x10°N

o=—= ——— = —36.19 MPa.
A4 69.08x107" m
The compressive strain is
-3
g0 05X10 7 5 0073,

L 100x1072
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Example 1.4

A circular steel rod of length L and diameter d hangs in a mine shaft and
holds an ore bucket of weight W at its lower end (see figure). (1) Obtain a formula
for the maximum stress oy, 1n the rod, taking into account the weight of the rod
itself. (2) Calculate the maximum stress if L =40 m, d = 8 mm, and W= 1.5 kN.

Solution (1) The maximum axial force F,,,, in the rod
occurs at the upper end and is equal to the weight W plus the
weight W, of the rod itself. The latter is equal to the weight
density y of the steel times the volume V of the rod, or

Wo=yV=yAL,

L
in which A4 1s the cross-sectional area of the rod. Therefore, the
formula for the maximum stress becomes J
F W+yAL W
Oax == z =—+yL.
A A A — ¥
(2) To calculate the maximum stress, we substitute w
numerical values into the preceding equation. The cross- gieel rod
2 supporting a

: T . .
sectional area 4 equals R where d = 8 mm, and the weight weight W

density y of steel is 77.0 kN/ m>. Thus,
1.5 kN

7z(8 mm)2 /4

=29.84 MPa +3.11 MPa =33.0 MPa.

Note, the weight of the rod contributes noticeably to the maximum
stress and should not be disregarded.

+(77.0 kNim® ) (40 m) =

Omax =

Example 1.5 1

A thin, triangular plate ABC is
uniformly deformed into a shape ABC', as b
shown by the dashed lines in the figure.
Calculate (1) the normal strain along the
centerline OC; (2) the normal strain along the
edge AC; and (3) the shearing strain between

the edges 4C and BC. A
Solution Referring to the figure, we
have Loc=b and

LAC :LBC Zb\/§=141421b .
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(1), (2) Normal strains. As the change in length OC is Ab=0.001b, Eq.
(1.5) yields

g, =201 6 001-1.0x1073.
b
The lengths of the deformed edges are
) ) 1/2
LAC.:LBC:[Z) +(1.0015) } =1.41492b.
Thus
1.41492 -1.41421 _0502x1073.

FAC T EBC T T a0

(3) Shearing strain. Subsequent to deformation, angle ACB becomes

AC'B=2tan" [ — 2| -g89.043°.
1.0015

The change in the right angle is then 90-89.943=0.057°. The
corresponding shearing strain (in radians) is

y= 0.057(ij =0.995x107>.
180

Note. Since the angle ACB is decreased, the shear strain is positive.

VA Example 1.6
0.25 mm |~ 400mm ’e 0.15 mm A 0.4-m by 0.4-m square ABCD
B _ C is drawn on a thin plate prior to
1 T" - \ loading. Subsequent to loading, the
\ . .

é \ square has the dimensions shown by
e \ \\ the dashed lines in the figure.
S \ \ 0.1 mm Determine the average values of the

LA \\ I v . plane-strain components at corner A.

D box .

— -~ Solution Let the  original
0.3 mm 0.7 mm lengths of a rectangular element of

unit thickness be Ax and Ay. An approximate version of Egs. (1.8), representing

Egs. (1.5) and (1.6), is then
Y

Ex Ax

b

. _& Au
Yy Ay’

Av

= —+ , %k
Vxy A A *)

where u and v are, respectively, the x- and y -directed displacements of a point.
For the square under consideration, we have Ax=Ay=400mm Application of
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Egs. (*) to the figure yields

o _UD Uy :O.7—0.3:10_3

X Ax 400 ’

£, = vp=va _025-0_ ) rsi1073,
Ay 400

Similarly,
U —u vp —V 0-03 0.1-0
Yy = B~UA YDTVA _ 4
Ay Ax 400 400
Note. The negative sign indicates that angle BAD has increased.

=—0.5x107,

Example 1.7

A steel strut § serving as a brace for a boat hoist transmits a compressive
force P=54kN to the deck of a pier (see figure (a)). The strut has a hollow
square cross section with a wall thickness ¢ =12 mm (see figure (b)), and the angle
€ between the strut and the horizontal is 40°. A pin through the strut transmits the
compressive force from the strut to two gussets G that are welded to the base plate
B. Four anchor bolts fasten the base plate to the deck. The diameter of the pin is
d pin =18 mm, the thickness of the gussets is #; =15mm, the thickness of the base

plate is 13 =8 mm, and the diameter of the anchor bolts is dj,;; =12mm.

Determine the following stresses: (1) the bearing stress between the strut
and the pin; (2) the shear stress in the pin; (3) the bearing stress between the pin
and the gussets; (4) the bearing stress between the anchor bolts and the base plate,
and (5) the shear stress in the anchor bolts. In solution, disregard any friction
between the base plate and the deck.

Solution (1) Bearing stress between strut and pin. The average value of
the bearing stress between the strut and the pin is found by dividing the force in
the strut by the total bearing area of the strut against the pin. The latter is equal to
twice the thickness of the strut (because bearing occurs at two locations) times the
diameter of the pin (see figure (b)). Thus, the bearing stress is

Op| = P >4 kN =125 MPa.
2td i 2(12 mm)(18 mm)

This, stress is not excessive for a strut made of structural steel, since the
yield stress is probably near 200 MPa (see Appendix A). Assuming the factor of
safety f; =1.5 allowable stress o, =133 MPa. It means that the strut will be

strong in bearing.
(2) Shear stress in pin. As can be seen from figure (b), the pin tends to
shear on two planes, namely, the planes between the strut and the gussets.
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(b)

(a) Pin connection between strut S and base plate B. (b) Cross section through the strut S

Therefore, the average shear stress in the pin (which is in double shear) is
equal to the total load applied to the pin divided by twice its cross-sectional area:

= P2 = 54kN2 =106 MPa.
27dyin” /4 27(18 mm)~ /4
The pin would normally be made of high-strength steel (tensile yield stress
greater than 340 MPa) and could easily withstand this shear stress (the yield stress
in shear is usually at least 50% of the yield stress in tension).
(3) Bearing stress between pin and gussets. The pin bears against the
gussets at two locations, so the bearing area is twice the thickness of the gussets
times the pin diameter; thus,

P >4 kN =100 MPa,
2Gdpin  2(15 mm)(18 mm)
which is less than the bearing stress against the strut.

(4) Bearing stress between anchor bolts and base plate. The vertical
component of the force P (see figure (a)) is transmitted to the pier by direct
bearing between the base plate and the pier. The horizontal component, however,
is transmitted through the anchor bolts. The average bearing stress between the
base plate and the anchor bolts is equal to the horizontal component of the force P
divided by the bearing area of four bolts. The bearing area for one bolt is equal to
the thickness of the plate times the bolt diameter. Consequently, the bearing
stress 1s

Tpin

Op2

_ Pcos40° (54 kN)(cos40°)

= = =108 MPa.
4tpdpor  4(8 mm)(12 mm)

Op3
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(5) Shear stress in anchor bolts. The average shear stress in the anchor
bolts is equal to the horizontal component of the force P divided by the total
cross-sectional area of four bolts (note that each bolt is in single shear). Therefore,

Pcos40° (54 kN)(cos40°)

4rdyyy’ 4 47 (12 mm)2/4
Note. Any friction between the base plate and the pier would reduce
the load on the anchor bolts.

=119 MPa.

Tholt =

Example 1.8

A punch for making holes in steel plates is shown in Fig. a. Assume that a
punch having a diameter of 19 mm is used to punch a hole in a 6-mm plate, as
shown in the cross-sectional view (see figure (b)). If a force P=125kN is
required, what is the average shear stress in the plate and the average compressive
stress in the punch?

i1

(a) (b)
Punching a hole in a steel plate

Solution The average shear stress in the plate is obtained by dividing the
force P by the shear area of the plate. The shear area as is equal to the
circumference of the hole times the thickness of the plate, or

Ay = zdt = 7(19 mm)(6 mm) =358 mm?,
in which d is the diameter of the punch and ¢ is the thickness of the plate.

Therefore, the average shear stress in the plate is

P 12
Taver =~ = 200N __ 349 MPa.

s 358x1070 m?
The average compressive stress in the punch is
P P 125,000 N

= 2 =
punch >[4 7z(19><10_3)2/4
in which 4,,,,j, 1s the cross-sectional area of the punch.

O'CZA =441 MPa,
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Note. This analysis is highly idealized because we are disregarding impact
effects that occur when a punch is rammed through a plate.

Example 1.9
P a

> A bearing pad of the kind used to
support machines and bridge girders consists of
a linearly elastic material (usually an
elastomer, such as rubber) capped by a steel
plate (see figure (a)). Assume that the thickness
(a) of the elastomer is 4, the dimensions of the
plate are axb, and the pad is subjected to a

horizontal shear force Q.
d "* 0 Obtain formulas for the average shear

— : :

stress 7,,,, 1n the elastomer and the horizontal

/_» 'Y | ] .
-E displacement d of the plate (see figure (b)).
B a |

(b) Solution Assume that the shear stresses
in the elastomer are uniformly distributed
throughout its entire volume. Then the shear
stress on any horizontal plane through the elastomer equals the shear force Q
divided by the area of the plane (see figure (a)):

0

T ==
aver
ab

Bearing pad in shear

The corresponding shear strain (from Hooke's law in shear, which will be
considered below) is

y= Taver __ 9
G, abG,’

in which G, 1s the shear modulus of the elastomeric material. Finally, the

horizontal displacement d is equal to Atany :

dzhtanyzhtan[ 0 }

abG,

In most practical situations the shear strain y is a small angle, and in such
cases we may replace tany by y and obtain

d=hy= hQ
4 abG,

Equations mentioned above give approximate results for the horizontal
displacement of the plate because they are based upon the assumption that the
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shear stress and strain are constant throughout the volume of the elastomeric
material. In reality the shear stress is zero at the edges of the material (because
there are no shear stresses on the free vertical faces), and therefore the
deformation of the material is more complex than pictured in the figure. However,
if the length a of the plate 1s large compared with the thickness /4 of the elastomer,
the results are satisfactory for design purposes.

o

Problem 1.1 Determine the
normal stress in each segment of the
stepped bar shown in the figure. Load P
=20 kN.

CD E
6P 4p <— > P |=2P

A B

P

2 \ 2 2
A=225mm" 4 =900 mm~ 4 =400 mm

Problem 1.2 A rod is subjected
to the five forces shown in the figure.
What is the maximum value of P for the
stresses not to exceed 100 MPa in
tension and 140 MPa in compression?

A B CD E
P 6P 4p <— > P |=«2P

2 \ 2
A=225mm?* 4 =900 mm?2 4 =400 mm

Problem 1.3 The bell-crank
mechanism shown in the figure is in
equilibrium. Determine (1) the normal
stress in the connecting rod CD; (2) the
shearing stress in the 8-mm-diameter
pin at B point; (3) the bearing stress in
the bracket supports at B; and (4) the
bearing stress in the crank at B point.

PROBLEMS
D
C = —>» P
S5kN 150 mm

70°

Problem 1.4 Two plates are
joined by four rivets of 20-mm
diameter, as shown in the figure.
Determine the maximum load P if the
shearing, tensile, and bearing stresses
are limited to 80, 100, and 140 MPa,
respectively. Assume that the load is
equally divided among the rivets.

15 mm 10 mm
P‘—l T T T ] P
+ L \‘-‘/ \H/ \H/ )
Ek
P O
<|30mm O OF [120m i

—
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Problem 1.5 Calculate the
shearing stresses produced in the pins at
A and B for the landing gear shown in
the figure. Assume that each pin has a
diameter of 25 mm and is in double
shear.

‘{ 0.4m ‘<—

40 kN

Problem 16 The piston,
connecting rod, and crank of an engine
system are depicted in the figure.
Assuming that a force P = 10 kN acts as
indicated, determine (1) the torque M,

required to hold the system in
equilibrium and (2) the normal stress in
the rod AB if its cross-sectional area is
5 cm’,

crank

Problem 1.7 The wing of a
monoplane 1is shown in the figure.
Determine the normal stress in rod AC
of the wing if it has a uniform cross

section of 20x 10> m>.

’42—111"4%
5 kN/m

AAAAAAAALY

I m
_Y

A

Problem 1.8 A 150-mm pulley
subjected to the loads shown in the
figure is keyed to a shaft of 25-mm
diameter. Calculate the shear stress in
the key.

Shear key,
5X5x25 mm
S kN
=
g
| ©
b
=
3 kN

Problem 1.9 The lap joint seen in
the figure is fastened by five 2.5-cm-
diameter rivets. For P = 50 kN,
determine (1) the maximum shear stress
in the rivets; (2) the maximum bearing
stress; and (3) the maximum tensile
stress at section a-a. Assume that the
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load is divided equally among the
rivets.

16 mm
P
<_‘¢IAAI¢ l—>P
20mm\v/v t
a
T
NO)
P g P
~ 103
'O |

Problem 1.10 A punch having a
diameter d of 2.5 cm is used to punch a
hole in a steel plate with a thickness 7 of
10 mm, so illustrated in the figure.
Calculate: (1) the force P required if the
shear stress in steel is 140 MPa and (2)
the corresponding normal stress in the

punch.
|
l P
L Punch

l / Plate

(a)

Die

Problem 1.11 Two plates are
fastened by a bolt as shown in the
figure. The nut is tightened to cause a
tensile load in the shank of the bolt of
60 kN. Determine (1) the shearing stress
in the threads; (2) the shearing stress in
the head of the bolt; (3) the bearing
stress between the head of the bolt and
the plate; and (4) the normal stress in
the bolt shank.

. S5S0mm |
bolt
—= 26 mm (~—

5 mm

VWV

E

12 mm

b

-—

22 mm

nut

Problem 1.12 Determine the
stresses 1n members BE and CE of the
pin-connected truss shown in the figure.
Each bar has a uniform cross-sectional

area of 5x 10_3 m? )

F

100 kN‘ #300 kN
B DY
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Problem 1.13 The frame shown
in the figure consists of three pin-
connected,  2.5-cm-diameter  bars.

Calculate the normal stresses in bars AC
and AD for P = 5 kN.

P o

X
I m I m

Problem 1.14 The two tubes
shown in the figure are joined with an
adhesive of shear strength 7=2MPa.
Determine (1) the maximum axial load
P the joint can transmit and (2) the
maximum torque moment My the joint

can transmit.

Adhesive

NV —

T

Problem 1.15 The two tubes
shown in the figure are joined by two
10-mm-diameter rivets, each having a
shear  strength of 7=70MPa.

Determine (1) the maximum axial load
P the joint can transmit and (2) the
maximum torque moment My the joint

can transmit.

Problem 1.16 The connection
shown in the figure is subjected to a
load P = 20 kN. Calculate (1) the shear
stress in the pin at C; (2) the maximum
tensile stress in the clevis; and (3) the
bearing stress in the clevis at C.

12mm

cgu- —

T
50mm 6mm 6mm

r 7

Problem 1.17 Two rods AC and
BC are connected by pins to form a
mechanism for supporting a vertical
load P at C, as shown in the figure. The
normal stresses o in both rods are to be

equal. Determine the angle « if the
frame is to be of minimum weight.

A

A
Y
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Problem 1.18 The butt joint
(see figure) is fastened by four 15-mm-
diameter  rivets.  Determine  the
maximum load P if the stresses are not
to exceed 100 MPa in shear, 140 MPa
in tension, and 200 MPa in bearing.
Assume that the load is equally divided
among the rivets.

5 mm
P | o o .i v P
~= T 7T =
5 mm 8 mm
P O 10 g P
- 1 g -
O u O @
Problem 1.19 The pin-
connected frame shown in the figure
supports the loads Q=5kN and

P =10kN. Determine, for a=30°, (1)
the normal stress in the bar CE of
uniform cross-sectional area

15x10°m? and (2) the shearing
stresses in the 10-mm-diameter pins at
D and E if both are in double shear.

n

2m C
—|q
0
6 m
B ||D E
Zon lo )

Problem 1.20 A long aluminum
alloy wire of weight density
y =28 kN/m® and yield strength 280

MPa hangs vertically under its own
weight. Calculate the greatest length it

can have without permanent
deformation.
Problem 121 A  spherical

balloon changes its diameter from 200
to 201 mm when pressurized.
Determine the average circumferential
strain.

Problem 122 A hollow
cylinder is subjected to an internal
pressure which increases its 200-mm
inner diameter by 0.5 mm and its 400-
mm outer diameter by 0.3 mm.
Calculate (1) the maximum normal
strain in the circumferential direction
and (2) the average normal strain in the
radial direction.

Problem 1.23 Calculate the
maximum strain ¢, in the bar seen in

the figure if the displacement along the
member varies as

(1) u(x)=(x*/L)x107 and
(2) u(x)=Lx (10_3)sin(7rx/2L).

L

A

-
o

|

B I

-_

8

Problem 1.24 As a result of
loading, the thin rectangular plate (see
the figure) deforms into a parallelogram

| X Ax

| -t T

—
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in which sides 4B and CD elongate

0.005 mm and rotate 12OO><10_6 rad

clockwise, while sides AD and BC
shorten 0.002 mm and rotate

400 x 10_6 rad counterclockwise.

Calculate the plane strain components.
Use a =30 mm and b =20 mm.

yﬂ
B

Y

Al a D ¥ (b)

Problem 1.26 A thin

Problem 1.25 Determine the B _
A rectangular plate, a = 20 cm and » = 10
normal strain in the members AB and cm (see figure), is acted upon by a

CB of the structure shown in the figure 1,yia) tensile loading resulting in the

if point B is displaced leftward 3 mm. , . 3
uniform strains &, =0.6x10 and

C &, =0.4x 1073 Calculate the change in
T length of diagonal AC.
y A
B
2m y C
b

A >

A A !: a D X

+ Problem 1.27 A thin
rectangular plate, @ = 20 cm and b = 10
P=40kN  cm (see figure), is acted upon by a
(a) biaxial compressive loading resulting in
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the uniform strains ¢, =—0.2x 107 and

&, =—0.1x 107, Calculate the change
in length of diagonal AC.
y A
B
I C
b
Y .
Al a D X

Problem 1.28 The shear force Q
deforms plate ABCD into AB'C'D (see
figure). For b=200mm and
h=0.5mm, determine the shearing
strain in the plate (1) at any point; (2) at
the center; and (3) at the origin.

y
h
g _ 2, ccC
B 7 -—/7 }
2
/ y /
=H F P
A D |
X

Problem 1.29 A 100-mm by
100-mm square plate is deformed into a
100-omm by 100.2-mm rectangle.
Determine the positive shear strain
between its diagonals.

Problem 1.30 A square plate is
subjected to uniform strains

£, =-0.5x107,,=0.5x10"  and

Vxy =0. Calculate the negative shearing

strain between its diagonals.

Problem 1.31 The plate (see
figure) deforms in loading into a shape
in which diagonal BD elongates 0.2 mm
and diagonal AC contracts 0.4 mm
while they remain perpendicular and
side AD remains horizontal. Calculate

the average plane strain components.
Take a = b = 400 mm.

y A
B
] C
b
\ >
Al a D X
Problem 1.32 The pin-
connected structure ABCD is deformed
into a shape AB'C'D, as shown by the
dashed lines in the figure. Calculate the

average normal strains in members BC
and AC.
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Problem 1.33 The handbrakes
on a bicycle consist of two blocks of
hard rubber attached to the frame of the
bike, which press against the wheel
during stopping (see figure (a)).
Assuming that a force P causes a

parabolic deflection (x:kyz) of the

rubber when the brakes are applied (see
figure (b)), determine the shearing
strain in the rubber.

L

A—
Ja; e _Hard rubber
T

Wheel

15

P y

X
(a)
I
P
—»
|
P
b 8
(b)
Problem 1.34 The thin,

rectangular plate ABC shown in the
figure is uniformly deformed into a
shape A'B'C'". Calculate: (1) the plane
strain components &, &), and y,, and
(2) the shearing strain between edges
AC and BC.

Vi
1.2 1.2
. Im [ 1m :
mm_ﬂ A B! %mm
Al ace -/_,B’ ]
1 m
1.5 mm \

Problem 1.35 A metal bar ABC
having two different cross-sectional
areas is loaded by an axial force P (see
figure). Parts AB and BC are circular in
cross section with diameters 45 mm.
and 32 mm, respectively. If the normal
stress in part AB is 35 MPa, what is the
normal stress o 1n part BC?

A B C
( y—>r
Problem 1.36 Calculate the

compressive stress o, in the piston rod

(see figure) when a force P=40N is
applied to the brake pedal. The line of
action of the force P is parallel to the
piston rod. Also, the diameter of the
piston rod is 5 mm, and the other
dimensions shown in the figure are
measured perpendicular to the line of
action of the force P.
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Problem 137 A circular
aluminum tube of length L =50cm is
loaded in compression by forces P (see
figure). The outside and inside
diameters are 6cm and Scm,
respectively. A strain gage is placed on
the outside of the bar to measure normal
strains in the longitudinal direction. (1)

If the measured strain ¢ =-570x 10_6,
what is the shortening ¢ of the bar? (2)
If the compressive stress in the bar is
intended to be 40 MPa, what should be
the load P?

Strain gage

P,( =
—

D‘P

I

Problem 1.38 A steel wire ABC
supporting a lamp at its midpoint is
attached to supports that are 1.5 m apart
(see figure). The length of the wire is
2 m and its diameter is 0.5 mm. If the
lamp weighs 60 N, what is the tensile
stress o, in the wire?

l< 1.5m

-
:
e

Problem 1.39 A cable and strut
assembly ABC (see figure) supports a
vertical load P =12kN. The cable has

an effective cross-sectional area of 150
mm?, and the strut has an area of 300
mm®. (1) Calculate the normal stresses
o4p and opc in the cable and strut,

respectively, and indicate whether they
are tensiled or compressed. (2) If the
cable elongates 1.1 mm, what is the
strain? (3) If the strut shortens 0.35 mm,
what is the strain?

Problem 1.40 A pump moves a
piston up and down in a deep water well
(see figure). The pump rod has diameter
d =20mm and length L=100cm. The
rod is made of steel having weight
density y=77.0kN/m’. The resisting
force associated with the piston during
the downstroke is 900 N and during the
upstroke is 10,800 N. Determine the
maximum tensile and compressive
stresses in the pump rod due to the
combined effects of the resistance
forces and the weight of the rod.
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Problem 1.41 A reinforced
concrete slab 2.5 m square and 20 cm
thick is lifted by four cables attached to
the corners, as shown in the figure. The
cables are attached to a hook at a point
1.5 m above the top of the slab. The
cables have an effective cross-sectional
area A=80mm’ Determine the tensile
stress o; in the cables. The concrete

specific weight (wegth density) 15,000
N/m’.

Reinforced
concrete slab

Problem 1.42 A round bar ACB
of total length 2L (see figure) rotates
about an axis through the midpoint C
with constant angular speed @ (radians
per second). The material of the bar has
weight density y. (1) Derive a formula
for the tensile stress o, in the bar as a

function of the distance x from the
midpoint C. (2) What is the maximum
tensile stress oy  ?

Q
Co-T :BO
L

—

—>x

L

-«

A
Y

Problem 1.43 The vertical load P
acting on the wheel of a vehicle is
60 kN (see figure). What is the average

shear stress 7,,, 1n the 30-mm

diameter axle?

P

Problem 1.44 A block of wood
is tested in direct shear using the testing
frame and test specimen shown in the
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figure. The load P produces shear in the
specimen along plane AB. The height &
of plane AB is 50 mm and its width
(perpendicular to the plane of the
drawing) is 100 mm. If the load
P =16 kN, what is the average shear
stress 7,,,,- 1n the wood?

lP=16 kN

Testing frame

h=50 mm

Problem 1.45 Two lines are
inscribed at right angles on a block of
material. When the block is loaded in
shear, the lines are found to be at an
angle of 89.75°. What is the shear strain
in the material?

Problem 1.46 An angle bracket
having thickness ¢ =18 mm is attached
to the flange of a column with two
15 mm diameter bolts as shown in the
figure. A uniformly distributed load acts
on the top face of the bracket with a
pressure p = 2.0 MPa. The top face of
the bracket has length L =200 mm and
width  H5=70 mm. Determine the
bearing pressure o between the angle

bracket and the bolts and the average
shear stress 7,,,, in the bolts. Disregard

friction between the bracket and the
column.

A W
b L
E——
.
" ©
_,LJIJ_
N N
Side view Front view

Problem 1.47 Three steel plates,
each 18 mm thick, are joined by two
16 mm rivets as shown in the figure. (1)
If the load P =70 kN, what is the
maximum bearing stress o3 on the

rivets? (2) If the ultimate shear stress
(average stress) in the rivets is
220 MPa, what force B, is required to

cause the rivets to fail in shear?
Disregard friction between the plates.
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P

|

Problem 1.48 A frame ACD
consists of a vertical pipe CD and a
brace AB constructed from two flat bars
(see figure). The frame is supported by
bolted connections at points 4 and C,
which are 2-m apart. The brace is
fastened to the pipe at point B (I m
above point C by an 18-mm diameter
bolt. A horizontal load P acts at point D
(2m above point C). If the load
P=15kN, what is the average shear
stress 7,,,, 1n the bolt at B?

J

3

Section X-X

Problem 1.49 A bolt of shank
diameter d =12 mm passes through a
hole in a steel plate (see figure). The
hexagonal head of the bolt bears

directly against the steel plate. The
diameter of the circumscribed circle for
the hexagon is D =20 mm (which
means that each side of the hexagon has
length 10 mm). Also, the thickness ¢ of
the bolt head is 6 mm. For calculation
purposes, assume the tensile force P in
the bolt is 5SkN. (1) Determine the
average bearing stress o; between the
hexagonal head of the bolt and the

plate. (2) Determine the average shear
stress 7,,,, in the head of the bolt.

Steel plate

;l
.

|4
-

Problem 150 A steel plate of
dimensions 2.5x1.2x0.1 m is hoisted
by a sling that has a clevis at each end
(see figure). The pins through the
clevises are 18 mm in diameter and
located 2 m apart. Each half of the cable
is at an angle of 30° to the vertical. For
these conditions, determine the average
shear stress 7,,,- 1n the pins and the

bearing stress o between the steel
plate and the pins.
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AP

7T\
\\ Cable sling

Steel plate
(2561 2x0.1 m)

Problem 1.51 A torque moment
M7 of 8 kNm is transmitted between

two flanged shafts by means of four 18-
mm bolts (see figure). What is the
average shear stress 7,,,,- In each bolt if
the diameter d of the bolt circle is
150 mm?

My

Problem 1.52 An eclastomeric
bearing pad consisting of two steel

plates bonded to a chloroprene
elastomer is subjected to a shear force O
during a static loading test (see figure).
The pad has dimensions a=120mm
and b=150mm, and the elastomer has

thickness # =40 mm. When the force QO
equals 5 kN, the top plate is found to
have displaced laterally 6.0 mm with
respect to the bottom plate. What is the
shear modulus of elasticity G of the
chloroprene?

‘7‘

|l

Problem 1.53 A bicycle chain
consists of a series of small links, each
about 12 mm long between the centers
of the pins (see figure). For the purpose
of this problem, observe closely the
construction of the bicycle chain links.
Note particularly the cross pins, which
we will assume to have a diameter of
2.5 mm. Now you must make two
measurements: (1) the length of the
crank arm, and (2) the radius of the
chain wheel (sprocket wheel). (1) Using
those dimensions, calculate the tensile
force F' in the chain due to a force of
800 N applied to one of the pedals. (2)

Calculate the average shear stress 7,

in the pins.
= e NN = _— _
T2mm| - ~—
2.5 mm
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Problem 1.54 The bond between
reinforcing bars and concrete is tested
by means of a “pull-out test” of a bar
embedded in concrete (see figure). A
tensile force P is applied to the end of
the bar, which has diameter d and
embedment length L. (1) Assume that
the shear stress (or bond stress) between
the bar and the concrete is uniformly
distributed over the length L. Then, if
P=20kN, d =12 mm, and
L =300 mm, what average shear stress
T,ver 15 developed between the steel

and concrete? (2) In reality the bond
stress between the steel and concrete is
smallest near the surface and largest at
the interior end of the bar. Therefore, to
get slightly better (but still not very
accurate) results, assume that the shear
stress 7 is given by the equation

r

T= m—a3x(4L3 —9Lx” + 6x3),
4

in which 7,,, 1s the maximum shear

stress and the distance x is measured

from the interior end of the bar toward

the surface of the concrete. Then, if
P =20 kN, d =20 mm, and

L =300 mm, what is the maximum
shear stress 7, ?

Problem 1.55 A special lever is
used to twist a circular shaft by means
of a square key that fits into slots (or
keyways) in the shaft and lever, as
shown in the figure. The shaft has
diameter d, the key has a square cross
section of dimensions bxb, and the
length of the key is c¢. The key fits half
into the lever and half into the shaft
(i.e., the keyways have a depth equal to
b/2). Derive a formula for the average

shear stress 7,,, In the key when a

load P is applied at distance L from the
center of the shaft. Disregard the effects
of any friction, assume that the bearing
pressure between the key and the lever
is uniformly distributed.

1.56 The truss
ABCDEFGH shown in the figure (a) is
part of a wood bridge. The truss has
height h and panel length b, with both
dimensions being the same. The truss
members meeting at joint A are shown

Problem
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in detail in the figure (b). A single bolt
of diameter d =40 mm connects the
members at this joint. We will consider
the effect of only one load P=5kN
acting at the midpoint (because the load
has a unit value, the stresses for any
other value of the load can be obtained
by multiplication). (1) What is the
maximum shear force Q,,, in the bolt
at joint H? (2) What is the average shear
stress 7,,,- 1n the bolt at the cross

section of maximum shear force?

B C D
ZNAN:
Aé s Ge s ,E
A H + F A
P e
jﬁb b b b

Problem 1.57 A shock mount
(shown in the figure) is used to support
an expensive instrument. The mount
consists of an outer steel tube with
inside diameter b, a central steel bar of
diameter d that supports the load P, and
a hollow rubber cylinder (height #)
bonded to the tube and bar. (1) Obtain a
formula for the shear stress 7 in the
rubber at a radial distance » from the
center of the mount. (2) Obtain a
formula for the downward displacement
o of the bar due to the load P,
assuming that G is the shear modulus of
elasticity of the rubber and that the steel
tube and bar are rigid.

Steel tube




Chapter 2 Uniaxial Stress State

2.1 Linear Elasticity in Tension-Compression. Hooke's Law and
Poisson’s Ratio. Deformability and Volume Change

Many structural materials, including most metals, wood, plastics, and
ceramics, behave both elastically and linearly when first loaded. Consequently,
their stress-strain curves begin with a straight line passing through the origin. An
example is the stress-strain curve for structural steel (Fig. 2.1), where the region
from the origin O to the proportional limit (point A) is both linear and elastic.

(o)

EV
e

Ultimate
SUeSS | et

Yield stress Fracture

\ 777777777 B
7

Proportional
limit

. /! Perfect plasticity Strain Necking
Linear or yielding hardening
region

Fig. 2.1 Stress-strain diagram for a typical structural steel in tension
Other examples are the regions below both the proportional limits and the elastic

limits on the diagrams for aluminum (Fig. 2.2), rubber (Fig. 2.3), and copper
(Fig. 2.4).

o, MPa o, MPa
280 20
210 —~ =~ 15 //
140 10 Hard [rubber //

70 5 Soft i bby’

_/
ob—
0 2 4 6 €

0.05 0.10 0.15 0.20 e

Fig. 2.2 Typical stress-strain diagram for an Fig. 2.3 Stress-strain curves for two kinds of
aluminum alloy rubber in tension
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2.1.1 Hooke’'s law

When a material behaves & MPa
elastically and also exhibits a linear 5,
relationship between stress and strain, it
1s said to be linearly elastic. This type
of behavior is extremely important in 375 4
engineering because in designing /
structures and machines to function in /
this region, we will avoid permanent 75 -
deformations due to yielding.

The linear relationship between
stress and strain for a bar in simple 125 + + +

tension or compression is expressed by E E @
the equation

o=FEe¢, 2.1 0 + + *
in which o is the axial stress, ¢ is the 0,2 0,4 0,6 &

axial strain, and E 1s a constant of Fig. 2.4 Stress-strain diagram for copper in
proportionality known as the modulus compression

of elasticity for the material. The modulus of elasticity is the slope of the stress-
strain diagram in the linearly elastic region. Since strain is dimensionless, the
units of £ are the same as the units of stress. Typical units of E are pascals (or
multiples thereof) in SI units.

The equation o = E¢ is commonly known as Hooke's law, named for the
famous English scientist Robert Hooke (1635-1703). Hooke was the first person
to investigate scientifically the elastic properties of materials, and he tested such
diverse materials as metal, wood, stone, bone, and sinew. He measured the
stretching of long wires supporting weights and observed that the elongations
"always bear the same proportions one to the other that the weights do that made
them". Thus, Hooke established the linear relationship between the applied loads
and the resulting elongations.

Equation (2.1) is the simplest version of Hooke's law because it relates only
to the longitudinal stresses and strains developed in simple tension or
compression of a bar (uniaxial stress). To deal with more complicated states of
stress, such as those found in most structures and machines, it is necessary to use
more extensive equations of Hooke's law, which will be discussed below.

The modulus of elasticity as the slope of the stress-strain diagram in the
linearly elastic region is different for various materials. The slope of the stress-
strain diagram beyond the proportional limit is defined as the fangent modulus
E;,that is E, =do /de. The ratio of stress to strain at any point on the curve
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above the proportional limit is called the secant modulus E, thatis, E,=0/¢.
Below the proportional limit, both E, and E; are equal to the modulus of
elasticity £ (Fig. 2.5). These quantities are used as measures of the stiffness of
material in tension or compression.
G4 Slope=F; . Elasticity can similarly be
\// measured in a member subjected to
/ shear loading. Referring to Eq. (2.1) for
) / the linearly elastic part of the shear
G o~ A S~ - stress-strain diagram, we write
/ Slope = £ r=Gy. 2.2)
/ Eq. (2.2) is called the Hooke's law
\4 for shear stress and shear strain. The
/s Slope=E constant G is termed the modulus of
0 - rigidity, or shear modulus of elasticity,
& of the material and is expressed in the
Fig. 2.5 Various moduli of elasticity same units as E, that is, in pascals (Pa).
The modulus of elasticity has relatively large values for materials that are
very stiff, such as structural metals. Steel has a modulus of approximately 210
GPa; for aluminum, values around 73 GPa are typical. More flexible materials
have a lower modulus—values for plastics range from 0.7 to 14 GPa. Some
representative values of E are listed in Table 2.1.

Table 2.1 Moduli of elasticity and Poisson's ratios

Material Modulus of Shear modulus of Poisson's
elasticity £ elasticity G ratio, v
GPa GPa
Aluminum alloys 70-79 26-30 0.33
2014-T6 73 28 0.33
6061-T6 70 26 0.33
7075-T6 72 27 0.33
Brass 96-110 36-41 0.34
Bronze 96-120 36-44 0.34
Cast iron 83-170 32-69 0.2-0.3
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Material Modulus of Shear modulus of Poisson's
elasticity £ elasticity G ratio, v
Concrete 17-31 0.1:0.2
(compression)
Copperand - copper | 114 15 40-47 0.33-0.36
alloys
Glass 48-83 19-35 0.17-0.27
Magnesium alloys 41-45 15-17 0.35
0 1 0
Monel (67% Ni, 30% 170 66 0.32
Cu)
Nickel 210 80 0.31
Plastics
Nylon 2.1-3.4 0.4
Polyethylene 0.7-1.4 0.4
Rock (compression)
Granite, marble, | 40-100 0.2-0.3
Limestone 20-70 0.2-0.3
Rubber 0.0007-0.004 0.0002-0.001 0.45-0.50
Steel 190-210 75-80 0.27-0.30
Titanium alloys 100-120 39-44 0.33
Tungsten 340-380 140-160 0.2
Wood (bending)
Douglas fir 11-13
Oak 11-12
Southern pine 11-14

Modulus of elasticity is often called Young's modulus, after another English
scientist, Thomas Young (1773-1829). In connection with an investigation of
tension and compression of prismatic bars, Young introduced the idea of a
"modulus of the elasticity." However, his modulus was not the same as the one in
use today, because it involved properties of the bar as well as of the material.
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2.1.2 Poisson's Ratio

When a prismatic bar is loaded in tension, the axial elongation is
accompanied by lateral contraction (that is, contraction normal to the direction of
the applied load). This change in shape is pictured in Fig. 2.6, where part (a)
shows the bar before loading and part (b) shows it after loading. In part (b), the
dashed lines represent the shape of the

) bar prior to loading.
Lateral contraction is easily

seen by stretching a rubber band, but

(a) in metals the changes in lateral

dimensions (in the linearly elastic

F S Al F region) are usually too small to be

- )—> visible. However, they can be detected
S S —————— o with sensitive measuring devices.

The lateral strain at any point

(b) in a bar is proportional to the axial

Fig. 2.6 Axial  elongation and lateral gtrain at that same point if the material

Icooe;](;irr?s,tlgﬂ dogb? bt;arr;frt‘etrelg‘;"girr‘;g(a) bar before  jq Jinearly elastic. However, in order

for the lateral strains to be the same

throughout the entire bar, additional conditions must be met. First, the axial force

must be constant throughout the length of the bar, so that the axial strain is

constant. Second, the material must be homogeneous, that is, it must have the

same composition (and hence the same elastic properties) at every point.

In tension experiment, we assume that the material is homogeneous so that
the stress and strain would be uniform throughout the bar. However, it is
important to recognize that having a homogeneous material does not mean that
the elastic properties are the same in all directions. For instance, the modulus of
clasticity could be different in the axial and lateral directions. Therefore, a third
condition for uniformity in the lateral strains is that the elastic properties must be
the same in all directions perpendicular to the longitudinal axis. Materials that
are either isotropic or orthotropic meet this condition. When all three conditions
are met, as is often the case, the lateral strains in a bar subjected to uniform
tension will be the same at every point in the bar and the same in all lateral
directions. In result, materials having the same properties in all directions (axial,
lateral, and in between) are said to be isotropic. If the properties differ in various
directions, the material is anisotropic (or aeolotropic). A special case of
anisotropy occurs when the properties in a particular direction are the same
throughout the material and the properties in all directions perpendicular to that
direction are the same (but different from the first properties); then the material is
classified as orthotropic. Fiber-reinforced plastics and concrete reinforced with
parallel steel bars are examples of composite materials that exhibit orthotropic
behavior.
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The ratio of the lateral strain &' to the axial strain ¢ is known as Poisson's
ratio and is denoted by the Greek letter v (nu); thus,

lateral strain &'
y=———=—, (2.3)
axial strain &

from which
E'=-ve. (2.4)

For a bar in tension, the axial strain is positive and the lateral strain is
negative (because the width of the bar decreases). For compression we have the
opposite situation, with the bar becoming shorter (negative axial strain) and wider
(positive lateral strain). Therefore, for ordinary materials Poisson's ratio always
has a positive value.

Note. When using Eqgs. 2.3 and 2.4, we must always keep in mind that
they apply only to a bar in uniaxial stress, that is, a bar for which the only
stress is the normal stress o in the axial direction.

Poisson's ratio is named for the famous French mathematician Simeon
Denis Poisson (1781-1840), who attempted to calculate this ratio by a molecular
theory of materials. For isotropic materials, Poisson found v=0.25. More recent
calculations based upon better models of atomic structure give v=0.33. Both of
these values are close to actual measured values, which are in the range 0.25 to
0.35 for most metals and many other materials. Materials with an extremely low
value of Poisson's ratio include cork, for which v is practically zero, and concrete,
for which v is about 0.1 or 0.2.

A table of Poisson's ratios for various materials in the linearly elastic range
is given in Table 2.1. For most purposes, Poisson's ratio is assumed to be the same
in both tension and compression.

When the strains in a material become large, Poisson's ratio changes. For
instance, in the case of structural steel the ratio becomes almost 0.5 when plastic
yielding occurs. Thus, Poisson's ratio remains constant only in the linearly elastic
range. From a more general viewpoint, the ratio of lateral strain to axial strain is
often called the contraction ratio. Of course, in the special case of linearly elastic
behavior, the contraction ratio is the same as Poisson's ratio.

The moduli of elasticity in tension and shear are related by the following
equation:

oo E
2(1+v)
in which v is Poisson's ratio. This relationship shows that £, G, and v are not
independent elastic properties of the material. Because the value of Poisson's ratio
for ordinary materials is between zero and one-half, we see from Eq. (2.5) that G
must be from one-third to one-half of E.

(2.5)
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2.1.3 Deformability and Volume Change

The lateral contraction of an infinitesimally small cubic element in tension
is illustrated in Fig. 2.7, where it is assumed that the faces of the cube at the origin
are fixed in position. The deformations shown are greatly enlarged. For the

loading condition represented in the figure, we have o, =0, =0, and o, is the

axial stress. Thus the transverse strains are connected to the axial strain by Egs.
(2.1) and (2.3) as follows:

£, =&, =—vey = —v"—EX. (2.6)
We observe from the figure that the final volume of the element is
Ve=(1+&)dx(1+&,)dy(1+¢,)dz. 2.7)

Expanding the right side and neglecting higher-order terms involving

8)% and g; , we obtain

Y
in which V}y 1s the initial volume dxdydz and AV 1s absolute change in volume.

Vi=(1+6c+é,+é, )dedydz = Vo + AV, (2.8)

The unit volume change e is therefore defined as

AV
e=7=8x+£y+82. (2.9)
0
Substitution of Eq. (2.6) into this expression yields
1-2
e=(1-2v) 6, =— 0o, (2.10)
y The quantity e is also referred
to as the dilatation. It is observed
dx 8ydx¢ from the foregoing result that a
S0 4 T tensile  force increases and a
7| .
an compressive force decreases the
s [T -T -~ .  volume of the clement.
-t | —T> In the case of an
dyl oL — |1 __J - ibl ial h
7 ~ incompressible material, we have
| // J e=0 and Eq. (2.10) shows that
=== e dz 1-2v=0 or v=0.5. For most
,Z/ _’/sxdx L / materials in the linear elastic range

: . v< 0.5, since some change in volume
Fig. 2.7. Lateral contraction of an element of ’ g

deformable solid under uniaxial tension occurs. In the plastic region, however,
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the volume remains nearly constant and hence v is taken as 0.5. As already
pointed out, for most materials v is about 0.25 or 0.33 in the linearly elastic
region, which means that the unit volume change is in the range /3 to ¢/2.

EXAMPLES

Example 2.1
P A steel pipe of length L =150cm outside diameter

d> =15cm, and inside diameter d; =11cm is compressed

by an axial force P =600kN (see figure). The material has
modulus of elasticity £ =210 GPa and Poisson's ratio
v=0.30.

Determine the following quantities for the pipe: (1)
the shortening ¢'; (2) the lateral strain &'; (3) the increase
Ad, 1n the outer diameter and the increase Ad| in the inner

diameter; (4) the increase A¢ in the wall thickness; (5) the
increase AV in the volume of material, and (6) the
dilatation e.

Solution The  cross-sectional area A4  and
longitudinal stress o are determined as follows:

4 =%(d22 -4’ =%[(15 em)? - (11 cm)z} ~81.64x107% em?,

P —600x10° N
4 81.64x10* cm?
Because the stress is well below the yield stress for steel (from 200 MPa for

structural steels up to 1,600 MPa for spring steels), the material behaves linearly
elastically and the axial strain may be found from Hooke's law:

=—73.5 MPa (compression).

(o)

_ 6
g:Q:LXlg:—o.%xlo‘?
E  210x10
(1) Knowing the axial strain, we can now find the change in length of the
pipe: o=¢L= (—0.35 x1073 )(1.2 m) =-0.42x107> m=-0.42 mm.

The negative sign for 0 indicates a shortening of the pipe.
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(2) The lateral strain is obtained from Poisson's ratio &' =-ve:
&' =—ve =~(0.30)(-0.35x107) = 0.105x10>.

The positive sign for &' indicates an increase in the lateral dimensions, as
expected for compression.

(3) The increase in outer diameter equals the lateral strain times the
diameter:

Ady = &'dy =(0.105x107°)(15 em) =1.575x107° m.
Similarly, the increase in inner diameter is
Ady = &/d; =(0.105x107 (11 em) =1.155x107 m.

(4) The increase in wall thickness is found in the same manner as the
increases in the diameters; thus,

At =t =(0.105x107)(2 em) =0.21x107 m.

This result can be verified by noting that the increase in wall thickness is equal to
the following:
w :%(1.575 ~1.155)x1075 m=0.21x107% m, as expected.
Note. Under compression, all three quantities increase (outer diameter, inner
diameter, and thickness).

(5) The change in volume of the material is calculated from:

AV =V, —Vy=Vpe(1-2v)=ALg(1-2v) =

At =

~(81.64x10™° m?)(1.2 m)(-0.35x107%) (1-0.60) = ~14.683 107 m”.

The volume change is negative, indicating a decrease in volume, as expected for

compression.
(6) Finally, the dilatation is
e=2 _c1-20)=Z(1-2),
4 E

e=2(1-2v)=(-0.35x107)(1-0.60) =—0.00014,

which is a 0.014% reduction in the volume of material.
Note. The numerical results obtained in this example illustrate that the
dimensional changes in structural materials under normal loading conditions
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are extremely small. In spite of their smallness, changes in dimensions can be
important in certain kinds of analysis (such as the analysis of statically
indeterminate structures) and in the experimental determination of stresses
and strains.

Example 2.2
A steel rectangular block, a =2.4cm wide and b =1.2 cm deep, is subjected
to an axial tensile load as shown in the figure. Measurements show the block to

increase in length by 6, =7.11x 10m (initial length L =10cm) and to decrease
in width by ¢, =0.533x 107> m, when P is 45kN. Calculate the modulus of
elasticity and Poisson's ratio for the material.

Solution The cross-sectional area of the block is 4 =2.4x1.2=2.88cm?.

The axial stress and strain are

P X L 107!
The transverse strain in the z
direction is

¥ 3
T o, =L =20 _i563mpa,
A 28810
P s
w L S AL ISR
L
/4\7//5;

£ 0.533x107°

== =2 20x107Y,
a 24x10™
The depth of the block contracts by
5y = (2.22 X 10_4)(1 2 X 10_2) =2.664x107° m, since £y =&;. Formulas (2.1)

and (2.3) result in the values

o, 1563x10°

E=2x_ ’ —219.8x10° Pa=219.8 GPa
gx 711)(10_
and
—4
FA
&y _222x10 o031
gx 711)(10_

for the modulus of elasticity and Poisson's ratio, respectively.
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P

Problem2.1 A 10-mm by 10-
mm square ABCD 1s drawn on a
member prior to loading. After loading,
the square becomes the rhombus shown
in the figure. Determine (1) the modulus
of elasticity and (2) Poisson's ratio.

B 4'*_
o A|Q|c 14.15 mm = 5>
=
14.11 mm
Problem 2.2 A 50.8 mm-

diameter bar 1.83 m long shortens 1.19
mm under an axial load of 178 kN. If
the diameter is increased 0.01 mm
during loading, calculate (1) Poisson's
ratio; (2) the modulus of elasticity; and
(3) the shear modulus of elasticity.

Problem 2.3 A round steel rod
of diameter 25 mm is subjected to axial
tensile force F. The decrease in
diameter is 0.012 mm. Compute the
largest value of F' for £ =200 GPa and
v=0.33.

Problem 2.4 The block s
subjected to an axial compression of
P=400 kN  (see  figure). Use
a=60mm, b=40mm, and
L =200 mm. If dimensions b and L are

changed to 40.02 and 199.7 mm,
respectively, calculate: (1) Poisson's
ratio; (2) the modulus of elasticity; (3)
the final value of the dimension «; and
(4) the shear modulus of elasticity.

PROBLEMS

yT
P
—

ST

Problem 2.5 Calculate the
smallest diameter and shortest length
that may be selected for a steel control
rod of a machine under an axial load of
4 kN if the rod must stretch 2.5 mm.
Use £ =200 GPa and o,; =150 MPa.

Problem 2.6 A prismatic bar is
loaded in tension by axial forces. Find
Poisson's ratio for the material if the
ratio of the unit volume change to the
unit change in cross-sectional area is
equal to —0.67.

Problem 2.7 Verify that the
change in the slope of the diagonal line
AB, A, of a rectangular plate (see
figure) subjected to a uniaxial
compression stress o 1s given by

A:£|:1+(VG/E)1:|’
b| 1-(o/E)
where a/b is the initial slope. For
a=25mm, b = 50 mm, v = 0.3, and
E =70 GPa, calculate the value of A
when o =120 MPa.
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compressive load P = 200 KkN.
=B B _ Determine the change in (1) length AL;

___________________________________________

Problem 2.8 A 15-mm-diameter
bar with a 125-mm-gage length is
subjected to a gradually increasing
tensile load. At the proportional limit,
the value of the load is 35 kN, the gage
length increases 0.35 mm, and the
diameter decreases 0.015 mm. Calculate
(1) the proportional limit; (2) the
modulus of elasticity; (3) Poisson's
ratio; and (4) the shear modulus of
elasticity.

Problem 2.9 A 6-m-long truss

member is made of two 50-mm-
diameter steel bars (£ =210GPa,
opr=230MPa, v = 03). Given a

tensile load of 300 kN, calculate the
change in (1) the length of the member
and (2) the diameter of a bar.

Problem 2.10 A 5-cm-diameter
solid brass bar (£ =103GPa, v =0.3) is
fitted in a hollow bronze tube.
Determine the internal diameter of the
tube so that its surface and that of the
bar are just in contact, with no pressure,
when the bar is subjected to an axial
compressive load P = 180 kN.

Problem 2.11 The cast-iron
pipe shown in the figure (£ =70 GPa,
v=0.3), which has length L=0.5 m,
outside diameter D =150 mm, and wall
thicknesses 1 =15 mm, is under an axial

(2) diameter AD ; and (3) thickness Af.

P P
—_— A
- L -
t
Problem 2.12 The brass pipe

shown in the figure (E =105 GPa,
v=0.3), which has length L=0.5 m,
outside diameter D =150 mm, and wall
thicknesses ¢t =15 mm, is under an axial
tensile load P = 200 kN. Determine the
change in (1) length AL; (2) diameter
AD ; and (3) thickness At.

P P
o >
L

t
Problem 2.13 The aluminum

rod, 50 mm in diameter and 1.2 m in
length, of a hydraulic ram is subjected
to the maximum axial loads
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of £200 kN. What are the largest
diameter and the largest volume of the
rod during service? Use E =70 GPa and
v=0.3.

Problem 2.14 A 20-mm-
diameter bar is subjected to tensile
loading. The increase in length
resulting from the load of 50 kN is 0.2
mm for an initial length of 100 mm.
Determine (1) the conventional and true
strains and (2) the modulus of elasticity.

Problem 2.15 A 25-mm-
diameter solid aluminum-alloy bar
(E=70GPa and v=0.3) is fitted in a
hollow plastic tube of 25.05 mm
internal  diameter. Determine the
maximum axial compressive load that
can be applied to the bar for which its
surface and that of the tube are just in
contact and under no pressure.

Problem 2.16 A cast-iron bar
(E= 80 GPa, v = 0.3) of diameter
d=75 mm and length L = 0.5 m is
subjected to an axial compressive load
P =200 kN. Determine (1) the increase
Ad 1in diameter; (2) the decrease AL in
length; and (3) the change in volume
AV .

Problem 2.17 A 50-mm-
diameter and 100-mm-long solid
cylinder is subjected to uniform axial
tensile stresses of o, =50MPa. Use

E=205MPa and v=0.33. Calculate
(1) the change in length of the cylinder
and (2) the change in volume of the
cylinder.

Problem 2.18 A high-strength
steel rod having modulus of elasticity
E=200GPa and Poisson's ratio
v=0.29 1s compressed by an axial
force P (see figure). Before the load
was applied, the diameter of the rod was
exactly 25.000 mm. In order to provide
certain clearances, the diameter of the
rod must not exceed 25.025 mm under
load. What is the largest permissible
load P?

d

P et

Problem 2.19 A prismatic bar
of circular cross section is loaded by
tensile forces P=120kN (see figure).
The bar has length L=3.0m and
diameter d =30mm. It is made of
aluminum alloy with modulus of
elasticity £ =73 GPa and Poisson's ratio
v=0.33. Calculate (1) the elongation
0 ; (2) the decrease in diameter Ad , and
(3) the increase in volume AV of the
bar.

P

d =30 mm

J
£

P=120 kN
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Problem 2.20 A high-strength
steel wire, 3 mm in diameter, stretches
35 mm when a 15m length of it is
stretched by a force of 4 kN. (1) What is
the modulus of elasticity £ of the steel?
(2) If the diameter of the wire decreases

by 2.2x1073 mm, what is Poisson's
ratio? (3) What is the unit volume
change for the steel?

Problem 2.21 A round bar of 10
mm diameter is made of aluminum
alloy. When the bar is stretched by an
axial force P, its diameter decreases by
0.016 mm. Find (1) the magnitude of
the load P and (2) the dilatation of the
bar.

Problem 2.22 A bar of monel
metal (length L = 200 mm, diameter d =
6 mm) is loaded axially by a tensile
force of P = 6.7 kN (see figure). Using
the data (E=170GPa,v=0.32),

determine (1) increase in length; (2)
decrease in diameter of the bar; (3)
increase in volume of the bar and (4)
the dilatation.

Problem 2.23 A plate of length
L and width b is subjected to a uniform
tensile stress o at the ends (see figure).
The material has modulus of elasticity £
and Poisson's ratio v. Before the stress
was applied, the slope of the diagonal

line OA was b/ L. (1) What is the slope
when the stress o is acting? (2) What is
the unit change in area of the face of the
plate? (3) What is the unit change in
cross-sectional area?

)
A
A ~—
] +—
bl ©=— —=°
<] —
Z/P——

Problem 2.24 A tensile test is
performed on a brass specimen 10 mm
in diameter using a gage length of 50
mm (see figure). When the tensile load
P reaches a value of 20 kN, the distance
between the gage marks has increased
by 0.122 mm. (1) What is the modulus
of elasticity £ of the brass? (2) If the
diameter decreases by 0.00830 mm,
what is Poisson's ratio? (3) What is the
dilatation of the bar?

10 mm
1 50 mm

Problem 2.25 Derive a formula
for the increase AV in the volume of a
prismatic bar of length L hanging

vertically under its own weight (W —
total weight of the bar).

-- ()_ﬁ
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2.2 Stresses on Inclined Planes in Uniaxial Stress State

In our previous discussions of tension and compression in axially loaded
members, the only stresses we considered were the normal stresses acting on
cross sections. These stresses are pictured in Fig. 2.8, where we consider a bar AB
subjected to axial load P. When the bar is cut at an intermediate cross section by a
plane m-n (perpendicular to the x axis), we obtain the free-body diagram shown in
Fig. 2.8b. The normal stresses acting over the cut section may be calculated from
the formula o, = P/A provided that the stress distribution is uniform over the

entire cross-sectional area 4. This assumption may be used if the bar is prismatic,
the material is homogeneous, the axial force P acts at the centroid of the cross-
sectional area, and the cross section is away from any localized stress
concentrations (Saint-Venant's zones). Because the cross-section is perpendicular
to the longitudinal axis of the bar, there are no shear stresses acting on the cut
section. In Fig. 2.8c the stresses in a two-dimensional view of the bar are shown.
The most useful way of representing the stresses in the bar of Fig. 2.8 is to

Y
m
| ’,’| :
G e T ]
T —
e P I
4 /n B
(a)
Y
§ ———_|
P Ol 1 _P
% My > X Oy Z
Z/,/"L __________________ ——
A
(b)
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m
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)
=

Qq

=

Il
SNg o)

(c)
Fig. 2.8 Prismatic bar tension showing the stresses acting on cross section m-n: (a) bar with

axial forces P, (b) three-dimensional view of the cut bar showing the normal stresses, and (c)
two-dimensional view
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isolate a small element of material, such as the element labeled C in Fig. 2.8, and
then show the stresses acting on all faces of this element. An element of this kind
is called a stress element. The stress element at point C is a small rectangular
block (it doesn't matter whether it is a cube or a rectangular parallelepiped) with
its right-hand face lying in cross section m-n. The dimensions of any stress
element are assumed to be infinitesimally small (Fig. 2.9a). In this case, the edges
of the element are parallel to the x, y, and z axes, and the only stresses are the
normal stresses o, acting on the x faces (recall that the x faces have their normals

parallel to the x axis). Two-dimensional view of the element is represented in
Fig. 2.9b.

y
y
]
P | s P
Gx—z : x_A
- = —_— 5 o
oL Y] __ L < A
,’/ dz
v ) X
/ dx
zZ
(a) (b)

Fig. 2.9 Stress element at point of the axially loaded bar shown in Fig 2.8c: (a) three-
dimensional view of the element, and (b) two-dimensional view of the element

The stress element of Fig. 2.9 provides only a limited view of the stresses in
an axially loaded bar. To obtain a more complete picture, we need to investigate
the stresses acting on inclined planes, such as the section cut by the inclined plane
p-q in Fig. 2.10a. The stresses acting over the inclined section must be uniformly
distributed. It is shown in the free-body diagrams of Fig. 2.10b (three-dimensional
view) and Fig. 2.10c (two-dimensional view). From the equilibrium of the free
body we know that the resultant of the stresses must be a horizontal force P
(dashed line in Figs. 2.10b and 2.10c).

For specifying the orientation of the inclined section p-g we install the
angle 6 between the x axis and the normal »n to the section (Fig. 2.11a). By
contrast, cross section m-n (Fig. 2.8a) has an angle 6 equal to zero (because the
normal to the section is the x axis). For the stress element of Fig. 2.9 the angle 6
for the right-hand face is 0, for the top face is 90° (a longitudinal section of the

bar), for the left-hand face is 180°, and for the bottom face is 270° (or —90°).



62 Chapter 2 UNIAXIAL STRESS STATE

Fig. 2.10 Prismatic bar in tension showing the stresses acting on an inclined section p-q: (a)
bar with axial forces P, (b) three-dimensional view of the cut bar showing the stresses, and (c)
two-dimensional view

To find the stresses acting on section p-q (Fig. 2.11b) we will use the fact
that the resultant of these stresses is a force P acting in the x direction. This
resultant may be resolved into two components, a normal force N that is
perpendicular to the inclined plane p-¢g and a shear force Q that is tangential to it.
These force components are

N = Pcos@, O = Psind. (2.11 a, b)

In assumption of uniform stress distribution the normal stress is equal to the
normal force N divided by the area of the section, and the shear stress is equal to
the shear force Q divided by the area of the section. Thus, the stresses are

azﬁ, r:g, (2.12a,b)
4 4
in which 4, is the area of the inclined section (4 represents the cross-sectional

area of the bar):
A

cos@

Ay = (2.13)
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Fig. 2.11 Prismatic bar in tension showing the stresses acting on an inclined section p-q

The stresses o and 7 act in the directions shown in Figs. 2.11¢ and d, that is, in
the same directions as the normal force N and shear force Q, respectively.

We need to establish now a standardized sign convention for stresses acting
on inclined sections. We will use a subscript 8 to indicate that the stresses act on a
section inclined at an angle 8 (Fig. 2.12), just as we use a subscript x to indicate
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that the stresses act on a section perpendicular to the x axis (see Fig. 2.8). Normal
stresses Og are positive in tension and shear stresses Tty are positive when they
tend to produce counterclockwise rotation of the material, as shown in Fig. 2.12.

For a bar in tension, the normal force N produces positive normal stresses
oy (see Fig. 2.11c) and the shear force O produces negative shear stresses 7y

y (see Fig. 2.11d). These stresses are
. given by the following equations:
Gg >
To >0 (§>0 agzgzgcoszé’, (2.14)
e . \ 0 | i
Tg =———=——cosfsmnb. (2.15)
A4 A

Fig. 2.12 Sign convention for stresses acting I duci h .
on an inclined section (normal stresses are ntroducing  the  notation
positive when are tensiled and shear stresses o, = P/ A4, in which o, is the normal

are positive when they tend to produce .
counterclockwise rotation) str_e 5§ on ?1 Cross s.ectlon,' and also
using the trigonometric relations

cos20:%(1+cos29), sin@cosé?:%sinZH, (2.16)
we get
_ 2,5_0x
O =0, COs 9—7(1+cos29), (2.17a)
79 =—0, sinOcos O = —%(sin 20). (2.17b)

These equations give the normal and shear stresses acting on an inclined
section oriented at an angle 6.

Note. Egs. (2.17a) and (2.17b) were derived only from statics, and
therefore they are independent of the material. Thus, these equations are
valid for any material, whether it behaves linearly or nonlinearly, elastically
or inelastically.

The graphs, which show the stresses variation as the inclined section is cut
at various angles are shown in Fig. 2.13. The horizontal axis gives the angle as it

varies from —90° to +90°, and the vertical axis gives the stresses oy and 7p.
Note. A positive angle is measured counterclockwise from the x axis
(Fig. 2.12) and a negative angle is measured clockwise.
As shown on the graph, the normal stress oy equals o, when 6 =0. Then,

as O increases or decreases, the normal stress diminishes until at € =+90° it
becomes zero, because there are no normal stresses on sections cut parallel to the
longitudinal axis. The maximum normal stress occurs at @ = 0 and is

Omax = Oy - (2.18)

When 6 = £45°, the normal stress is one-half the maximum value.
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The shear stress 7y is zero on Og Oty

cross sections of the bar (6 = 0) as
well as on longitudinal sections (6 =
+90°). Between these extremes, the
stress varies as shown on the graph,
reaching the largest positive value - L
when 6 = —45° and the largest —90 —45
-0.50,

negative value when 6 =+45°.
These maximum shear stresses have

the same magnitude: Fig. 2.13 Graph of normal stress op and

Ox (2.19) shear stress 7y versus angle of the inclined

T =—
max 27 section (see Fig. 2.12 and Eqgs. 2.17a and b)

but they tend to rotate the element in opposite directions.

The maximum stresses in a bar in tension are shown in Fig. 2.14. Two
stress elements are selected. Element 4 is oriented at & = 0° and element B is
oriented at & = 45°. Element 4 has the maximum normal stresses (Eq. 2.18) and
clement B has the maximum shear stresses (Eq. 2.19). In the case of element A
(Fig. 2.14b), the only stresses are the maximum normal stresses without shear
stresses on any of the faces.

y

]; 0 X B —

(a)

Ox

Gx Cy

X \/
2

(b) (©)

Fig. 2.14 Normal and shear stresses acting on stress elements oriented at € =0° and
6 = 45° for a bar in tension
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In the case of element B (Fig. 2.14c¢), both normal and shear stresses act on
all faces. Consider, for instance, the face at 45° (the upper right-hand face). On
this face the normal and shear stresses (from Eqgs. 2.17a and b) are +0,/2 and
— o0, /2 respectively. Hence, the normal stress is tension (positive) and the shear
stress acts clockwise (negative) against the element. The stresses on the remaining

faces are obtained in a similar manner by substituting and § = 135°, —45°, and

—135° into Egs. (2.17a and b). Thus, in this special case of an element oriented at
0 = 45°, the normal stresses on all four faces are the same (equal to o, /2) and all

four shear stresses have the maximum magnitude (equal to o, /2).

Note. The shear stresses acting on perpendicular planes are equal in
magnitude and have directions either toward, or away from, the line of
intersection of the planes (common edge).

If a bar is loaded in compression instead of tension, the stress o, will be
compressive and will have a negative value. Consequently, all stresses acting on
stress elements will have directions opposite to those for a bar in tension.
Egs. (2.17a and b) can still be used for the calculations by substituting o, as a
negative quantity.

Even though the maximum shear stress in an axially loaded bar is only one-
half the maximum normal stress, the shear stress may cause failure if the material
is much weaker in shear than in tension (it depends of, for example, internal
crystalline structure of metals). An example of a shear failure is pictured in Fig.
2.15, which shows a block of wood that was loaded in compression and failed by
shearing along a 45° plane. A similar type of behavior occurs in mild steel loaded
in tension. During a tensile test of a flat bar of low-carbon steel with polished
surfaces, visible slip bands appear on the sides of the bar at approximately 45° to
the axis (Fig. 2.16). These bands indicate that the material is failing in shear along
the planes on which the shear stress is maximum. Such bands were first observed
by G. Piobert in 1842 and W. Luders in 1860, and today they are called either
Luders' bands or Piobert's bands. They begin to appear when the yield stress is
reached in the bar (point B in Fig. 2.1).

In result, the state of stress described in this chapter is called uniaxial
stress, for the obvious reason that the bar is subjected to simple tension or
compression in just one direction and o, in € =0 is called principal stress. The

most important orientations of stress elements for uniaxial stress state are 8 =0

and 0 =45" (Fig. 2.14); the former has the maximum normal stress and the latter
has the maximum shear stress. If sections are cut through the bar at other angles,
the stresses acting on the faces of the corresponding stress elements can be
determined from Egs. (2.17a and b). Uniaxial stress state is a special case of a
more general stress state known as plane stress.
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Load Load

f

:

Load
Fig. 2.15 Shear failure 45° plane of a wood Fig. 2.16 Slip bands (or a Luders' bands) in a
block loaded in compression polished steel specimen loaded in tension

EXAMPLES

Example 2.3

A prismatic bar having cross-sectional area 4 =1200 mm? is compressed
by an axial load P =90kN (see figure (a)). (1) Determine the stresses acting on an
inclined section p-g cut through the bar at an angle @ =25". (2) Determine the
complete state of stress for @ =25° and show the stresses on a properly oriented
stress element.

Solution (1) Calculation of stresses acting on an inclined section. To find

the stresses acting on a section at @ =+25°, we first calculate the normal stress
O, , acting on a cross section:

o =L 0N __ g5 \ipa,

74 1200 mm? .
where the minus sign indicates that the stress is compressive. Next, we calculate

the normal and shear stresses from Egs. (2.17a and b) with @ =+25°, as follows:
Oy =0, cos” 0 = (=75 MPa)(cos 250)2 =-61.6 MPa,

79 =—0 sin@cos @ = —(~75 MPa)(sin 25°)(cos 25°) = +28.7 MPa .

These stresses are shown acting on the inclined section in the figure (b). The normal
stress oy 1s negative (compressive). The shear stress 7y 1s positive (and counterclockwise).
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X1
_9=25°

. \ L ] P=90KN

(@ .

28.7 MPa /\sto

p \\\ 61.6 MPa
—_—

(b)

13.4 MPa
\ 28.7 MPa X1

28.7 MPa /2'50
\Aﬁ MPa

YO

> X

‘/\ 28.7 MPa

13.4 MPa
(©)

(2) Complete state of stress for @ =25°. To determine the complete state of
stress, we need to find the stresses acting on all faces of a stress element oriented

at +25° (see figure (c)). Face ab, for which 6 =+25°, has the same orientation as
the inclined plane shown in the figure (b). Therefore, the stresses are the same as

those given above.
The stresses on the opposite face cd are the same as those on face ab, which

can be verified by substituting @ =25° +180° =205° into Egs. (2.17a and b).

For face bc we substitute 6 =25"—-90° =—65° into Egs. (2.17a and b) and

obtain
oy =—13.4 MPa (compressive), 79 =—28.7 MPa (clockwise).
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These same stresses apply to the opposite face ad, as can be verified by

substituting & =25°+90° =115 into Egs. (2.17a and b). The normal stress is
compressive and the shear stress is clockwise.

The complete state of stress is shown by the stress element (see figure (c)).
A sketch of this kind is the way to show the directions of the stresses and the
orientations of the planes on which they act.

Example 2.4
A compressed bar having a square cross of width b must support a load
P =37kN (see figure (a)). The two parts of the bar are connected by a glued joint

along plane p-g, which is at an angle a=40" to the vertical. The bar is
constructed of a structural plastic for which the allowable stresses in compression
and shear are 7.6 MPa and 4.1 MPa, respectively. In addition, the allowable
stresses in the glued joint are 5.2 MPa in

compression and 3.4MPa in shear. P

Determine the minimum width b of the bar.

Solution The sketch of the bar is

represented in the figure (b) in horizontal A

position similar to considered above, to use p |

the equations for the stresses on an inclined o \

section similar to Figs. 2.11 and 2.12. N1
b

With the bar in this position, we see i
that the normal » to the plane of the glued -

joint (plane p-g) makes an angle ,/I'""
=90 —a, or 50°, with the axis of the

bar. Since the angle & is defined as positive (a)
when counterclockwise (Fig. 2.12), we

Vi
believe that @ =-50° for the glued joint.
The cross-sectional area of the bar is p
related to the load P and the stress o, on P O P
. . _> —X
the cross sections by the equation CAVANY
P —0(°
A= () 1 n B=90°-a
Gx o = 400
Therefore, to find the required area, we first B =50°
must determine the value of o, 0 =B =-50°

corresponding to each of the four allowable
stresses. Then the smallest value of o, will (b)
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determine the required area. The values of o, are obtained by rearranging Eqs.
(2.17a and b) as follows:
O¢ 7o
o, = . Oy = b
Y os2 o X sin @ cos 6 ®)
We will now apply these equations to the glued joint and to the plastic.
(1) Values of o, based upon the allowable stresses in the glued joint. For

compression in the glued joint we have oy =0y, =-5.2MPa and 0 =-50°.

Substituting into Eq. (b), we get

o =——>2MPa__ 15 59 mpa. ©)

(cos(—SO"))2

For shear in the glued joint we have an allowable stress 7,; =3.4MPa.

However, it is not immediately evident whether 74 is +3.4 MPa or -3.4 MPa.
One approach is to substitute both +3.4 MPaand —3.4 MPa into second Eq. (b)
and then select the value of o, that is negative. The other value of o, will be

positive (tension) and does not apply to this bar, which is in compression. Second
approach is to inspect the bar itself (see figure (b)) and observe from the
directions of the loads that the shear stress will act clockwise against plane p-g,
which means that the shear stress is negative. Therefore, we substitute

79 =—3.4MPaand 6=-50" second Eq. (b) and obtain
o, =— — 3.4 MPa — 6.9 MPa. )
(sin(=50°))(cos(—=50°))

(2) Values of o, based upon the allowable stresses in the plastic. The

maximum compressive stress in the plastic occurs on a cross section. Therefore,
since the allowable stress in compression oy =-7.6MPa, we know

immediately that o, =—7.6 MPa.

The maximum shear stress occurs on a plane at 45° and is numerically equal to
o, /2 (see Eq. 2.19). Since the allowable stress in shear z,;; = 4.1MPa, we obtain

o, =-2.05 MPa. (e)

The same result can be obtained from second Eq. (b) by substituting
79 =4.1 MPaand 6 =45".

(3) Minimum width of the bar. Comparing the four values of o, we see

that the smallest is o, =—6.9 MPa. Therefore, this value we will take into
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account in design. Substituting into Eq. (a), and using only numerical values, we

obtain the required area:

4 37,000 N

=536x107° m2.

6.9%x10° N/m?

Since the bar has a square cross section (A = b? ) , the minimum width is

b =~A =v536x107> =7.32 cm.

ST

P

Problem 2.37 An element in
uniaxial stress is subjected to tensile
stresses o, =125MPa, as shown in the

figure. Determine: (1) the stresses
acting on an element oriented at an
angle 8 =21.8° from the x axis, and (2)
the maximum shear stresses and
associated normal stresses. Show all
results on sketches of properly oriented
elements.

Ay
125 MPa
Problem 2.38 An element in
uniaxial stress is  subjected to

compressible stresses o, =125MPa, as

shown in the figure. Determine: (1) the
stresses acting on an element oriented at
an angle 6 =21.8° from the x axis, and
(2) the maximum shear stresses and
associated normal stresses. Show all
results on sketches of properly oriented
elements.

PROBLEMS
Ay
125 MPa
Problem 2.39 An element in
uniaxial stress 1s subjected to a

compressive stress of 120 MPa, as
shown in the figure. Determine: (1) the
stresses acting on an element oriented at
a slope of 1 on 3 (see figure), and (2)
the maximum shear stresses and
associated normal stresses. Show all
results on sketches of properly oriented

elements.
Ay
1
2
— @) - 4)7
120 MPa
Problem 2.40 What are the

maximum normal and shearing stresses
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in a circular bar of 30 mm diameter
subjected to an axial compression load
of /=90 kN?

Problem 2.41 Determine the
maximum axial load P that can be
applied to the rectangular wooden bar
of figure (a) without exceeding a

shearing stress of 7, , =11MPa or a

normal stress of o, =30MPa on the
inclined plane c-c¢ parallel to its grain.
Use 0 =60°, a=20 mm, and
b=50 mm.

P
e

(b)

Problem 2.42 Determine the
maximum axial load P that can be
applied to the rectangular wooden bar
of figure (a) without exceeding a

shearing stress of 7, =5.5MPa or a

normal stress of o, =15MPa on the
inclined plane c-c parallel to its grain.
Use 0 =60°, a=20 mm, and
b=50 mm.

P
-

(b)

Problem 2.43 A cylinder of 50-
mm inner radius and S5-mm wall
thickness has a welded spiral seam at an
angle of 40° with the axial (x) direction.
The cylinder is subjected to an axial
compressive load of 10 kN applied
through rigid end plates. Determine the
normal o and shear 7 stresses acting
simultaneously in the plane of welding.

Problem 2.44 A cylinder of 50-
mm inner radius and 2.5-mm wall
thickness has a welded spiral seam at an
angle of 60° with the axial (x) direction.
The cylinder is subjected to an axial
compressed load of 10 kN applied
through rigid end plates. Determine the
normal o and shear 7 stresses acting
simultaneously in the plane of welding.

Problem 2.45 Calculate the
normal and shearing stresses on a plane
through the bar of the figure (a) that
makes an angle of 30° with the
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direction of force P = 120 kN. Use a =
15 mm and b = 30 mm.

P
-

(b)

Problem 2.46 The stresses on
an inclined plane c-c in a bar in tension
(see figure (a)) are Oy, = 20MPa and

Ty, = 10 MPa.

load P and the angle & for a = 30 mm
and b = 60 mm.

Determine the axial

P
e

Problem 2.47 Calculate the
normal and shearing stresses on a plane
through the bar of figure (a) that makes
an angle of 15° with the direction of
force P =120 kN. Use @ = 15 mm and b
=30 mm.

P
-

(b)

Problem 2.48 A steel bar of
square cross section (35 mmx35 mm)
carries a tensile load P (see figure). The
allowable stresses in tension and shear
are 125 MPa and 75 MPa, respectively.
Determine the maximum permissible
load B,y -

T

Problem 2.49 A circular steel
rod of diameter d is subjected to a
tensile force P=80 kN (see figure).
The allowable stresses in tension and
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shear are 120 MPa and 55 MPa,
respectively. What is the minimum
permissible diameter d,,;, of the rod?

P id P

= (>
!

Problem 2.50 A standard brick

having dimensions

25cm x 12.5 cm x 6 cm is compressed
lengthwise in a testing machine (see
figure). If the ultimate shear stress for
brick is 7.5MPa and the ultimate
compressive stress is 25 MPa, what
force By, 1s required to break the

brick?

Problem 251 A brass wire of
diameter d =2 mm is stretched between
rigid supports so that the tensile force is
P=140N (see figure). What is the
maximum permissible temperature drop
AT 1if the allowable shear stress in the
wire 1s 80 MPa? (The coefficient of

thermal expansion for the wire is

19.5x107 / °C and the modulus of
elasticity is 105 GPa).

——

Problem 2.52 A steel wire of
diameter d =3 mm is stretched between
rigid supports with an initial tension P
of 200N (see figure). (1) If the
temperature is then lowered by 50°F,
what is the maximum shear stress 7.«
in the wire? (2) If the allowable shear
stress 18 125 GPa, what is the maximum
permissible temperature drop? (Assume
that the coefficient of thermal expansion

is 6.5><10_6/°F and the modulus of

P
>

P
-

elasticity is 205 MPa).

P d P

L T # of £
Problem 2.53 A 20-mm

diameter steel bar is subjected to a
tensile load P =25kN (see figure). (1)
What is the maximum normal stress
Omax 10 the bar? (2) What 1s the

maximum shear stress 7,45 ? (3) Draw

a stress element oriented at 45° to the
axis of the bar and show all stresses
acting on the faces of this element.

Ld

!

(e

-,
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Problem 2.54 During a tension
test of a mild-steel specimen (see
figure), the extensometer shows an
elongation of 0.04 mm over a gage
length of 50 mm. Assume that the steel
is stressed below the proportional limit
and that the modulus of elasticity
E =205MPa. (1) What is the maximum
normal stress o4 10 the specimen?

(2) What is the maximum shear stress
Tmax ! (3) Draw a stress element

oriented at an angle of 45° to the axis of
the bar and show all stresses acting on

the faces of this element.
TS Y.

Problem 255 A  compressed
member 1n a truss 1s fabricated from a
wide-flange steel section (see figure).
The cross-sectional area A =6640mm?’
and the axial load P=410kN.
Determine the normal and shear stresses
acting on all faces of stress elements
located in the web of the beam and

50 mm

oriented at: (1) an angle =0, (2) an
6=225°, and (3) an angle
6 =45 . In each case, show the stresses

on a sketch of a properly oriented
element.

angle

Problem 256 A plastic bar of
diameter d =25mm is compressed in a

testing device by a force P=110N
applied as shown in the figure.
Determine the normal and shear stresses
acting on all faces of stress elements
oriented at: (1) an angle =0, (2) an
angle 6=225°, and (3) an angle
6 =45° . In each case, show the stresses

on a sketch of a properly oriented
element.

120m§11 350 mm

Problem 2.57 Two boards are
joined by gluing along a scarf joint as
shown in the figure. For practical
reasons, the angle o between the plane
of the joint and the faces of the boards
must be 45° or less. Under a tensile load
P, the normal stress in the boards is
5.0 MPa. (1) What are the normal and
shear stresses acting on the glued joint

if a=20°? (2) If the allowable shear
stress on the joint is 2.25 MPa, what is
the largest permissible value of the
angle «? (3) For what angle a will the
shear stress on the glued joint be
numerically equal to twice the normal
stress on the joint?
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Problem 2.58 A copper bar is
held closely (but without any initial
stress) between rigid supports (see
figure). The allowable stresses on the
inclined plane p-g, for which

@ =53.13°, are specified as 50 MPa in
compression and 30 MPa in shear. (1)
What is the maximum permissible
temperature rise A7 if the allowable
stresses on plane p-g are not to be
exceeded? (2) If the temperature
increases by the maximum permissible
amount, what are the stresses on plane

p-q7 Assume o =9.4x 10_6 /°F and
E =125GPa.

Problem 259 A plastic bar is
held closely between rigid supports at
room temperature (20°C) but with no
initial stress (see figure). When the
temperature of the bar is raised to 70°C,
the compressive stress on an inclined
plane p-g becomes 12.0 MPa. (1) What
is the shear stress on plane p-g? (2)
Draw a stress element oriented to plane
p-q and show the stresses acting on all
faces of this element. Assume

a=100x10"%/°F and E =3.0 GPa.

p /§e
|

Problem 2.60 A circular brass
bar of diameter d is composed of two
segments brazed together on a plane p-g

making an angle a =36" with the axis
of the bar (see figure). The allowable
stresses in the brass are 90 MPa in
tension and 50 MPa in shear. On the
brazed joint, the allowable stresses are
40 MPa in tension and 24 MPa in shear.
If the bar must resist a tensile force
30 kN, what is the minimum required
diameter d;, of the bar?

p
™ d

q

P
-

Problem 2.61 A prismatic bar is
subjected to an axial force that produces
a compressive stress of o =50MPa on a

plane at an angle 6=30" (see figure).
Determine the stresses acting on all
faces of a stress element oriented at

0 =60° and show the stresses on a
sketch of the element.

pe

50 MPa

\Aue

A A
50 MPa \

Problem 2.62 A prismatic bar is
subjected to an axial force that produces
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a tensile stress op=70 MPa and a
shear stress 7y =35 MPa on a certain
inclined plane (see figure). Determine
the stresses acting on all faces of a

stress element oriented at & =50° and
show the stresses on a sketch of the
element.

>

\
A

Problem 2.63 Acting on the
sides of a stress element cut from a bar
in uniaxial stress are normal stresses of
60 MPa and 20 MPa, as shown in the
figure. (1) Determine the angle 6 and
the shear stress 7y. (2) What are the

maximum normal stress o, and the
maximum shear stress 7, In the
material?

20 MPa

\ 19 _To (o =60 MPa
/ \/ ‘qe

AN\
60 MPa Te)/\

20 MPa

Problem 2.64 The normal stress
on plane p-g of a prismatic bar in
tension (see figure) is found to be
56 MPa. On plane r-s, which makes an
angle S =30° with plane p-gq, the stress
is found to be 22.6 MPa. Determine the

maximum normal stress o, and

maximum shear stress 7,,,,, in the bar.

p
4 BK/
P N P
] \ f—
AN
q
Problem 2.65 A tensiled

member is to be made of two pieces of
plastic glued along plane p-g (see
figure). For practical reasons, the angle
€ must be between 25° and 45°. The
allowable stresses on the glued joint in
tension and shear are 14 MPa and 9
MPa, respectively. (1) Determine the
angle @ so that the bar will carry the
largest load P. (2) Determine the
maximum allowable load £, if the

cross-sectional area of the bar is 600
mm’. Assume that the strength of the
glued joint controls the design.

%g

q

A

J—
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2.3 Strain-Energy Density and Strain Energy in Uniaxial Stress State
2.3.1 Strain-Energy Density

Strain energy is one of fundamental concepts in mechanics of materials.
The work done by external forces in producing deformation is stored within the
body as strain energy. For a perfectly elastic body, no dissipation of energy
occurs, and all the stored energy is recoverable upon unloading. The concept of
strain energy is useful as applied to the solution of problems involving both static
and dynamic loads. In this section we introduce the subject of strain energy,
stored in axially loaded members subjected to static loads, beginning from the its
elementary part, stored in an infinitesimal element (volume) of elastic material
dV. Note. It is assumed that inside this element strain energy is distributed
uniformly.

Let us express the strain energy owing to uniaxial stress state by
considering an element subjected to a slowly increasing normal stress o,

(Fig. 2.17a). The element is assumed to be initially free of stress. The force acting
on each x face, o,dydz, elongates the element an amount ¢, dx where ¢, is the x-

directed strain. In the case of a linearly elastic material, o, = E¢,. The average

: : : |
force acting on the elastic element during the straining is Eaxdydz. Thus the

strain energy U corresponding to the work done by this force, %axdydzgxdx, is
expressed as
1 1
dU = 5 Oxbx (dxdydz) = ongde , (2.20)

where dV is the volume of the element. The unit of work and energy in SI is the
joule (J), equal to a newton-meter (N-m).
The strain energy per unit volume, dU/dV , is referred to as the strain-

energy density, designated U(y. From the foregoing, we express it in two forms:

2 2
1 o Ee
Uy=—0,6, =—L="2X_ 221
0 ? Xex E 2 ( )

These equations give the strain-energy density in a linearly elastic material in
terms of the normal stress o and the normal strain ¢ .

The expressions in Egs. (2.21) have a simple geometric interpretation. They
are equal to the area oe/2 of the triangle below the stress-strain diagram for a

material that follows Hooke’s law (o = E¢) (see Figs. 2.17 b, 2.18 a).

In more general situations where the material does not follow Hooke’s law
the strain-energy density is still equal to the area below the stress-strain curve, but
the area must be evaluated in each particular case (see dashed line on Fig. 2.17 b).

The area above the stress-strain curve is known as the complementary

energy density, denoted U S as seen in the Fig. 2.17 b.
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In SI units the strain-energy density is expressed in joules per cubic meter
(J / m3) or in pascals. As the stress ((Tx) 1s squared, the strain energy is always a

positive quantity, and Eq. (2.21) applies for a member in tension or compression.

Gy Proportional
limit

Nonlinearly
elastic

AN

/ Linearly
dz / Uy I elastic
L,

€x

(a) (b)
Txyh Proportional
limit

Nonlinearly
elastic

N

/ Linearly
/ Up | elastic

>
:

Yxy

(d)

Fig. 2.17 To strain-energy density calculation: (a) an element in tension; (b) stress-strain
diagram in tension; (c) an element in shear; (d) stress-strain diagram in shear

The strain-energy density when the material is stressed to the yield strength
is called the modulus of resilience. It 1s equal to the area under the straight-line
portion of the stress-strain diagram (Fig. 2.18a) and measures the ability of the
material to absorb energy without permanent deformation:

2
o
U, =-L". 2.22
rT g (2.22)
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5. G A Modulus
of toughness Fracture
Gt
Modulus
of resilience
0 E 0 :
@® (b)

Fig. 2.18 Typical stress-strain diagram: (a) modulus of resilience and (b) modulus of
toughness

For example, the value of the modulus of resilience for a mild steel is
2
0'129,,/2E=(250X106) /2(2OO><109)=156 kJ/m3. Another important quantity

is known as the modulus of toughness It is equal to the area under a complete
stress-strain curve (Fig. 2.18b). Toughness is a measure of the material's ability to
absorb energy without fracturing. Clearly, it is related to the ductility as well as to
the ultimate strength of a material.

The strain energy for uniaxial normal stress is obtained by integrating the
strain-energy density, Eq. (2.21), over the volume of the member:

2
U= [ Zxay. (2.23)
2F
()
The foregoing can be used for axial loading and bending of beams, because in
bending all fibers are tensiled or compressed.

Now consider the element under the action of shearing stress 7,

(Fig. 2.17¢c). From the figure we observe that force 7,,dxdz causes a

displacement y,,dy. The stress varies linearly from zero to its final value as

before, and therefore the average force equals %Txydxdz. The strain-energy

density in pure shear is then

2
_1 _ Ty
UO = ETxy}/xy = E (224)

The expressions in Eq. (2.24) have the same geometric interpretation as (2.21).
They are equal to the area 7,7y, /2 of the triangle below the stress-strain

diagram for a material that follows Hooke’s law (7 = Gy ) (see Fig. 2.17 d).
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The strain energy for shear stress is expressed as

2
T
U= | %dV. (2.25)
()
The integration is over the volume of the member. Equation (2.25) can be used for
bars in torsion and transverse shear in beams.

The integration of Eq. 2.23 is the most simple in the case of a prismatic bar
of length L subjected to a tensile force P (Fig. 2.19), if we assume that the stresses
and strains are distributed over the cross-section uniformly (well-known
hypothesis of plane sections). Because the load is applied slowly, so that it
gradually increases from zero to its maximum value P, such a load is called a
static load (1. e. there are no dynamic or inertial effects due to motion). The bar
gradually elongates as the load is applied, eventually reaching its maximum
elongation ¢ at the same time that the load reaches its full value P. Thereafter,
the load and elongation remain unchanged.

During the loading process, the load P moves slowly through the distance
o0 and does a certain amount of work. To evaluate this work, we recall from
elementary mechanics that a constant force does work equal to the product of the
force and the distance through which it moves. However, in our case the force
varies in magnitude from zero to its maximum value P. To find the work done by
the load under these conditions, we need to know the manner in which the force
varies. This information is supplied by a load-displacement diagram, such as the
one plotted in Fig. 2.20. On this diagram the vertical axis represents the axial load
and the horizontal axis represents the corresponding elongation of the bar.

Note. The shape of the curve depends upon the properties of the
material.

P
L
P
A
5 :
O‘ & <d761 o
)
P
Fig. 2.19 Prismatic bar subjected to a Fig. 2.20 Load-displacement diagram

statically applied load



82 Chapter 2 UNIAXIAL STRESS STATE

Let us denote by A any value of the load between zero and the maximum
value P, and the corresponding elongation of the bar by J;. Then an increment
dFR in the load will produce an increment d¢;. in the elongation. The work done

by the load during this incremental elongation is the product of the load and the
distance through which it moves, that is, the work equals Ado;. This work is

represented in the figure by the area of the shaded rectangle below the load-
displacement curve. The total work done by the load as it increases from zero to

the maximum value P is the summation of all such elemental works:
o
W =[Rds . (2.26)
0

Note, that the work done by the load is equal, in geometric sense, to the area
below the load-displacement curve.

When the load stretches the bar, strains are produced. The presence of these
strains increases the energy level of the bar itself. The strain energy is the energy
absorbed by the bar during the loading process. From the principle of
conservation of energy, we know that this strain energy is equal to the work done
by the load (we assume that no energy is added or subtracted in the form of heat).
Therefore,

o
U=W=[Fds, (2.27)
0
in which U is the strain energy. Sometimes strain energy is referred to as internal
work to distinguish it from the external work done by the load.

Work and energy are expressed in the same units. In SI, the unit of work
and energy is the joule (J), which is equal to one newton meter (1 J =1 Nm).

In removing the force P (Fig. 2.19) from the bar, it will shorten. If the
elastic limit of the material is not exceeded, the bar will return to its original
position (length). If the limit is exceeded, a permanent set will remain. Thus,
either all or part of the strain energy will be recovered in the form of work. This
behavior is shown on the load-displacement diagram of Fig. 2.21. During loading,
the work done by the load is equal to the area below the curve (area OABCDO,).
When the load is removed, the load-displacement diagram follows line BD if
point B is beyond the elastic limit and a permanent elongation OD remains. Thus,
the strain energy recovered during unloading, called the elastic strain energy, is
represented by the shaded triangle BCD. Area OABDO represents energy that is
lost in the process of permanently deforming the bar. This energy is known as the
inelastic strain energy.
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Most structures are designed with P
the expectation that the material will B :
. r s . Inelastic
remain within the elastic range under strain
ordinary conditions of service. In the 4 energy
case of a bar in tension, the load at
which the stress in the material reaches Elastic
the elastic limit is represented by point A strain
A on the load-displacement curve cnergy
(Fig. 2.21). As long as the load is below

this value, all of the strain energy is D C 5
recovered during unloading and no
permanent elongation remains. Thus,
the bar acts as an elastic spring, storing and releasing energy as the load is applied
and removed.

Strain energy is a form of potential energy (or "energy of position") because
it depends upon the relative locations of the particles or elements that make up the
member. When a bar or a spring is compressed, its particles are crowded more
closely together; when it is stretched, the distances between particles increase. In
both cases the strain energy of the member increases as compared to its strain
energy in the unloaded position.

Within the limitations of the assumption on uniform distribution of stresses
over the cross section of tensiled or compressed bar, material of which follows
Hooke's law (the load-displacement curve is a straight line (Fig. 2.22)), the strain
energy U stored in the bar (equal to the work W done by the load) 1s

U=W:€?, (2.28)

Fig. 2.21 Elastic and inelastic strain energy

which is the area of the shaded triangle OAB in the figure.

The principle that the work of the external loads is equal to the strain
energy (for the case of linearly elastic behavior) was first stated by the
French engineer B. P. E. Clapeyron (1799-1864) and is known as
Clapeyron’s theorem.

After substitution into Hooke’s law o= P/ A4 and & = AL/L the relationship

between the load P and the elongation Al =06 for a linearly elastic material is
given by the equation
_PL

A=5="=,
EA

(2.29)
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where L is the length of the bar, 4 and E are area of cross section and modulus of
elasticity respectively.
Combining this equation with Eq. (2.28) allows us to express the strain
energy of a linearly elastic bar in the following forms:
2 2
Uzﬂ, or U= 250 . (2.30a,b)
2FA 2L
The first equation expresses the strain energy as a function of the load and
the second expresses it as a function of the elongation. From the first equation we
see that increasing the length of a bar increases the amount of strain energy even
though the load is unchanged (because more material is being strained by the
load). On the other hand, increasing either the modulus of elasticity or the cross-
sectional area decreases the strain energy because the strains in the bar are
reduced.
Py The total strain energy U of a bar
————————————————————————————— consisting of several segments is equal to
' the sum of the strain energies of the
. U=-— individual segments. For instance, the
p / 2 Strain energy of the bar pictured in Fig.
i 2.23 equals the strain energy of segment
AB plus the strain energy of segment BC.
B This concept is expressed in general terms
by the following equation

0 B
L s !
Fig. 2.22 Load-displacement diagram for U= zUi > (2-31)
a bar of linearly elastic material i=1

in which U; is the strain energy of segment i of the bar and » is the number of

segments. Note. This relation holds whether the material behaves in a linear
or nonlinear manner.

Now assume that the material of the bar is linearly elastic and that the
internal axial force is constant within each segment. We can then use Eq. (2.30a)
to obtain the strain energies of the segments, and Eq. (2.31) becomes

n 2
U=y Niki (2.32)
o1 2B 4

in which N; is internal axial force acting in segment i and L;, 4;, and E; are

geometrical and mechanical properties of segment i respectively (product E4 is
named as axial rigidity).
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We can obtain the strain energy of a nonprismatic bar with continuously
varying axial force (Fig. 2.24) by applying Eq. (2.30a) to a differential element
(shown shaded in the figure) and then integrating along the length of the bar:

V@

AEACS) (2.33)

0

In this equation, N(x) and 4(x) are the axial force and cross-sectional area at
distance x from the end of the bar.

P2 vF

Fig.2.23 Bar consisting of prismatic Fig.2.24 Nonprismatic bar with varying axial
segments having different cross-sectional force
areas and different axial forces

The expressions (Eqs. 2.30 through 2.33) for strain energy show that strain
energy is not a linear function of the loads, not even when the material is linearly
elastic.

Note. It is important to realize that we cannot obtain the strain energy
of a structure supporting more than one load by combining the strain
energies obtained from the individual loads acting separately.

In the case of the nonprismatic bar shown in Fig. 2.23, the total strain
energy is not the sum of the strain energy due to load B acting alone and the

strain energy due to load P, acting alone. Instead, we must evaluate the strain

energy with all of the loads acting simultaneously.
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EXAMPLES

Example 2.5
Three round bars having the

same length L but different shapes ]

|

are shown in the figure. The first bar dll. | 4 L 24} |
has diameter d over its entire length,
the second has diameter d over one- L ::L/S 1/15

fifth of its length, and the third has

diameter d over one-fifteenth of its

length. Elsewhere, the second and

third bars have diameter 2d. All three —

bars are subjected to the same axial ;P P P

load P. (a) (b) (c)
Compare the amounts of strain energy stored in the bars without

consideration the effects of stress concentrations.

Solution (1) Strain energy Uy of the first bar. The strain energy of the
first bar is found directly from equation:
2
v VL
2EA
in which 4=7zd? /4 , N — normal force.
(2) Strain energy U, of the second bar. The strain energy is found by

summing the strain energies in the three segments of the bar:
2 N; L

U=>-t-+ (a)

S2E 4

Normal force N x(x) numerically equals to external force P in accordance with

the method of sections.
Thus,

iNzL P2(L/5)+P2(4L/5)_P2L_2U1
‘2E;4;  2EA 2E(44) SEA 5
which is only 40% of the strain energy of the first bar.

Note. Increasing the cross-sectional area over part of the length has
greatly reduced the amount of strain energy that can be stored in the bar.

: (b)
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(3) Strain energy U of the third bar. Using previous equations, we get
n N2, P*(L/15) P*(14L/15) 3P*L 3y,

Us=2,

= + = = .
S2E A 2EA 2E(44)  20E4 10

The strain energy has now decreased to 30% of the strain energy of the first

(©)

bar.

Note. Comparing these results, we see that the strain energy decreases
as the part of the bar with the larger area increases. The same amount of
work applied to all three bars will produce the highest stress in the third bar,
because the third bar has the least energy-absorbing capacity. If the region
having diameter d is made even smaller, the energy-absorbing capacity will
decrease further. We therefore conclude that it takes only a small amount of
work to bring the tensile stress to a high value in a bar with a groove, and the
narrower the groove, the more severe the condition. When the loads are
dynamic and the ability to absorb energy is important, the presence of
grooves is very damaging.

In the case of static loads, the maximum stresses are more important than
the ability to absorb energy. In this example, all three bars have the same
maximum stress N, / 4, and therefore all three bars have the same load-carrying

capacity when the load is applied statically.

Example 2.6

The cylinder and cylinder head for a machine are clamped by bolts through
the flanges of the cylinder (see figure (a)). A detail of one of the bolts is shown in
figure (b). The diameter d of the shank is 12.7 mm and the root diameter d, of

the threaded portion is 10.3 mm. The grip g of the bolts is 38 mm and the threads
extend a distance ¢ =6.35 mm. into the grip. Under the action of repeated cycles
of high and low pressure in the chamber, the bolts may eventually break.

To reduce the danger of the bolts failing, the designers suggest two possible
modifications: (1) Machine down the shanks of the bolts so that the shank

diameter is the same as the thread diameter d,, as shown in figure (c). (2)

Replace each pair of bolts by a single long bolt, as shown in figure (d). The long
bolts are the same as the original bolts (figure (b)) except that the grip is increased
to the distance L =343 mm.

Compare the energy-absorbing capacity of the three bolt configurations: (1)
original bolts, (2) bolts with reduced shank diameter, and (3) long bolts (without
consideration the effects of stress concentrations). Material is linearly elastic.
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Bolt

Cylinder

Piston
Chamber

(a) (b)

(a) Cylinder with piston and clamping bolts; (b) bolt in details; (c) bolt with reduced shank
diameter, and (d) bolt with increased length
Solution (1) Original bolts. The original bolts can be idealized as bars
consisting of two segments (Fig. 1b). The left-hand segment has length g—¢ and
diameter d, and the right-hand segment has length ¢ and diameter d,.. The strain

energy of one bolt under a tensile load P can be obtained by adding the strain
energies of the two segments:

noar2 2 2
“L, P(g-t) P
=3 Nk _Plemt), P (a)

12E;4; 2EA 2FA,
in which A4 is the cross-sectional area of the shank and 4, is the cross-sectional

area at the root of the threads; thus,
2 2
4 = d 4= zd, -
4 4

S

(b)
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Substituting these expressions into Eq. (a), we get the following formula for the
strain energy of one of the original four bolts:
2P*(g-1) 2P
= 7+ 7 - ()
wEd rkd,
(2) Bolts with reduced shank diameter. These bolts can be idealized as
prismatic bars having length g and diameter d, (Fig. 2a). Therefore, the strain

U

energy of one bolt is

2 2
P 2P
Up= 5 =="F. (@
2EA4,  nEd,
The ratio of the strain energies for cases (1) and (2) is
U2 . gdz

- s (e)
Uy (g-t)d,* +1d?

or, upon substituting numerical values,

U, (38.0 mm)(12.7 mm)* 140

Uy (38.0 mm—6.35mm)(10.3 mm)* +(6.35 mm)(12.7 mm)*

Note. Using bolts with reduced shank diameters results in a 40%
increase in the amount of strain energy that can be absorbed by the bolts.
This scheme should reduce the number of failures caused by the impact
loads.

(3) Long bolts. The calculations for the long bolts (Fig. 2b) are the same as
for the original bolts except the grip g is changed to the grip L. Therefore, the
strain energy of one long bolt (compare with Eq. (c)) is

_2P%(L-1) 2P
rEd* 7rEa’r2
Since one long bolt replaces two of the original bolts, we must compare the strain
energies by taking the ratio of Uj to 2Uj, as follows:
Us

_(L-1)d,* +1d?
20, 2(g-t)d,>+2td>
Substituting numerical values gives
Uy (343 mm—-635mm)(10.3 mm)” +(6.35 mm)(12.7 mm)°

— =4.18.
20U, 2(38 mm—-6.35 mm)(10.3 mrn)2 +2(6.35 mm)(12.7 mrn)2

Q)

Us

(2
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Note. (1) Using long bolts increases the energy-absorbing capacity by
318% and achieves the greatest safety from the standpoint of strain energy.

(2) In perfect designing of the bolts, designers must also consider the
maximum tensile stresses, maximum bearing stresses, and stress
concentrations.

Example 2.7
- — Determine the strain energy of a
prismatic bar suspended from its upper
end (see figure). Consider the
* following loads: (1) the weight of the
L L bar itself, and (2) the weight of the bar
— A plus a load P at the lower end. Material

X
i

is linearly elastic.
dx dx

) Solution (1) Strain energy due

;‘
‘
;‘

- I to the weight of the bar itself (see
P figure (a)). The bar is subjected to a
(a) (b) varying axial force, the force being

(a) Bar loaded by its own weight, and (b) bar zero at the lower end and maximum at
loaded by its own weight and also supporting the upper end. To determine the axial
aload P force, we consider an element of length
dx (shown shaded in the figure) at distance x from the upper end. The internal
axial force N (x) acting on this element is equal to the weight of the bar below

the element: N(x) = pgA(L = x) , (a)
in which p is the density of the material, g is the acceleration of gravity, and 4 is
the cross-sectional area of the bar. Substituting into equation

2
:L[N(x)] dx )
0 2EA(x)
and integrating gives the total strain energy
_ ? [N() dx_Llped(L-x)] dx _pPgPar’ (©)
o 2EA(x) o 2EA 6E

This same result can be obtained from the strain-energy density. At any
distance x from the support, the stress is
N(x)
A

= pg(L-x), (d)
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and strain-energy density is

2 2 2
07 2F 2E
The total strain energy is found by integrating U, throughout the volume of

the bar:
L L,ozng(L—x)2 dx ngzAL3
U=[UydV =[Uyddx =] =
0 0 2F 6F
which agrees with Eq. (c).
(2) Strain energy due to the weight of the bar plus the load P (figure (b)). In
this case the axial force N(x) acting on the element is

N(x):pgA(L—x)+P. (g)

: ¢

In result we obtain
2
. tlpeA(L-x)+ Pl dx _ pg2ar’  pePL> P’L
0 2EA 6E 2E  2EA

Note. The first term in this expression is the same as the strain energy
of a bar hanging under its own weight (Eg. (c)), and the last term is the same
as the strain energy of a bar subjected only to an axial force P (Eq. 2.30a).
However, the middle term contains both o and P, showing that it depends

upon both the weight of the bar and the magnitude of the applied load. Thus,
this example illustrates that the strain energy of a bar subjected to two loads
Is not equal to the sum of the strain energies produced by the individual loads
acting separately.

(h)

Example 2.8
Determine the vertical
displacement J0p of joint B of the

truss shown in the figure. Assume
that both members of the truss have
the same axial rigidity EA.

Solution Since there is only
one load acting on the truss, we can
find the displacement corresponding
to that load by equating the work of Displacement of a truss supporting a single
the load to the strain energy of the loadP
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members. However, to find the strain energy we must know the forces in the
members (see Eq. 2.30a).
From the equilibrium of forces acting at joint B we see that the internal axial

force N(x) in either bar is

P
N(x)— 2(:03,6" (@)

From the geometry of the truss we know that the length of each bar is
Ly =H /cos 8, where H 1s the height of the truss and £ is the angle shown in the

figure. We can now obtain the strain energy of the two bars:
N(x)’L  PH
2EA 4EAcos® B

(b)

The work of the load P 1s
=28, (©

where Op is the linear displacement of joint B. Equating U and W and solving for
Op, we obtain

_ PH

" 2Edcos’ S '

This equation gives the vertical displacement of joint B of the truss.

Note. We found the displacement using only equilibrium and strain
energy.

55 d

P PROBLEMS

Problem 2.66 Calculate the Problem 2.67 Calculate the
modulus of resilience for two grades of modulus of. resilience for the following
steel: (1) ASTM-A242 (yield strength in two materials: (1) aluminum alloy

tension o =345MPa. modulus of 2014-T6 (yield strength in tension
. g’ 00 GP )’ 4 @ cold o =413.7MPa, modulus of elasticity
elasticity = a) an cold- _
rolled, stainless steel (302) (yield E=73GPa) and (2) annealed yellow

Wi ) _ 517MP brass (yield strength in tension
strength i tension o, =517MPa, o, =103.4MPa, modulus of elasticity

modulus of elasticity £ =193 GPa). E =103 GPa).
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Problem 2.68 Using the stress-
strain diagram of a structural steel
shown in the figure, determine: (1) the
modulus of resilience and (2) the
approximate modulus of toughness.

Stress o, MPa
500

400

300

¢

pr
2007,

100

M
03 N

O.l()Ol

0.1
Strain ¢

0.902
0.2

Problem 2.69 From the stress-
strain curve of a magnesium alloy
shown in the figure, determine: (1) the
modulus of resilience and (2) the
approximate modulus of toughness.

Stress o, MPa

300—

Scale N

200 B —
// Scale M
"/
<
100 H / —
— //4—0.002 offset
/
0.004 )
. GI// | 0 (|)08
0.08 0.16

Strain €

N



Chapter 3 Two-Dimensional (Plane) Stress State

A two-dimensional state of stress exists at a point of deformable solid,
when the stresses are independent of one of the two coordinate axis. It means that
the general feature of this type of stress state is the presence of one zero principal
plane. Examples include the stresses arising on inclined sections of an axially
loaded rod (Fig. 3.1), a shaft in torsion (Fig.3.2), a beam with transversely
applied force (Fig. 3.3), a beam at combined loading (Fig. 3.4), and also thin-
walled vessel under internal pressure p (Fig. 3.5).

Y X p-A
To
0
P O év Go A Go
<z x A -z
X
19 T
Fig. 3.1 Two-dimensional stresses on inclined section in axial loading
a—da
— p-A

Fig. 3.2 Two-dimensional stress state at an arbitrary point A of the shaft surface and at an
arbitrary point B in a-a cross section in torsion. The stresses are given by the torsional formula

T(p)ZMxp/]p

M M
-y p.A > pA
/ | M,
e .
E% ( o ~=Pre
X 47'2_1

0
A k7 ~
0
-
z Z

Fig. 3.3 Two-dimensional stress state at a Fig. 3.4 Two-dimensional stress state at a
point A of the rod in transverse bending. The point A of the rod in combined loading
stresses are given by the bending and shear

formulas: o(z)=Mz/ Iy,
7(2)=0,S, /(b))
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Fig. 3.5 Element in biaxial stress state in pressure vessel

Two-dimensional problems are
of two classes: plane stress and plane
strain. The condition that occurs in a
thin plate subjected to loading
uniformly  distributed over the
thickness and parallel to the plane of
plate typifies the state of plane stress
(plane stressed state, plane stress)
(Fig. 3.6). Because the plate is thin, the
stress-distribution may be closely
approximated by assuming that two- Fig. 3.6 Thin plane subjected to plane stress
dimensional stress components do not vary throughout the thickness and the other
components are zero. Another case of plane stress exists on the free surface of a
structural or machine component.

To explain plane stress, we will consider the stress element shown in
Fig. 3.7. This element is infinitesimal in size and can be sketched either as a cube
or as a rectangular parallelepiped.

o, s
T lTyX y\ Ly X
_l__> Tx /
| ' { x 4 Tylxl /le 0
c — 0 1 o Oy o Ty
X ! X X 11
4__| JL/)__._ _—>_§<_ 0 _>—7C 0 ~
Ly o==HE :
yix
5 -~ Tol—mg— e / 1

» | Tyx Oy \
* Gy
c

(a) (b) (c)
Fig. 3.7 Elements in plane stress: (a) three-dimensional view of an element oriented to the xyz

axes, (b) two-dimensional view of the same element, and (c) two-dimensional view of an element
oriented to the x;y,z axes
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The xyz axes are parallel to the edges of the element, and the faces of the
element are designated by the directions of their outward normals. For instance,
the right-hand face of the element is referred to as the positive x face, and the left-
hand face (hidden from the viewer) is referred to as the negative x face. Similarly,
the fop face is the positive y face, and the front face is the positive z face.

When the material is in plane stress in the xy plane, only the x and y faces
of the element are subjected to stresses, and all stresses act parallel to the x and y
axes, as shown in Fig. 3.7a. This stress condition is very common because if exists
at the surface of any stressed body, except at points where external loads act on
the surface. When the element shown in Fig. 3.7a is located at the free surface of
a body, the z face is in the plane of the surface (no stresses) and the z axis is
normal to the surface. This face may be considered as zero principal plane.

The symbols for the stresses shown in Fig. 3.7a have the following
meanings. A normal stress ¢ has a subscript that identifies the face on which the
stress acts; for instance, the stress o, acts on the x face of the element and the

stress o, acts on the y face of the element. Since the element is infinitesimal in

size, equal normal stresses act on the opposite faces. The sign convention for
normal stresses 1s the familiar one, namely, tension is positive and compression is
negative.

A shear stress 7 has two subscripts — the first subscript denotes the normal
to the face on which the stress acts, and the second gives the direction on that

face. Thus, the stress 7, acts on the x face in the direction of the y axis

(Fig. 3.7a), and stress 7,,,. acts on the y face in the direction of the x axis.

yx

The sign convention for shear stresses is as follows. A shear stress is
positive when it acts on a positive face of an element in the positive direction of
an axis, and it is negative when it acts on a positive face of an element in the

negative direction of an axis. Therefore, the stresses 7, and 7,, shown on the

positive x and y faces in Fig. 3.7a are positive shear stresses. Similarly, on a
negative face of the element, a shear stress is positive when it acts in the negative

direction of an axis. Hence, the stresses 7, and 7, shown on the negative x and

y faces of the element are also positive.

The preceding sign convention for shear stresses is dependable on the
equilibrium of the element, because we know that shear stresses on opposite faces
of an infinitesimal element must be equal in magnitude and opposite in direction.

Hence, according to our sign convention, a positive stress 7,,, acts upward on the

positive face (Fig. 3.7a) and downward on the negative face. In a similar manner,

the stresses 7, acting on the top and bottom faces of the element are positive

although they have opposite directions.
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We know that shear stresses on mutually perpendicular planes are equal in
magnitude and have directions such that both stresses point toward, or both point

away from, the line of intersection of the faces. Inasmuch as 7, and 7, are

positive in the directions shown in the Fig. 3.7, they are consistent with this
observation. Therefore, we note that

Txy = Tyx- 3.1)
This equation is called the law of equality of shear stresses. It was derived from
equilibrium of the element.

For convenience in sketching plane-stress elements, we usually draw only a
two-dimensional view of the element, as shown in Fig. 3.7b.

3.1 Stresses on Inclined Planes

Our goal now is to consider the stresses acting on inclined sections,

assuming that the stresses o, o and 7,, (Figs. 3.7a and b) are known. To

determine the stresses acting on an inclined section at positive
(counterclockwised) #-angle, we consider a new stress element (Fig. 3.7c) that is
located at the same point in the material as the original element (Fig. 3.7b).
However, the new element has faces that are parallel and perpendicular to the
inclined direction. Associated with this new element are axes x;, y; and z; such

that the z; axis coincides with the z axis and the xj,y; axes are rotated

counterclockwise through an angle 6 with respect to the xy axes. The normal and

shear stresses acting on this new element are denoted Txys Typs Ty o and Ty >

using the same subscript designations and sign conventions described above for
the stresses acting on the xy element. The previous conclusions regarding the
shear stresses still apply, so that
By T Ty (3.2)
From this equation and the equilibrium of the element, we see that the
shear stresses acting on all four side faces of an element in plane stress
are known if we determine the shear stress acting on any one of those
faces.
The stresses acting on the inclined x;,y; element (Fig.3.7c) can be

expressed in terms of the stresses on the xy element (Fig. 3.7b) by using equations
of equilibrium. For this purpose, we choose a wedge-shaped stress element
(Fig. 3.8a) having an inclined face that is the same as the x; face of the inclined

element. The other two side faces of the wedge are parallel to the x and y axes.
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y A y A
3% N

>\ ] X >\ Ty, Ao s€CH X1
X101
o 0 /gxl 0 5 4 0 / 0
i — Gy, Ay sech
0 \ X 0 \ Y
’ny TxyAO \

S E— —
T yx T Ao tan®

Oy 6,4y tan®
(a) Stresses (b) Forces

Fig. 3.8 Wedge-shaped stress element in plane stress state: (a) stresses acting on the
element, and (b) internal forces acting on the element

In order to write equations of equilibrium for the wedge, we need to
construct a free-body diagram showing the forces acting on the faces. Let us
denote the area of the left-hand side face (that is, the negative x face) as A;. Then

the normal and shear forces acting on that face are 0,4 and 7,,4,, as shown in
the free-body diagram of Fig. 3.8b. The area of the bottom face (or negative face)
i1s Aptan@, and the area of the inclined face (or positive x; face) is 4y sec 6.

Thus, the normal and shear forces acting on these faces have the magnitudes and
directions shown in the Fig. 3.8 b.

The forces acting on the left-hand and bottom faces can be resolved into
orthogonal components acting in the x; and y; directions. Then we can obtain

two equations of equilibrium by summing forces in those directions. The first
equation, obtained by summing forces in the x, direction, is

oy, dgsect — o, Aycost -7, 4ysin 6 -

33
—0,, 4y tanOsin 0 — 7, Ay tanfcos & = 0. G-3)
Summation of forces in the y; direction gives
Ty Aosecd + oy Aysind — 7, 4y cos 6 —
(3.4)

—0, Ay tanfcos O + 7, Ay tanfsin & = 0.
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Using the relationship Ty =Tyx> WE obtain after simplification the
following two equations:
Oy, = Oy cos? 0+o, sin 6 + 27, sinfcosb, (3.5)
— : 2 . 2
T = —(O‘x -0y )sm fcost+17,, (cos 0 —sin 6’) . (3.6)

Equations (3.5) and (3.6) give the normal and shear stresses acting on the x; plane

in terms of the angle & and the stresses o, 0y, and 7y, acting on the x and y

planes.
It is interesting to note, that in 8 =0 Egs. (3.5) and (3.6) give Oy, =0y and

Tayyy = Ty - Also, when @=90°, these equations give oy =0 and

y
Tyy = ~Txy = ~Tyx - In the latter case, since the x axis is vertical when 6= 90°,

the stress 7, will be positive when it acts to the left. However, the stress 7,

acts to the right, and therefore 7, =-7,,.

Equations (3.5) and (3.6) can be expressed in a more convenient form by
introducing the following trigonometric identities:

cosZH:%(1+cos29), sinzé?:%(l—cos%?), sin@cosﬁzésinZQ. (3.7)

After these substitutions the equations become

o, +0 O, —0O
oy, = xz Y4 "2 ¥c0s26 + 7,50 26, (3.8)

2 :—Tysin29+rxy cos26. (3.9)

These equations are known as the transformation equations for plane stress
because they transform the stress components from one set of axes to another.

Note. (1) Only one intrinsic state of stress exists at the point in a
stressed body, regardless of the orientation of the element, i.e. whether
represented by stresses acting on the xy element (Fig. 3.7b) or by stresses
acting on the inclined x;); element (Fig. 3.7c). (2) Since the transformation

equations were derived only from equilibrium of an element, they are
applicable to stresses in any kind of material, whether linear or nonlinear,
elastic or inelastic.

An important result concerning the normal stresses can be obtained from

the transformation equations. The normal stress Ty, acting on the y; face of the
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inclined element (Fig.3.7c) can be obtained from Eq. (3.8) by substituting

0 +90° for 6. The result is the following equation for Ty

oy +0, Oy—0, _
Ty = ST 0820 — 7, 5in20. (3.10)

Summing the expressions for Ty, and Ty, (Egs. 3.8 and 3.10), we obtain

the following equation for plane stress:

Oy, T0y =0y +0), =const. (3.11)

Note. The sum of the normal stresses acting on perpendicular faces of
plane-stress elements (at a given point in a stressed body) is constant and
independent of the angle 6.

The graphs of the normal and shear stresses varying are shown in Fig. 3.9,

which are the graphs of o, and 7, ,, versus the angle & (from Egs. 3.8 and 3.9).

The graphs are plotted for the particular case of o,=020, and Tyy =0.80,. It is

seen from the plots that the stresses vary continuously as the orientation of the
element is changed. At certain angles, the normal stress reaches a maximum or
minimum value; at other angles, it becomes zero. Similarly, the shear stress has
maximum, minimum, and zero values at certain angles.

(e} x|
or
T XN

Fig. 3.9 Graphs of normal stress Ox, and shear stress Txyy Versus the angle 6 (for

o)

y =020, and 7,, =0.80,)
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Special Cases of Plane Stress
3.2.1 Uniaxial Stress State as a Simplified Case of Plane Stress

The general case of plane stress reduces to

simpler states of stress under special conditions. 1

For instance, as previously discussed, if all

stresses acting on the xy element (Fig. 3.7b) are

zero except for the normal stress o, then the o, o

element is in wuniaxial stress (Fig.3.10). The 0] %

corresponding transformation equations, obtained

by setting o, and 7,,, equal to zero in Egs. (3.8)

and (3.9), are Fig. 3.10 Element in uniaxial stress

oy :%(1+c0526’)=0x00526?, (3.12)

Try = ——X(5in 26) (3.13)
N 2 ' '

3.2.2 Pure Shear as a Special Case of Plane Stress

Pure shear is another special case of plane YA
stress state (Fig.3.11), for which the L _iyx
transformation equations are obtained by .
substituting o, =0 and o, =0 into Egs. (3.8) + o
and (3.9): - 0 | ~x
Xy
Oy =Ty, sin26, (3.14) r;_
Ty =ty c0s20. (3.15) Fig. 3.11 Element in pure shear

3.2.3 Biaxial Stress

The next special case of plane stress state is called biaxial stress, in which
the xy element is subjected to normal stresses in both the x and y directions but
without any shear stresses (Fig.3.12). The equations for biaxial stress are
obtained from Egs. (3.8) and (3.9) simply by dropping the terms containing z,,,:

o,+0, O,—C
Oy, = xz L xz Y cos26, (3.16)

o,—0, .
Tr :—%sm29. (3.17)

Biaxial stress occurs in many kinds of structures, including thin-walled
pressure vessels (see Fig. 3.13).
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$ $
° | A
Gx Gx Gx Gx Gx
--| O >+ > O - =
Vo, .
(a) (b)

Fig. 3.13 Element in  biaxial
stress state in pressure vessel
(stresses, normal to the surface
are assumed to be zero)

Fig. 3.12 Elements in biaxial stress

EXAMPLES

Example 3.1

The state of stress at a point in the machine element is shown in Fig. a.
Determine the normal and shearing stresses acting on an inclined plane parallel to
(1) line a—a and (2) line b—-b.

y
5MPa 2.5 MPa 5 - 3.95 MPa
1 a 3 5MPa
2 6 MPa ¥ >/ \?MPa
{50 el
10 MPa >\ 9.5 MPa

J’I
(b) (©)

Solution The x; direction is that of a normal to the inclined plane. We
want to obtain the transformation of stress from the xy system of coordinates to

O

‘.1

the xjy;. system.

Note, that the stresses and the rotations must be designated with their
correct signs.

(1) Applying Egs. (3.8 through 3.10) for 6=45", o,=10 MPa,

oy = -5 MPa, and Tyy = —6 MPa, we obtain
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o —1(10—5)+%(10+5)cos900 —6sin90° =—-3.5 MPa,

X1

Ty = —%(10+ 5)sin90° —6c0s90° = 7.5 MPa,

and
1 1 o . Ao
oy :5(10—5)—5(10+ 5)cos90° + 6sin90° =8.5MPa.
The results are indicated in Fig. b.

(2) As 8=30+90=120°, from Egs. (3.8 through 3.10), we have

oy = %(10 ~5)+ %(10 +5)c0s240° — 65in240° =3.95 MPa,

—%(10 +5)sin240° — 6¢c0s240° =9.5 MPa,

TXI)’I -
and
o 21(10—5)—1(10+5)cos240° + 6sin240° =1.05 MPa.
Y1 2 2

The results are indicated in Fig. c.

Example 3.2
A two-dimensional stress state at a point in a loaded structure is shown in

Fig. a. (1) Write the stress-transformation equations. (2) Compute Oy, and T

with @ between 0 and 180° in 15° increments for o, =7 MPa, o, =2 MPa, and
Tyy =5 MPa. Plot the graphs o, (6)and 2 (6).

c,T,
MPa O max = 10.09

10

Isy=2MPa 8

6
Ty, =5SMPa
2
0

o, =7MPa

) 5 i
* RN 5
4 «
See-”

Tmax = —9.99

(2) (b)

Variation in normal stress O'x1 and shearing stress Txl i with angle @ varying between 0 and 180°

[e)
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Solution (1) We express Egs. (3.8) and (3.9) as follows:
Oy, = A+ Bcos28+ Csin 20,

Ty = —Bsin26+Ccos 20,

where
A=%(O'X+O'y), B=%(O'X—O'y), C=1y.

(2) Substitution of the prescribed values into Egs. (3.8) and (3.9) results in
Oy, =4.5+2.5c0520 + 5sin 20,

Ty = 2551026 + 5008 26.

Here, permitting 6 to vary from 0 to 180° in increments of 15° yields the
data upon which the curves shown in Fig. b are based. These cartesian
representations indicate how the stresses vary around a point. Observe that the
direction of maximum (and minimum) shear stress bisects the angle between the
maximum and minimum normal stresses. Moreover, the normal stress is either a

maximum or a minimum on planes &=31.7" and €=31.7°+90°, respectively,
for which the shearing stress is zero. Note. The conclusions drawn from the
foregoing are valid for any state of stress.

Example 3.3

An element in plane stress is subjected to stresses o, =110.32 MPa,

o, =41.37 MPa, and 7, =7, =27.58 MPa, as shown in Fig. a. Determine the

stresses acting on an element inclined at an angle € =45°.

Y
Y
o, =41.37 MPa o. =103.425
7 N X
T AN MPa
— L)X 0 = 45°
Ty =27.58 MPa \ /
Oy l T o, =110.32MPa ®» 48-265/ \Cm = 34475
- MPa a
0 > X
Txy O X

1

Tnyy Gx/\

(a) (b)

(a) Element in plane stress, and (b) element inclined at an angle € = 45°
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Solution To determine the stresses acting on an inclined element, we will
use the transformation equations (Egs. 3.8 and 3.9). From the given numerical
data, we obtain the following values for substitution into those equations:

Oy +0, Oy =0,
— " 75.845 MPa, — " 34.475MPa, 1,,=27.58 MPa,

sin2@ =sin90°=1, co0s260=c0s90°=0.
Substituting these values into Egs. 3.8 and 3.9, we get

Oy—O

Ty, =O-xgo-y + 5 ycos2¢9+rxysin2¢9:
=75.845 MPa +(34.475 MPa)(0) +(27.58 MPa)(1) =103.425 MPa,
Ox =0y

Ty = —Tsm 20 +7,,cos20 =

=—(34.475 MPa)(1)+(27.58 MPa)(0) =—-34.475 MPa.

In addition, the stress o), may be obtained from Eq. (3.10):

o,+0, O0,-0O
oy = T LT Ycos20-17,,sin20=
1 2 o) 2%

=75.845 MPa —(34.475 MPa)(0) — (27.58 MPa (1) = 48.265 MPa.

From these results we can obtain the stresses acting on all sides of an
element oriented at @ =45°, as shown in Fig. b. The arrows show the true
directions in which the stresses act. Note especially the directions of the shear
stresses, all of which have the same magnitude. Also, observe that the sum of the
normal stresses remains constant and equal to 151.69 MPa from Eq. (3.11):

Oy + 0y, =0y +0, =151.69 MPa.

Note. The stresses shown in Fig. b represent the same intrinsic state of
stress as do the stresses shown in Fig. a. However, the stresses have different
values because the elements on which they act have different orientations.

Example 3.4

On the surface of a loaded structure a plane stress state exists at a point,
where the stresses have the magnitudes and directions shown on the stress
element of Fig. a. Determine the stresses acting on an element that is oriented at a
clockwise angle of 15° with respect to the original element.
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Ty Ay /yl

~— o

_>

'

(a) (b)

Solution The stresses acting on the original element (see Fig. a) have the
following values:
o, =—46 MPa, oy, =12 MPa, Tyy =—19 MPa.
An element oriented at a clockwise angle of 15° is shown in Fig. b, where the x;
axis 1s at an angle @ =—15° with respect to the x axis (clockwised rotation).
We will calculate the stresses on the x; face of the element oriented at

€ =-15° by using the transformation equations (Eqgs. (3.8) and (3.9)). The
components are:

o, t+0 o, —0O
A= xz Y —_17MPa, B= xz Y —_29 MPa,

sin 26 =sin(-30°) =-0.5, cos26 = cos(-30°) =0.8660.
Substituting into the transformation equations, we get
Oy +0, 0,-0,

Oy = L 0820 + 7y, sin 20 =
=—17 MPa +(-29 MPa)(0.8661)+(—19 MPa)(-0.5) = —32.6 MPa,
Ox =0y

Ty = —Tsm 20+ 17,0520 =

=—(—29 MPa)(—0.5)+(—19 MPa)(0.8660) =-31.0 MPa.
Also, the normal stress acting on the y; face (Eq. (3.10)) is

oy+0, Oy—0C
Oy = T Y T Yos20-1,,sin20=
1 2 2 Y

=—17 MPa —(-29 MPa)(0.8661)—(—19 MPa)(-0.5) =—1.4 MPa.

To check the results, we note that o, +0,, =0, +0,.
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The stresses acting on the inclined element are shown in Fig. b, where the
arrows indicate the true directions of the stresses.

Note. Both stress elements shown in the figure represent the same state
of stress.

P PROBLEMS

Problem 3.1 An element in negative when clockwise. Show these
plane stress is subjected to stresses stresses on a sketch of an element
o, =180MPa, o, =120MPa, and oriented at the angle 6.

Ty =100MPa, as shown in the figure. T4() MPa

Determine the stresses acting on an
element oriented at an angle 6=60° —
from the x axis, where the angle & is 30 MPa
positive when counterclockwise. Show <_l

_>

these stresses on a sketch of an element 110 MPa

oriented at the angle 6.

-

P '
Gy = 120 MPa
T Problem 3.3 The stresses at
—_— point A4 in the web of a train rail are

equals to be 65 MPa (tension) in the
T o, =180MPa horizontal direction and 150 MPa

—_>— (compression) in the vertical direction
Ty = 100 MPa (see figure). Also, the shear stresses are
30 MPa acting in the directions shown.

i Determine the stresses acting on an

<_l0

element oriented at a counterclockwise
angle of 60° from the horizontal.

Problem 3.2 An clement in
plane stress is subjected to stresses
o, =110MPa, o, = 40MPa, and

Tyy =30MPa, as shown in the figure.

Determine the stresses acting on an
element oriented at an angle 6=-30°
from the x axis, where the angle & is

Side Cross
view section
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llSO MPa
<
T 65 MPa
- A —
30 MPa
T
Problem 3.4 The stresses at

point A in the web of a wide-flange
beam are found to be 55 MPa (tension)
in the horizontal direction and 18 MPa
compression in the vertical direction
(see figure). Also, the shear stresses are
34 MPa acting in the directions shown.
Determine the stresses acting on an
element oriented at a counterclockwise
angle of 50° to the horizontal.

y |
Side Cross
View section
l18 MPa
o
T lss MPa
- A S
34 MPa
—

Problem 3.5 The polyethylene
liner of a settling pond is subjected to
stresses o, =6 MPa, oy =4 MPa, and

Tyy =—2 MPa, as shown by the plane-

stress element in part (a) of the figure.
Determine the normal and shear stresses
acting on a seam inclined at an angle of
30° to the element, as shown in part (b)
of the figure.

'y
A4 MPa

~f—

6 MPa
> -

-1

2 MPa

Problem 3.6 A thin rectangular
plate of dimensions 75 mm x 200 mm is

formed by welding two triangular plates
(see figure). The plate is subjected to a
compressive stress of 3.0 MPa in the
long direction and a tensile stress
0f9.0 MPa in the short direction.
Determine the normal stress o, acting
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perpendicular to the line of the weld and
the shear stress 7,, acting parallel to the

weld.

3 MPa

Problem 3.7 Solve the
preceding problem for a plate of
dimensions 75 mmx150 mm subjected

to a tensile stress of 14 MPa in the long
direction and a compressive stress of
10 MPa in the short direction (see

figure).
10 MPa

Weld 75 mm 14 MPa

150 mm >
y

Problem 3.8 At a point on the
surface of a machine the material is in
biaxial stress with o, =120 MPa and

o, =-40 MPa, as shown in part (a) of

the figure. Part (b) of the figure shows
an inclined plane a-a through the same
point in the material but oriented at an
angle @. Determine all values of the
angle @ such that no normal stresses act
on plane a-a. For each angle @, sketch a
stress element having plane a-a as one

of its sides and show all stresses acting
on the element.

T y
40 MPa

'

a
X
L 120 MPa iﬁ(e
- 9, - —; X
+ | a
(a) (b)

Problem 3.9 Solve the
preceding problem for o, =15 MPa

and o,, =—-30 MPa (see figure).

Yy
I)’
30 MPa a
{ 5
ﬁ
15 MPa o
* ‘ a
(a) (b)
Problem 3.10 An element in

plane stress from the frame of a machine

is oriented at a known angle & =60°
(see figure). On this inclined element,
the normal and shear stresses have the
magnitudes and directions shown in the
figure. Determine the normal and shear
stresses acting on an element whose
sides are parallel to the xy axes; that is,

determine o, ), and 7.
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ﬂy

10 MPa

30 MPa /
X

\/ 0\

11 MPa\ /\

/

Problem 3.11 An element in
plane stress from the frame of a car is
oriented at a known angle & (see Fig.).
On this inclined element, the normal
and shear stresses have the magnitudes
and directions shown in the Fig.
Determine the normal and shear stresses
acting on an element whose sides are
parallel to the xy axes; that is,

determine oy, 0, and 7.

|

6 =60°

=¥

Ly

X1
e
160 MPa\ >0 MPa

x 0 =30°
\200 MPa
O -

N i
Problem 3.12 A thin plate in

plane stress is subjected to normal

stresses 0, and o), and a shear stress

as shown in part (a) of the figure. At

Txyps
angles 8 =40° and 80° from the x axis

the normal stress 1s 50 MPa (tension) (see
parts (b) and (c) of the figure). If the
stress o, equals 20 MPa (tension), what

(7
are the stresses o, and 7,

—

e

'

1 ()
50 MPa

0 =40°
NG

(b)

|

0 =80°

J*

(c)

50 MPa

Problem 3.13 The surface of an
airplane wing is subjected to plane

stress with normal stresses o, and o,

and shear stress 7,,,, as shown in part

Xy
(a) of the figure. At an angle 6 =30°
from the x axis the normal stress is
30 MPa (tension), and at an angle
0 =50° it is 10 MPa (compression) (see
parts (b) and (c) of the figure). If the

stress o, equals 80 MPa (tension),

what are the stresses oy and 7 y‘7
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T
X
— 80 MPa
~—
!
(a) /xl
30/1\/1381/\')61 10 MPasg N\
0 =30° |
\ X \ X

(b) (c)

Problem 3.14 At a point in a
structure subjected to plane stress, the
stresses have the magnitudes and
directions shown acting on element 4 in
the first part of the figure. Element B,
located at the same point in the structure,
is oriented at an angle &, (between zero

and 90°) such that the stresses are as
shown in the second part of the figure.
Calculate the normal stress oy, the shear

stress 7, and the angle 6.

Tzs MPa
—
28 MPa
— A Tq—
40 MPa
-

|

2

o) P
P
A\ X x

Problem 3.15 At a given point
of the structural element the material is
subjected to plane stress such that on a
vertical plane through the point, the
normal stress is 100 MPa (tension) and
the  shear stress is 80 MPa
counterclockwise (see part (a) of the
figure), and on a plane oriented at an
angle 6, the normal stress is 150 MPa
(tension) and the shear stress is 30 MPa
counterclockwise (see part (b) of the
figure). What is the angle 6,?

150 MPa

100 MPa

Problem 3.16 The stresses on
the surface of a crane hook are

o,=12MPa, o©,=36 MPa, and
Tyy =27 MPa, as shown by the stress
element in the figure. For what angles &
between 0 and 90° (counterclockwise)

is the normal stress equal numerically to
twice the shear stress? For each such
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angle, sketch a properly oriented stress
element and show all stresses acting on
the element.

Ay
A Gy =36 MPa
— rxy:27MPa
o, =12MPa
<—l 0—1—»—;
Pa—

'

Problem 3.17 A 60-mm by 40-
mm plate of 5-mm thickness 1is
subjected to wuniformly distributed
biaxial tensile forces (see figure). What
normal and shearing stresses exist along
diagonal AC? Use the equilibrium
equation applied to the wedge-shaped
half ABC of the plate.

10 kN
-

Problem 3.18 A 60-mm by 40-
mm plate of 5-mm thickness is
subjected to

uniformly distributed

biaxial tensile forces (see figure). What
normal and shearing stresses exist along
diagonal 4C? Use in solution the Egs.
(3.8, 3.9, 3.10) and compare with the
result of Problem 3.17.

/ *10kN

5 mm !
Y
- —— 30 kN
60 mm|
Y k ---------- V

Problem 3.19 The state of
stress at the point in a loaded body is
represented in the figure. Determine the
normal and shearing stresses acting on
the indicated inclined plane. Use an
approach based upon the equilibrium
equations applied to the wedge-shaped
element.

80 MPa
60 MPa

50 MPa
Y 15°

\
| —
\

T X

Problem 3.20 The state of
stress at the point in a loaded body is
represented in the figure. Determine the
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normal and shearing stresses acting on Determine the stresses on all sides of an
the indicated inclined plane. Use an element rotated through an angle
approach based upon the equilibrium € =25°.

equations applied to the wedge-shaped y

element shown.
B3|

'ny
YA 1175 MPa
X1
60 MPa Gy
0
(a)

0 X

30° |

— .
I yt

A

Problem 3.21 The state of
stress at the point in a loaded body is
represented in the figure. Determine the © x(AA COS@)
normal and shearing stresses acting on
the indicated inclined plane. Use an M1
approach based upon the equilibrium 0
equations applied to the wedge-shaped B

1 t shown. :
element shown ryx(AAsme)

YA 6 ,,(A4sinb)

40 MPa
<_+_ , (b)
=20 MPa

—
2.5° ! T
70 MPa N ‘\ Cy,
1 o
)\ \ ’
Problem 3.22 The stresses at a /< x

point (see figure (a)) are o, =0, =0 O

T4, (A4 cos6) )
o, A4

29|

X1

=

=y

and 7,,=100MPa (pure shear). ()
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Problem 3.23 At a point in a
loaded structural element, the stresses
are as shown in the figure. The normal
stress at the point on the indicated plane
is 40 MPa (tension). What is the
magnitude of the shearing stress 7 ?

Y1 iy1

30°

40 MPa

——— X

Problem 3.24 A triangular plate
1s subjected to stresses as shown in the

figure. Determine oy, 0, and 7, and

sketch the results on a properly oriented
clement.

the

Problem 3.25 Calculate
normal and shearing stresses acting on
the plane indicated in the figure for
7 =30 MPa.

Y iyl

30°

40 MPa

Problem 3.26 At a critical point
A 1n the loaded element (see figure), the
stresses on the inclined plane are
o=28MPa and 7=12MPa, and the
normal stress on the y plane is zero.
Calculate the normal and shear stresses
on the x plane through the point. Show
the results on a properly oriented
element.

Problem 3.27 At a given point
in a loaded machine part (see figure),
the  stresses are o, =40 MPa,

o, =-25 MPa and 7,, =0. Determine

the normal and shear stresses on the
plane whose normals are at angles of

—30° and 120° with the x axis. Sketch

the results on properly oriented
elements.
T
N " xy
X1
G)C
X
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Problem 3.28 The stresses at a
point of a boiler are as shown in the
element represented in the figure.
Calculate the normal and shear stresses at
the point on the indicated inclined plane.

YA
T78MPa

4

ﬁ3\—> 39 MPa

Problem 3.29 The stresses at a
point in the pressure vessel are as
shown in the element represented in the
figure. Calculate the normal and shear
stresses at the point on the indicated
inclined plane.

=Y

YA
Tloo MPa
4
- ﬁ3\ » 25 MPa
X

'

Problem 3.30 The stresses
acting uniformly at the edges of a thick,
rectangular plate are shown in the
figure. Determine the stress components
on planes parallel and perpendicular to
a-a. Show the results on a properly
oriented element.

120 MPa

4

s
%

60° 120 MPa

a

Problem 3.31 The figure
represents the state of stress at a point in
a structural member. Calculate the
normal and shear stresses at the point on

the indicated inclined plane. Sketch the
results on a properly oriented element.

/
/
/
7

35 MPa

Problem 3.32 At a point in a
loaded member, the stresses are shown
in the figure. Determine the allowable
value of o if the normal and shearing
stresses acting simultaneously in the
indicated inclined plane are limited to
35 MPa and 20 MPa, respectively.

1 lls MPa

15°

i

=Y
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Problem 3.33 Calculate the 3 15 MPa
normal and shear stresses acting on the l
inclined plane in the figure. for
oy =15MPaand o), =—15MPa. 15 MPa
~— \250° P

\ T X
3.3 Principal Stresses and Maximum Shear Stresses

The transformation equations for plane stress show that the normal stresses

oy, and the shear stresses 7, ,, vary continuously as the axes are rotated through

the angle @. This variation is pictured in Fig. 3.9 for a particular combination of
stresses. From the figure, we see that both the normal and shear stresses reach
maximum and minimum values at 90° intervals. These maximum and minimum
values are usually needed for design purposes. For instance, fatigue failures of
structures such as machines and aircraft are often associated with the maximum
stresses, and hence their magnitudes and orientations should be determined as part
of the design process.

The determination of principal stresses is an example of a type of
mathematical analysis known as eigenvalue problem in matrix algebra. The
stress-transformation equations and the concept of principal stresses are due to the
French mathematicians A. L. Cauchy (1789-1857) and Barre de Saint-Venant
(1797-1886) and to the Scottish scientist and engineer W. J. M. Rankine (1820-
1872).

3.3.1 Principal Stresses

The maximum and minimum normal stresses, called the principal stresses,
can be found from the transformation equation for the normal stress Ty, (Eq. 3.8).

By taking the derivative of Oy, with respect to € and setting it equal to zero, we
obtain an equation from which we can find the values of at which o, is a

maximum or minimum. The equation for the derivative is

do
dgl = (0, — 0, )sin20 + 27, c0s20 =0, (3.18)
from which we get
2T
tan 26, = ——. (3.19)
Oy —0)



Chapter 3 TWO-DIMENSIONAL (PLANE) STRESS STATE 117

The subscript p indicates that the angle 6, defines the orientation of the

principal planes, i.e. the planes, on which the principal stresses act.
Two values of the angle 26, in the range from 0 to 360° can be obtained

from Eq. (3.19). These values differ by 180°, with one value between 0 and 180°
and the other between 180° and 360°. Therefore, the angle ¢,, has two values that

differ by 90°, one value between 0 and 90° and the other between 90° and 180°.
The two values of 0, are known as the principal angles. For one of these angles,

the normal stress Oy, 1s a maximum principal stress; for the other, it is a

minimum principal stress. Because the principal angles differ by 90°, we see that
the principal stresses occur on mutually perpendicular planes.

The principal stresses can be calculated by substituting each of the two
values of 9p into the first stress-transformation equation (Eq. 3.8) and solving for

Ty, - By determining the principal stresses in this manner, we not only obtain the

values of the principal stresses but we also learn which principal stress is
associated with which principal angle.

Let us obtain the formulas for the principal stresses, using right triangle in
Fig. 3.14, constructed from Eq. (3.19). The hypotenuse of the triangle, obtained
from the Pythagorean theorem, is

B 2 _ 2
P (%} +72,. (3.20) R:\/( S j+‘|:

The quantity R is always a positive

number and, like the other two sides of 4
the triangle, has units of stress. From
the triangle we obtain two additional
relations: Ox 0Oy
O,—O 2
c0s26, =——=, (3.21)
2R Fig. 3.14 Geometric analogue of Eq. (3.19)
. Txy
sin 2(9p = (3.22)
R

Now we substitute these expressions for cos260,, and sin26,, into Eq. (3.8) and

obtain the algebraically larger of the two principal stresses, denoted by o :

2
o, +0 o, —0O
01=%+ [%} +7h. (3.23)
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The smaller of the principal stresses, denoted by o5, may be found from the

condition that the sum of the normal stresses on perpendicular planes is constant
(see Eq. 3.11):

01+0y=0,+0,,. (3.24)
Substituting the expression for o into Eq. (3.24) and solving for o,, we
get
o,+o o, —o, )
X"y x "y 2
R T
The formulas for o7 and o, can be combined into a single formula for the
principal stresses:
2
o,+0 o,—0O
2
Omax,min = 01,2 = x2 3 i\/[ x2 yj + 5y (3.26)

Note. The plus sign gives the algebraically larger principal stress and
the minus sign gives the algebraically smaller principal stress.

Let us now find two angles defining the principal planes as Qpl and Hp )

corresponding to the principal stresses o7 and o5, respectively. Both angles can
be determines from the equation for tan26, (Eq. 3.19). To correlate the principal

angles and principal stresses we will use Egs. (3.21) and (3.22) to find 49p since
the only angle that satisfies both of those equations is 6?]91 . Thus, we can rewrite

those equations as follows:

_9x"%
COSZQPI —T, (327)

sin 29pl = % (3.28)
Only one angle exists between 0 and 360° that satisfies both of these equations.
Thus, the value of 0191 can be determined uniquely from Eqgs. (3.27) and (3.28).
The angle 6 ) corresponding to o5, defines a plane that is perpendicular to the
plane defined by 0171' Therefore, sz can be taken as 90° larger or 90° smaller
than (9191 .

It is very important to know the value of shear stresses acting at principal
planes. For this we will use the transformation equation for the shear stresses
(Eq. (3.9)). If we set the shear stress (2 equal to zero, we get an equation that is

the same as Eq. (3.18). It means that the angles to the planes of zero shear stress



Chapter 3 TWO-DIMENSIONAL (PLANE) STRESS STATE 119

are the same as the angles to the principal planes. Thus, the shear stresses are
zero on the principal planes.

The principal planes for elements in uniaxial stress and biaxial stress are
the x and y planes themselves (Fig. 3.15), because tan 26, =0 (see Eq. 3.19) and

the two values of ), are 0 and 90°. We also know that the x and y planes are the

principal planes from the fact that the shear stresses are zero on those planes.

YA i
oy oy oy oy
- . - =
(a) (b)
GyA GyA Gyl
Gx Ox Ox Oy Ox Ox
Gyl Gyl GyT
() (d) (e)

Fig. 3.15 Elements in uniaxial (a) and (b) and biaxial (c), (d), (e) stress state:
(a) o, =80 MPa = o, Oy = 0= 02(3)s Oz = 0= 03(2); (b) Oy = —80 MPa = o3,
o, =0=0y7), 0,=0=0y);
(€) oy =60MPa=0y, 0,=25MPa=0,, 0,=0=03; (d o, =-60MPa=o3,
oy, =25MPa=o0y,0,=0=07;

(e) o, =—60 MPa = o3, oy = -25MPa=0,, 0,=0=0
For an element in pure shear (Fig. 3.16a), the principal planes are oriented
at 45° to the x axis (Fig. 3.16b), because tan26), is infinite and the two values of

0, are 45° and 135°. If 7, is positive, the principal stresses are oy =7y, and

Xy

62 =—Txy.
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Y X1
xy O1 =Ty

0, =45°

X

y“ 02:—’[:

oot
— PN

(a) (b)

Fig. 3.16 Element in pure shear

=y

Two principal stresses determined from Eq. (3.26) are called the in-plane
principal stresses. Really any stress element is three-dimensional (Fig. 3.17a) and
has three (not two) principal stresses acting on three mutually perpendicular
planes. By making a more complete three-dimensional analysis, it can be shown
that the three principal planes for a plane-stress element are the two principal
planes already described plus the z face of the element. These principal planes are
shown in Fig. 3.17b, where a stress element has been oriented at the principal
angle 9171 which corresponds to the principal stress o;. The principal stresses o

and o, are given by Eq. (3.26), and the third principal stress (03) equals zero.

By definition, o is algebraically the largest and o5 is algebraically the smallest

one.
Note. There are no shear stresses on any of the principal planes.

WA
Agy
1 | T‘yx
T i T
.| "1 o Txy G,
S B e
|
— | A"t
z o
(a) (b)

Fig. 3.17 Elements in plane stress: (a) original element, and (b) element oriented to the three
principal planes and three principal stresses
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3.3.2 Maximum Shear Stresses

Now we consider the determination of the maximum shear stresses and the

planes on which they act. The shear stresses T acting on inclined planes are

given by the second transformation equation (Eq. 3.9). Equating the derivative of

Ty,y, Withrespect to € to zero, we obtain

dr,

1 _ : —

d—e——(Gx—Gy)COSZH—zfxy sin260 =0, (3.29)

from which
0 f—
tan 260, = ———~ (3.30)
2Txy

The subscript s indicates that the angle 6, defines the orientation of the

planes of maximum positive and negative shear stresses. Equation (3.30) yields
one value of & between 0 and 90° and another between 90° and 180°. These two

values differ by 90°, and therefore the maximum shear stresses occur on
perpendicular planes. Because shear stresses on perpendicular planes are equal in
absolute value, the maximum positive and negative shear stresses differ only in
sign.

Comparing Eq. (3.30) for &y with Eq. (3.19) for 6, shows that

tan 260, :_taanQ =—cot20,. (3.31)
p

This equation is the relationship between the angles 6, and Qp. Let us rewrite

this equation in the form
sin 20, s cos20, _
cos260; sin20,

0, (3.32)

or
sin 20 sin 260,, + c0s 26 cos26,, =0. (3.33)

Eq. (3.33) is equivalent to the following expression:
cos(26’s - 29p) =0.
Therefore,
20, -20,, =+90°,

and
0, = Hp +45°, (3.34)
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Note. Eq. (3.34) shows that the planes of maximum shear stress occur at 45°
to the principal planes.
The plane of the maximum positive shear stress 7,,,,, 1s defined by the

angle 6’Sl , for which the following equations apply:

_tw
C0529S1 —?, (335)
. B Oy —O'y
sin26, =-—*_ - (3.36)

in which R is given by Eq. (3.20). Also, the angle HSI is related to the angle 0191

(see Egs. (3.27) and (3.28)) as follows:
051 = le —45°, (3.37)

Corresponding maximum shear stress is obtained by substituting the expressions
for cos 26’S1 and sin 2(9S1 into the second transformation equation (Eq. 3.9),

2
O, —O
2
Tax =\/(%} + 73 (3.38)

The maximum negative shear stress has the same magnitude but opposite
sign.
Another expression for the maximum shear stress 7,,,, can be obtained

yielding

from the principal stresses o7 and o5, both of which are given by Eq. (3.26).
Subtracting the expression for o, from that for o7 and then comparing with
Eq. (3.38), we see that
o|1—O
Tnax = — > 28 (3.39)

Note. Maximum shear stress is equal to one-half the difference of the
principal stresses.
The planes of maximum shear stress 7, also contain normal stresses. The

normal stress acting on the planes of maximum positive shear stress can be
determined by substituting the expressions for the angle 981 (Egs. (3.35) and

(3.36)) into the equation for Ty, (Eq. 3.8). The resulting stress is equal to the

average of the normal stresses on the x and y planes:

O, t+t0
Oy =—— (3.40)

aver —
2
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This same normal stress acts on the planes of maximum negative shear stress.

In the particular cases of uniaxial stress and biaxial stress (Fig. 3.15),
the planes of maximum shear stress occur at 45° to the x and y axes. In the
case of pure shear (Fig. 3.16), the maximum shear stresses occur on the x and
v planes.

The analysis of shear stresses has dealt only with the stresses acting in the
xy plane, i.e. in-plane shear stress. The maximum in-plane shear stresses were
found on an element obtained by rotating the x,y,z axes (Fig. 3.17a) about the z
axis through an angle of 45° to the principal planes. The principal planes for the
element of Fig. 3.17a are shown in Fig. 3.17b.

We can also obtain maximum shear stresses by 45° rotations about the
other two principal axes (the x; and y; axes in Fig. 3.17b). As a result, we obtain

three sets of maximum positive and maximum negative shear stresses (compare
with Eq. (3.39)).

EXAMPLES

Example 3.5
An element in plane stress is subjected to stresses o, =84.8 MPa,

o, =-28.9 MPa, and 7,, =-32.4 MPa, as shown in Fig. a. (1) Determine the
principal stresses and show them on a sketch of a properly oriented element; (2)

Determine the maximum shear stresses and show them on a sketch of a properly
oriented element.

T,V
J 28.9 MPa
~—
‘ 84.8 MPa
~ o
32.4 MPa
——

f

(a)
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X

27.9 MPa X

27.9MPa_—~

G =93.4 MPa S/
~— ﬁ \ 05, =30.2°
0 x

y ¥ Tnax = 65.4 MPa
f \

(b) (c)

(a) Element in plane stress; (b) principal stresses; and (c) maximum shear stresses

Solution (1) Calculation of principal stresses. The principal angles ¢,
that locate the principal planes can be obtained from Eq. (3.19):
27,y _ 2(—32.4 MPa)
oy—0, 84.8MPa- (—28.9 MPa)

Solving for the angles, we get the following two sets of values:
20, =150.3° and 6,, =75.2°,

20, =330.3° and 0, =165.2°.

The principal stresses may be obtained by substituting the two values of
20,, into the transformation equation for Ty, (Eq. (3.8)). Determine preliminary

=-0.5697.

tan 20p =

the following quantities:

o, +0o _
Y= x2 y:84.8MPa228.9MPa:27.9MPa,

Ox 0y 84.8 MPa+28.9 MPa

2 2
Now we substitute the first value of 20p into Eq. (3.8) and obtain

B= =56.8 MPa.

Ox+0, Oyx—0O

4 Y

O'X1 =
2
=27.9 MPa +(56.8 MPa)(c0s150.3°) - (32.4 MPa)(sin150.3°) =—37.5 MPa.

By the similar way, we substitute the second value of 26’p and obtain

0820 +7,),sin 20 =

Oy, = 93.4 MPa. In result, the principal stresses and their corresponding principal

angles are
01 =93.4 MPa and '91?1 =165.2°

o3=-37.5MPa and 6, =752°.



Chapter 3 TWO-DIMENSIONAL (PLANE) STRESS STATE 125

Keep in mind, that o5 =0 acts in z direction.

Note that 6, and 6,,, differ by 90° and that o1 +o3 =0, +0,,.

The principal stresses are shown on a properly oriented element in the Fig. b. Of
course, the principal planes are free from shear stresses.
The principal stresses may also be calculated directly from Eq. (3.26):

2
Oy +0, Oy =0y 2
0'1’2(3) = 7 * \/[ > + Z'xy =

~27.9 MPa +/(56.8 MPa)’ +(~32.4 MPa)’
(71’2(3) =27.9 MPa £65.4 MPa.

Therefore,
01 =93.4 MPa, 03 =-37.5MPa, (0, =0).

(2) Maximum shear stresses. The maximum in-plane shear stresses are
given by Eq. (3.38):

2
O, — O
Tax = \/[%j 47,7 =1J(56.8 MPa)’ +(~32.4 MPa)? = 65.4 MPa.

The angle ‘951 to the plane having the maximum positive shear stress is calculated

from Eq. (3.37):
<9S1 = 9191 —45°=165.2°-45°=120.2°.

It follows that the maximum negative shear stress acts on the plane for which
0, =120.2°-90°=30.2°.

The normal stresses acting on the planes of maximum shear stresses are
calculated from Eq. (3.40):
o,+0o
% =27.9 MPa.

Oaver =

Finally, the maximum shear stresses and associated normal stresses are shown on
the stress element of Fig. c.

Example 3.6

The plane stress state is described in the figure. (1) Write the principal-
stress-transformation formulas. (2) Calculate the principal stresses. (3) Calculate
the maximum shearing stresses and the associated normal stresses. Sketch the
results on properly oriented elements.
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Solution (1) Principal-stress-transformation formulas.
Equations (3.26), (3.30), and (3.8) are written as

1/2
0-1:A+(B2+C2) ,

1/2
o =A—(32+C2) ,

p
oy, = A+ Bcos28 + Csin20,

G, = larctang,
2 B

where

A:%(Gx"'ay): Bzé(ax—ay), C=1y.

(2) Calculation of principal stresses.

The principal angles 6, that locate the principal planes can be obtained
from Eq. (3.19):
27 _ 2(+5MPa)
oy—0, 7MPa—(+2MPa)
Solving for the angles, we get the following two sets of values:

20, =63.4° and 0, =31.7°,
20,=243.4° and 0, =121.7°.

The principal stresses may be obtained by substituting the two values of

20,, into the transformation equation for Ty, (Eq. 3.8). Determine preliminary

tan 20p = =+2.0.

the following quantities:

A_O-x+o-y _7MP3+2MP3
2

=4.5 MPa,

O, —O
B=—"—"
2

Now we substitute the first value of 26, into Eq. (3.8) and obtain

:7 MPa -2 MPa 55 MPa.

oy+0, Oy—0C
Oy, = x2 L x2 yc052¢9+rxysin29:
= A+ Bcos20 +Csin20 =

=4.5 MPa + (2.5 MPa)(c0s63.4°) + (5 MPa)(sin 63.4°) =+10.09 MPa.
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By the similar way, we substitute the second value of 26, and obtain
Oy, =—1.09 MPa. In result, the principal stresses and their corresponding
principal angles are

o1 =+10.09 MPa and 91’1 =31.7°

o3 =-109MPa and 6,, =121.7°.

Note that 6, and 6,,, differ by 90° and that oy +o3 =0, +0,,.

The principal stresses are shown on a properly oriented element in Fig. b.
Of course, the principal planes are free from shear stresses.
The principal stresses may also be calculated directly from the Eq. (3.26):

2
o, t0 O, —O [
0'1’2(3) = d Y i\/[ ad yj +Txy2 =A+ B2+C2 =

2 2

— 4.5 MPa £,(2.5 MPa)> + (5.0 MPa)’.
0'1’2(3) =4.5 MPa £5.59 MPa.

Therefore,
o1 =10.09 MPa, o3 =—1.09 MPa (o, =0).

(3) Maximum shear stresses. The maximum in-plane shear stresses are
given by Eq. (3.38):

2 2
o,—0O _
z-max—\/( x2 y] +Txy2—\/(7—22j +52=5.59MPa.
y
lcy:2MPa
Tyy =5MPa

6, =7MPa

Tﬁ

(a)
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N
10.09 MPa / 4.5 MPa
4.5 MPa

/xl 5.59 MPa

GA: 31.7°

The angle <9S1 to the plane having the maximum positive shear stress is calculated
from Eq. (3.37):

1.09 MPa

yl\

\i

&

(b)

(951 = le —-45°=31.7°-45°=-13.3°.

It follows that the maximum negative shear stress acts on the plane for which

9S2 =-13.3°4+90°=76.7°.

The normal stresses acting on the planes of maximum shear stresses are
calculated from Eq. (3.40):
o,+o
Taver = % =4.5 MPa.
Finally, the maximum shear stresses and associated normal stresses are shown on
the stress element of Fig. c.
Note. The direction of the 7,,, may also be readily predicted by

recalling that they act toward the shear diagonal.

P

P PROBLEMS

Problem 3.34 Calculate the Problem 3.35 A cylindrical tank

stresses on planes of maximum shearing fabricated of 10-mm-thick plate is
stresses for an element subjected to Subjected to an internal pressure of

o ) _ 6 MPa. (1) Determine the maximum
principal stresses: (1) o =60 MPa and diameter 1f the maximum shear stress 1s

o =20 MPa; (2) o=30MPa and jipited to 30 MPa. (2) For the diameter
o=-7 MPa; (3) 0=-10 MPa, and found in part (1) determine the limiting
o =-30 MPa. value of tensile stress. In the solution
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use that circumferential stress is equal
o o, =pr/t (p — pressure, r —
radius, t — thickness), and axial stress
is equal to o, = pr/2t.

Problem 3.36 A welded plate is
subjected to the uniform biaxial tension
shown in the figure. Calculate the
maximum stress o, if the weld has (1)
an allowable shear stress of 25 MPa and
(2) an allowable normal stress of
60 MPa.

T 40 MPa

l \
Weld

Problem 3.37 A closed
cylindrical vessel, constructed of a thin
plate 1.5 m in diameter, is subjected to
an external pressure of 1 MPa.
Calculate (1) the wall thickness if the
maximum allowable shear stress is set
at 20 MPa and (2) the corresponding
maximum principal stress. In the
solution use that circumferential stress
is equal to o, = pr|[t (p — pressure, r
— radius, t — thickness), and axial stress
is equal to o, = pr/2t.

Problem 3.38 For the state of
stress given in the figure, determine the
magnitude and orientation of the
principal stresses. Show the results on a
properly oriented element.

129
A
1 ASOMPa
60 MPa
50 MPa
T
Problem 3.39 Determine the

maximum shearing stresses and the
associated normal stresses for the state
of stress represented in the figure.
Sketch the results on a properly oriented

element.
I4O MPa
10 MPa

70 MPa

VA

=y

T

Problem 3.40 The stresses at
the point in a loaded member are
represented in the figure. Calculate and
sketch (1) the principal stresses and (2)
the maximum shearing stresses with the
associated normal stresses.

YA

=y
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Problem 3.41 The stresses
the point in a loaded member are
represented in the figure. Calculate and
sketch (1) the principal stresses and (2)
the maximum shearing stresses with the
associated normal stresses.

Y ‘ 20 MPa
l 10 MPa

5 MPa
T _;
Problem 3.42 The stresses at

the point in a loaded member are
represented in the figure. Calculate and
sketch (1) the principal stresses and (2)
the maximum shearing stresses with the
associated normal stresses.

74 60 MPa
50 MPa
120 MPa
-
Problem 3.43 Given the

stresses acting uniformly at the edges of
a block (see figure), calculate (1) the

stresses O, 0, Ty, and (2) the

maximum shearing stresses with the
associated normal stresses. Sketch the
results on properly oriented elements.

10 MPa

o NS N NN

30°
SRR

Problem 3.44 The shearing
stress at a point of the element’s surface
is 7,,=30MPa (see figure). The

principal stresses at this point are
=35MPa  and o3 =—-55MPa.

Determine the o, and o), and indicate
the principal and maximum

stresses on an appropriate sketch.
ACy

y

15 MPa

shear

Tyy =30 MPa

Ox

-

Problem 3.45 The state of
stress at a point is shown in the figure.
Determine (1) the magnitude of the
shear stress 7 if the maximum principal
stress is not to exceed 70 MPa and (2)
the corresponding maximum shearing
stresses and the planes at which they

act.
T

Y
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Problem 3.46 The side wall of
the cylindrical steel pressure vessel has
butt-welded seams (see figure). The
allowable tensile strength of the joint is
80 % of that of steel. Determine the
maximum value of the seam angle ¢ if
the tension in the steel is to be limiting.
In the solution use that circumferential
stress is equal to o,=pr[t (p -
pressure, v — radius, t — thickness),
and axial stress is equal to o, = pr/2t.

Problem 3.47 A cylindrical
vessel of internal diameter 300 mm and
wall thickness 3 mm has a welded
helical seam angle of @=60° (see
figure). If the allowable tensile stress in
the weld is 100 MPa, determine (1) the
maximum value of internal pressure p
and (2) the corresponding shear stress in
the weld. In the solution use that
circumferential stress is equal to
o, =pr[t (p —pressure, r — radius, t
— thickness), and axial stress is equal to
o, =pr/2t.

Problem 3.48 A structural
member is subjected to two different
loadings, each separately producing
stresses at point A, as indicated in the
figure. Calculate, and show on a sketch,
the principal planes and the principal

stresses under the effect of the

combined loading.

140 MPa 7
70 MPa

Ol

Problem 3.49 A structural
member is subjected to two different
loadings, each separately producing
stresses at point 4, as indicated in the
figure. Calculate, and show on a sketch,
the principal planes and the principal
stresses under the effect of the
combined loading.

30 MPa

Y

15 MPa 10 MPa
50 MPa / A
—| A - >\ 450
X

Problem 3.50 A structural
member is subjected to two different
loadings, each separately producing
stresses at point 4, as indicated in the
figure. Calculate the principal planes
and the principal stresses under the
effect of the combined loading, if o
and @ are known constants.

¢

y
c

<
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Problem 3.51 The state of maximum shear stresses. Sketch the
stress on the horizontal and vertical results on properly oriented elements.
planes at a point is only incompletely
known, as shown in the figure.
However, at the point o3 and 7,,,, are
prescribed as -50 and 55 MPa,
respectively. Determine stresses o, 7
and o7. Show the results on properly

oriented elements.

A
I
T

Problem 3.54 The state of
35 MPa stress at a point 4 in a structure is
shown in the figure. Determine the

normal stress o and the angle 6.

=y

<—r Vi
40 MPa
12 MPa
Problem 3.52 The stresses at
the point in a loaded member are 8 MPa
represented in the figure. Calculate and A
sketch (1) the principal stresses and (2)
the maximum shearing stresses with the _
X

associated normal stresses. —T—>
A

V1 80 MPa
I °©  16MPa
60 MPa
36 MPa
120 MPa
T A
x

Problem 3.53 Consider a point Problem 3.55 The state of

in a loaded solid subjected to the Stress at a point 4 in a structure is

stresses shown in the figure. Determine shown in the figure. Determine the
(1) the principal stresses and (2) the normal stress o and the angle 6.
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4 Problem 3.57 An element in
20 MPa plane stress is subjected to stresses
10 MPa o,=50 MPa, 0, =30 MPa, and
30 MPa Tyy =20 MPa (see figure). Determine
A the principal stresses and show them on
a sketch of a properly oriented element.
-, Ay
X
Ao, =30MPa
5 MPa —
25 MPa oy =50 MPa
<—l o—— T—» —
)\ Tyy =20 MPa

Problem 3.56 At a point of a
loaded member (see figure) a normal

stress 0'y=13 MPa and a negative

shear stress on the horizontal plane
exist. One of the principal stresses at the
point is 7 MPa (tension), and the
maximum shearing stress has a
magnitude of 35 MPa. Calculate (1) the
unknown stresses on the horizontal and
vertical planes and (2) the unknown
principal stress. Show the principal
stresses and maximum shear stresses on
a sketch of a properly oriented element.

Vi
13 MPa

=y

-

'

Problem 3.58 An clement in
plane stress is subjected to stresses
o, =100 MPa, oy =40 MPa, and

Ty =30 MPa (see figure). Determine

the principal stresses and show them on
a sketch of a properly oriented element.

T 40 MPa
—
30 MPa
=
100 MPa
-

'

Problem 3.59 An element in
plane stress is subjected to stresses

o, =65 MPa, gy =-150 MPa, and

Tyy =35 MPa (see figure). Determine
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the maximum shear stresses and 16 MPa
associated normal stresses and show
them on a sketch of a properly oriented ~—
element.
52 MPa
- A —
31 MPa
_>
/

Side Cross
view section
#
GX
- A —_—
Tyy
o Z—

T

Problem 3.60 An element in
plane stress is subjected to stresses

o, =52 MPa, o, = —16 MPa, and
Ty =—31 MPa (see figure). Determine
the maximum shear stresses and

associated normal stresses and show
them on a sketch of a properly oriented
element.

/
Side Cross
view section

T

Problem 3.61 A shear wall in a
reinforced  concrete  building  is
subjected to a vertical uniform load ¢
and a horizontal force H, as shown in
(a) part of the figure. The stresses at
point A on the surface of the wall have
the values shown in (b) part of the
figure (compressive stress equal to
10 MPa and shear stress equal to
2 MPa). (1) Determine the principal
stresses and show them on a sketch of a
properly  oriented element.  (2)
Determine the maximum shear stresses
and associated normal stresses and
show them on a sketch of a properly
oriented element.

q
EEERRE
oA

‘1 0 MPa

H
B 2 MPa<—

hw

—
—_— f
@) (v)

Problem 3.62 A engine shaft
subjected to combined torsion and axial
thrust is designed to resist a shear stress



Chapter 3 TWO-DIMENSIONAL (PLANE) STRESS STATE

135

of 70 MPa and a normal stress of
100 MPa (see figure). (1) Determine the
principal stresses and show them on a
sketch of a properly oriented element.
(2) Determine the maximum shear
stresses and associated normal stresses
and show them on a sketch of a
properly oriented element.

SN

e
T ‘ 100 MPa
e —
—>» 70 MPa

Problem 3.63 At a point on the
surface of a machine component the
stresses acting on the x face of a stress
element are o,=45MPa and

Tyy =15 MPa (see figure). What is the

allowable range of values for the stress

oy if the maximum shear stress is

limited to 7};,, =20 MPa?

~—

Problem 3.64 At a point on the
surface of a structure the stresses acting
on the x face of a stress element are
o, =—45MPa and 7,,=30MPa (see

figure). What is the allowable range of

values for the stress oy if the maximum

shear stress 1s limited to 7j;,,, =35 MPa?

Ay
A

— rxy=3OMPa

6, =45MPa

—| ot
—

'

Problem 3.65 At a point in the
web of a steel beam the stresses consist
of a normal stress o, and a shear stress

Tyy» as shown in part (a) of the figure.
At this same point, the principal stresses
are 6.9 MPa (tension) at an angle
0 =76.0° and 110.3 MPa
(compression) (see part (b) of the

figure). Determine the stresses o, and
acting on the xy element.

TJ’

Txy

X
<—l 10, T—» =
~—
(a)



136 Chapter 3 TWO-DIMENSIONAL (PLANE) STRESS STATE
6.9 MPa show them on a sketch of a properly
fve\= 76° oriented eclement. (2) Determine the
110.3 MPa —— maximum shear stresses and associated
T~ normal stresses and show them on a
110.3 MPa sketch of a properly oriented element.
~_ T y
l 6.9 MPa l s,
(b) — .,
Problem 3.66 An element in O x
plane stress (see figure) is subjected to 0 X
stresses o, =72 MPa, oy = 30 MPa,
——

and 7,, =28 MPa. (1) Determine the

principal stresses and show them on a
sketch of a properly oriented element.
(2) Determine the maximum shear
stresses and associated normal stresses
and show them on a sketch of a
properly oriented element.

—
Ty
e
I (i
-

'

Problem 3.67 An element in
plane stress (see figure) is subjected to
stresses o, =45MPa,

o,=-185MPa, and 7,,=55MPa.
(1) Determine the principal stresses and

T

Problem 3.68 An clement in
plane stress (see figure) is subjected to
stresses o, =—80 MPa,

o,=130 MPa, and 7,,=-35MPa.

(1) Determine the principal stresses and
show them on a sketch of a properly
oriented element. (2) Determine the
maximum shear stresses and associated
normal stresses and show them on a
sketch of a properly oriented element.

~—
Txy
—_— 9] -« -
-
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Problem 3.69 An element in
plane stress (see figure) is subjected to
stresses o, =—75MPa,

0'y=215 MPa, Z'xy=200 MPa.

(1) Determine the principal stresses and
show them on a sketch of a properly
oriented element. (2) Determine the
maximum shear stresses and associated
normal stresses and show them on a
sketch of a properly oriented element.

=

~—

'

Problem 3.70 An element in
plane stress (see figure) is subjected to
stresses o, =-70 MPa,

o,=-35MPa, 7,,=30MPa. (1)

Determine the principal stresses and
show them on a sketch of a properly
oriented element. (2) Determine the
maximum shear stresses and associated
normal stresses and show them on a
sketch of a properly oriented element.

Ty
1
Txy
e
—>l O T‘——;
-

Problem 3.71 An clement in
plane stress (see figure) is subjected to
stresses o, =-145 MPa,

o, =-30 MPa, =-30 MPa. (1)

Determine the principal stresses and
show them on a sketch of a properly
oriented element. (2) Determine the
maximum shear stresses and associated
normal stresses and show them on a
sketch of a properly oriented element.

Z'xy

T
xy
e
—

T

Problem 3.72 At a point on the
surface of a machine, the stresses acting
on an element oriented at an angle

0=24" to the x axis have the
magnitudes and directions shown in the
figure. (1) Determine the principal
stresses and show them on a sketch of a
properly  oriented element.  (2)
Determine the maximum shear stresses
and associated normal stresses and
show them on a sketch of a properly
oriented element.
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Aly

30 MPa\
= \\6‘0/1\@1 4e: 240
',

/\ O/ 20 MPa )

\

Problem 3.73 At a point on the
surface of a machine, the stresses acting
on an element oriented at an angle

6=30° to the x axis have the
magnitudes and directions shown in the
figure. (1) Determine the principal
stresses and show them on a sketch of a
properly  oriented element.  (2)
Determine the maximum shear stresses
and associated normal stresses and
show them on a sketch of a properly
oriented element.

Ay

140 MPa

>x\/ o

X
100 MPa

Problem 3.74 An element in
plane stress is subjected to stresses
o, =—08.5MPa and 7., =39.2 MPa

(see the figure). It is known that one of
the principal stresses equals 26.1 MPa

in tension. (1) Determine the stress o,,.

Y
(2) Determine the other principal stress
and the orientation of the principal
planes; then show the principal stresses
on a sketch of a properly oriented
element.

Ay
Agy
39.2 MPa
l T 68.5 MPa
X
l
Problem 3.75 An element in

plane stress is subjected to stresses
oy=525MPa and 7., =-20.1MPa

(see figure). It is known that one of the
principal stresses equals 57.9 MPa in

tension. (1) Determine the stress o,,.

(2) Determine the other principal stress
and the orientation of the principal
planes; then show the principal stresses
on a sketch of a properly oriented
element.

Ly
As,
B Se—
52.5 MPa
B O— R *
——20.1 MPa
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Problem 3.76 An element in
plane stress is subjected to stresses
o, =71 MPa, oy = 16 MPa, and

Tyy =24 MPa (see

(1) Determine the principal stresses and
show them on a sketch of a properly
oriented element. (2) Determine the
maximum shear stresses and associated
normal stresses and show them on a
sketch of a properly oriented element.

figure).

4
A 16 MPa
24 MPa
71 MPa
l
3.4

Problem 3.77 An element in
plane stress is subjected to stresses
o, =-30 MPa, oy =16 MPa, and

Ty =24 MPa  (see (1)

Determine the principal stresses and
show them on a sketch of a properly
oriented element. (2) Determine the
maximum shear stresses and associated
normal stresses and show them on a
sketch of a properly oriented element.

Ty

figure).

T 16 MPa
24 MPa
30 MPa
—_— 10 - X
-

Mohr’s Circle for Plane Stress

The basic equations of stress transformation derived earlier may be
interpreted graphically. The graphical technique permits the rapid transformation
of stress from one plane to another and also provides an overview of the state of
stress at a point. It provides a means for calculating principal stresses, maximum
shear stresses, and stresses on inclined planes. This method was devised by the
German civil engineer Otto Christian Mohr (1835-1918), who developed a plot
known as Mohr’s circle in 1882. Mohr’s circle is valid not only for stresses, but
also for other quantities of a similar nature, including strains and moments of

inertia.

The equations of Mohr’s circle can be derived from the transformation
equations for plane stress (Eqgs. ((3.8), (3.9)). These two equations may be

represented as
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Oxy+t0, O0y—0, .
Oy, ~ ST 0820 + 7, sin 20, (3.41)
Oy—O
Ty = —%sin 20 + 7, cos20. (3.42)

Squaring each equation, adding them, and simplifying, we obtain well-known
equation of a circle:

2 2
o,+0 o,—O
2 2
{O-)q_—xz yj + Ty :[—xz yj + Ty (3.43)

This equation can be written in more simple form using the following
notation:

oy+o

Cayer =—— (3.44)
2
o —o, )
B 2
R= (%j +75p- (3.45)
Equation (3.43) now becomes
2 2 _ p2
(O'xl —O'aver) + Ty, =R, (3.46)
which is the equation of a circle in standard algebraic form. The coordinates are
oy, and 7, , the radius is R and the center of the circle has coordinates
Oy, = Oayer and 7y, =0.

Mohr’s circle can be plotted from Egs. (3.41, 3.42) and (3.46) in two
different ways. In our form of Mohr’s circle we will plot the normal stress o,

positive to the right and the shear stress Ty positive downward, as shown in

Fig. 3.18. The advantage of plotting shear stresses positive downward is that the
angle 20 on Mohr'’s circle is positive when counterclockwise, which agrees with
the positive direction of 20 in the derivation of the transformation equations.
Mohr’s circle can be constructed in a variety of ways, depending upon
which stresses are known and which are unknown. Let us assume that we know

the stresses o,,0,, and 7, acting on the x and y planes of an element in plane

Xy
stress (Fig. 3.19a). This information 1s sufficient to construct the circle.
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Then, with the circle drawn, we can determine the stresses Ty s Oy and Ty

acting on an inclined element (Fig.3.19b). We can also obtain the principal
stresses and maximum shear stresses from the circle.

With o,,0,, and Try known,

the procedure for constructing Mohr’s
circle is as follows (see Fig. 3.19c¢):

(a) Draw a set of coordinate axes
with o, ~as abscissa (positive to the

29\

Y

right) and Ty 38 ordinate (positive

downward).

(b) Locate the center C of the
circle at the point having coordinates - Oaver .
Oy, =Oaver and 7, =0 (see Egs.

y T

(3.44) and (3.46)). Fig 3.18 The form of Mohr's circle with
(c) Locate point 4, representing Ty, Positive downward and the angle 20

the stress conditions on the x face of positive counterclockwise

the element shown in Fig.3.19a, by plotting its coordinates o, =o, and

Ty = Txy- Note that point 4 corresponds to #=0. The x face of the element

(Fig. 3.19a) is labeled “A” to show its correspondence with point 4 in the
diagram.
(d) Locate point B representing the stress conditions on the y face of the

element shown in Fig.3.19a, by plotting its coordinates Oy, =0y and

Tyy = Txy- Point B corresponds to 0=90°. The y face of the element

(Fig. 3.19a) is labeled “B” to show its correspondence with point B in the
diagram.

(e) Draw a line from point 4 to point B. It is a diameter of the circle and
passes through the center C. Points 4 and B, representing the stresses on planes at

90° to each other, are at opposite ends of the diameter (and therefore are 180°
apart on the circle).

(f) Using point C as the center, draw Mohr’s circle though points 4 and B.
The circle drawn in this manner has radius R (Eq. (3.45)).

Note. When Mohr's circle is plotted to scale, numerical results can be
obtained graphically.
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Ty ¥ 1Y
s | \\ .
N , v

_> xl
D
Txy AN \/(cs XNQ
Ox
~~_ x

0 X O

S ALK
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(a) (b)
oy
(e}
- 1 B(0=90°)
N NE
Dl
- ‘Exy
| ; ‘
0] Pz C B i G;l
o 20, T
2 Y T
20 D(6=0) Y
+ &l '
Ox Oy A(0=0
. Oaver = 5 e ©=9) Ox—0Oy
Gx 2
- ©x N
TXI)’I (c)

Fig. 3.19 Construction of Mohr’s circle for plane stress

(1) Stresses on an inclined element. Mohr’s circle shows how the stresses
represented by points on it are related to the stresses acting on an element. The
stresses on an inclined plane defined by the angle 6 (Fig. 3.19b) are found on the
circle at the point where the angle from the reference point (point 4) is 26 . Thus,
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as we rotate the x;); axes counterclockwise through an angle 6 (Fig. 3.19b), the
point on Mohr’s circle corresponding to the x; face moves counterclockwise
through an angle 26 . Similarly, in clockwise rotation of the axes, the point on the
circle moves clockwise through an angle twice as large.

(2) Principal stresses. The determination of principal stresses is the most
important application of Mohr’s circle. As we move around Mohr’s circle
(Fig. 3.19¢), we encounter point A where the normal stress reaches its

algebraically largest value and the shear stress is zero. Hence, point A gives the

algebraically larger principal stress and its angle 2(9p1 from the reference point A4

(t9=0) gives the orientation of the principal plane. The next principal plane,

associated with the algebraically smallest normal stress, is represented by point
P, , diametrically opposite to point A.
(3) Maximum shear stresses. Points S| and S, which represent the planes

of maximum positive and maximum negative shear stresses, respectively, are
located at the bottom and top of Mohr’s circle (Fig. 3.19c). These points are at

angles 260 =90° from points B and P, which agrees with the fact that the planes

of maximum shear stress are oriented at 45° to the principal planes. The
maximum shear stresses are numerically equal to the radius R of the circle. Also,
the normal stresses on the planes of maximum shear stress are equal to the
abscissa of point C, which is the average normal stress o, -

Various multiaxial states of stress can readily be treated by applying the
foregoing procedure. Fig.3.20 shows some examples of Mohr's circles for
commonly encountered cases. Analysis of material behavior subject to different
loading conditions is often facilitated by this type of compilation. Interestingly,
for the case of equal tension and compression (this type of stress state was named
as pure shear) (see Fig. 3.20a), o, =0 and the z-directed strain does not exist

(&, =0). Hence the element is in a state of plane strain as well as plane stress.

An element in this condition can be converted to a condition of pure shear by
rotating it 45° as indicated.

In the case of triaxial tension (Fig.3.20b and 3.21a), a Mohr's circle is
drawn corresponding to each projection of a three-dimensional element (see
Fig. 3.21b). The three-circle cluster represents Mohr's circle for triaxial stress.
The case of tension with lateral pressure (Fig. 3.20c) is explained similarly.
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l63 :_Gl

AN
Lk

(a) Equal tension and compression; pure shear ¥ max
O
4— A
/ v V
O3 (b) Triaxial tension . =91793
G, =-0, max

——»
/ Gl Gl )
maX
03 = —(51

(c) Tension with lateral pressure

Fig. 3.20 Mohr's circle for various states of stress

Gy A G2
fo: fo: fe:
i % it ¥ s i "
A Y Y Y £
(a) (b) ()

Fig. 3.21 Three-dimensional state of stress

Note. Mohr's circle eliminates the need to remember the formulas of
stress transformation.
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EXAMPLES

Example 3.7
At a point on the surface of a cylinder, loaded by internal pressure, the

material is subjected to biaxial stresses o, =90MPa and o), =20MPa, as shown

on the stress element of figure (a). Using Mohr's circle, determine the stresses
acting on an element inclined at an angle 6 =30°. (Consider only the in-plane
stresses, and show the results on a sketch of a properly oriented element).

TJ/

B\ fcy =20 MPa
A
G, =90 MPa 7
0 X 37.5 MPa\ D
D!
* \A N

72.5

37.5

30.3 (c)

—0 (@) Element in plane stress; (b) the

=0) . ) .
corresponding Mohr's circle; (c) stresses
acting on a n element oriented at an angle

@ =30° (Note: All stresses on the circle

D'© =120 have units of MPa)
- 55
90
\Txlyl
(b)

Solution (1) Construction of Mohr’s circle. Let us set up the axes for the
normal and shear stresses, with Ty, positive to the right and 2 positive
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downward, as shown in figure (b). Then we place the center C of the circle on the
Oy, axis at the point where the stress equals the average normal stress:

Oy +0, 90 MPa +20 MPa

Oaver = > =55 MPa.

Point A4, representing the stresses on the x face of the element (020), has

coordinates

oy, =90 MPa, 7, , =0.

Similarly, the coordinates of point B, representing the stresses on the y face
(6=90°), are

y =20MPa, 7, ,, =0.

Now we draw the circle through points 4 and B with center at C and radius R
equal to

2 2
o) o) 9 —
R \/( X yJ yz \/( 0 MPa ZOMPaJ 0 =35 MPa .

(2) Stresses on an element inclined at @ =30°. The stresses acting on a
plane oriented at an angle & =30° are given by the coordinates of point D, which
is at an angle 260 =60° from point 4 (see figure (b)). By inspection of the circle,
we see that the coordinates of point D are

Oy, = Oayer + RC0s60° =55 MPa + (35 MPa )(cos60°) = 72.5 MPa,

Ty, =—Rc0s60°=—(35 MPa)(cos60°) =-30.3 MPa.

In a similar manner, we can find the stresses represented by pointD’, which
corresponds to an angle @ =120° (or 260 =240°):
Oy, = Ogyer — Rc0s60° =55 MPa —(35 MPa)(cos60°)=37.5 MPa,

|
Ty,y, = Rcos60°= (35 MPa)(cos 600) =30.3 MPa.

These results are shown in figure (c) on a sketch of an element oriented at an
angle 6 =30°, with all stresses shown in their true directions.

Note. The sum of the normal stresses on the inclined element is equal to
ox +oy or 110 MPa.

Example 3.8
An element in plane stress at the surface of a structure is subjected to
stresses o, =100 MPa, oy =35MPa, and Try =30MPa, as shown in figure (a).

Using Moht's circle, determme the following quantltles. (1) the stresses acting on
an element inclined at an angle € =40°, (2) the principal stresses, and (3) the
maximum shear stresses. Consider only the in-plane stresses, and show all results
on sketches of properly oriented elements.
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Solution (1) Construction of Mohr’s circle. Let us set up the axes for
Mohr's circle, with Ty, positive to the right and (29 positive downward (see

figure (b)). The center C of the circle is located on the Ty, axis at the point where

Oy, equals the average normal stress:

Oy +O—y _ 100 MPa + 35 MPa

Oaver = =67.5 MPa.
aver > 5

Point A4, representing the stresses on the x face of the element (020), has

coordinates

oy, =100 MPa, 7, , =30 MPa.

Similarly, the coordinates of point B, representing the stresses on the y face
(6=90), are

le

=35MPa, 7., =-30MPa.

The circle i1s now drawn through points 4 and B with center at C. The radius of
the circle is

2 2
0, —0O —
R= (_ﬁz;%j+¢W2_J(WONHQZ35NWa)-430MP@2_442Nma

$5(05, =65.3%)

T 35
T35kﬁm - DO =40°)
B \
—_ 30 MPa 2
100 MPa £(6, =20.3°)
- — ' \ 1
l 0 P
Y
A®© =0)
(a)
Sy (05, =—24.7°)
67.5 _ 35
100
!Txlyl
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Yy y Yy
101.65MPa 723 3 MPa epl =20.3°

0\=40°
\}( PZ\ \
28.06MPa

\D o

(c) (d) (e)
(a) Element in plane stress; (b) the corresponding Mohr’s circle; (c) stress acting on an

element oriented at & =40°; (d) principal stresses; (€) maximum shear stresses

(2) The stresses acting on a plane oriented at an angle 0 =40°. They are
given by the coordinates of point D, which is at an angle 26 =80° from point 4
(see figure (b)). To calculate these coordinates, we need to know the angle
between line CD and the Oy, axis (that 1s, angle DCH ), which in turn requires

that we know the angle between line C4 and the o, axis (angle ACH). These

angles are found from the geometry of the circle, as follows:

tan ACH = i (5) MPa _ 0857, 4CR =40.6°,

MPa
DCP, =80° — ACP, =80° — 40.6° = 39.4°.
Knowing these angles, we can determine the coordinates of point D directly from
the figure:
o, =67.5 MPa +(44.2 MPa)(c0s39.4°) =101.65 MPa,

Ty, =—(44.2 MPa)(sin39.4°) =-28.06 MPa.

In an analogous manner, we can find the stresses represented by point D', which
corresponds to a plane inclined at an angle 8 =130° (or 26 =260°):
oy, =67.5 MPa —(44.2 MPa)(c0s39.4°) =+33.35 MPa,

Ty, =(44.2 MPa))(sin39.4°) = 28.06 MPa.

These stresses are shown in figure (c¢) on a sketch of an element oriented at an
angle 6 =40° (all stresses are shown in their true directions).
Note. The sum of the normal stresses is equal to o + o, or 135 MPa.
(3) Principal stresses. The principal stresses are represented by points A
and P, on Mohr's circle (see figure (b)). The algebraically larger principal stress
(point A) is
01=67.5MPa +44.2 MPa=111.7 MPa,
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as seen by inspection of the circle. The angle 2«9])1 to point A from point A4 is the

angle ACH on the circle, that is,
ACP = 20pl =40.6°, le =20.3°.

Thus, the plane of the algebraically larger principal stress is oriented at an angle
Qpl =20.3°, as shown in figure (d).
The algebraically smaller principal stress (represented by point P) is

obtained from the circle in a similar manner:

0,7 =67.5 MPa —44.2 MPa =23.3 MPa.

The angle 26’132 to point P, on the circle is 40.6°+180° =220.6°; thus, the second
principal plane is defined by the angle sz =110.3°. The principal stresses and

principal planes are shown in the figure (d).
Note. The sum of the normal stresses is equal to 135 MPa.
(4) Maximum shear stresses. The maximum shear stresses are represented

by points §; and S, on Mohr's circle; therefore, the maximum in-plane shear
stress (equal to the radius of the circle) is
Tmax = 44.2 MPa.

The angle ACS| from point 4 to point S; 1s 90°—40.6° =49.4°, and therefore the
angle 26; , for point S is

20, =-49.4°.

This angle is negative because it is measured clockwise on the circle. The
corresponding angle QSI to the plane of the maximum positive shear stress is one-

half that value, or ‘9s1 =-24.7°, as shown in Figs. (b) and (e). The maximum

negative shear stress (point S, on the circle) has the same numerical value as the

maximum positive stress (44.2 MPa).
The normal stresses acting on the planes of maximum shear stress are equal
which is the abscissa of the center C of the circle (67.5 MPa). These

stresses are also shown in figure (e).
Note. The planes of maximum shear stresses are oriented at 45° to the
principal planes.

to O-aver 2



150 Chapter 3 TWO-DIMENSIONAL (PLANE) STRESS STATE

Example 3.9
At a point on the surface of a shaft the stresses are o, =—-50MPa,

o, =10MPa, and 7,, =—40MPa, as shown in figure (a). Using Mohr's circle,
determine the following quantities: (1) the stresses acting on an element inclined
at an angle 6=45°, (2) the principal stresses, and (3) the maximum shear
stresses.

Solution (1) Construction of Mohr’s circle. The axes for the normal and
shear stresses in the Mohr’s circle are shown in figure (b), with Oy, positive to

the right and T positive downward. The center C of the circle is located on the

Ty, axis at the point where the stress equals the average normal stress:

Ox t0y, —50 MPa+10 MPa
Oaver = > = >

=-20 MPa.

Point 4, representing the stresses on the x face of the element (H:O), has

coordinates

oy, =—50MPa, 7., =-40 MPa.

Similarly, the coordinates of point B, representing the stresses on the y face
(6=90°), are

oy, =10 MPa, 7., =40 MPa.

The circle is now drawn through points 4 and B with center at C and radius R
equal to:

2 2
O,— 0O — —
R_\/(%] nyz_\/( 50 MPa2 10 MPaj +(~40 MPa)? =50 MPa

(2) Stresses on an element inclined at 6 =45°. These stresses are given by
the coordinates of point D, which is at an angle 260 =90° from point 4 (figure
(b)). To evaluate these coordinates, we need to know the angle between line CD
and the negative o, axis (that is, angle DCP,), which in turn requires that we

know the angle between line CA and the negative Ty, axis (angle ACP,). These

angles are found from the geometry of the circle as follows:
tanACPh =20 MPa _4 s 53130,
30 MPa 3

DCP, =90° - ACP, =90°—-53.13°=36.87°.
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Ty
110MPa !(e :1350)
~— 5
50 MPa RO, =116.6°
—»T [0) - - G,
5 1
40 MPa (0, =26.6°) 40
‘ O =45°)
S B(© =90°)
—
(a) 05, =71.6%
20 {10
) T
y
Y y
\ 70 MP 20 MPa /20 Mpa ot T
a A a
.20 MPa /S
/\/sz =26.6 \/ ﬁ
X 0] / X
.
\ 7
© (d) ©)

(a) Element in plane stress; (b) the corresponding Mohr’s circle; (c) stresses acting on an
element oriented at 6=45°; (d) principal stresses, and (e) maximum shear stresses. (Note: All
stresses on the circle have units of MPa)

Knowing these angles, we can obtain the coordinates of point D directly from the
figure:

oy, =—20 MPa - (50 MPa)(c0s36.87°) =-60 MPa,

7y, =(50 MPa)(sin36.87°) =30 MPa.

In an analogous manner, we can find the stresses represented by point D', which
corresponds to a plane inclined at an angle 8 =135° (or 26 =270°):
o, ==20 MPa +(50 MPa)(c0s36.87°) =20 MPa,

Ty, = (=50 MPa)(sin36.87°) =30 MPa.

These stresses are shown in Fig. ¢ on a sketch of an element oriented at an angle
6 =45° (all stresses are shown in their true directions).
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Note. The sum of the normal stresses is equal to oy + o or — 40 MPa.

(3) Principal stresses. They are represented by points A and P on Mohr's
circle. The algebraically larger principal stress (represented by point A ) is
o1 =-20 MPa + 50 MPa =30 MPa,
as seen by inspection of the circle. The angle 26?},1 to point A from point 4 1s the

angle ACH measured counterclockwise on the circle, that is,
ACRH = 2‘9191 =53.13°+180°=233.13°, le =116.6°.

Thus, the plane of the algebraically larger principal stress is oriented at an angle
6, =116.6°.
P1

The algebraically smaller principal stress (point P ) is obtained from the

circle in a similar manner:
o3 =—20 MPa —50 MPa =-70 MPa.

The angle 20p2 to point P on the circle is 53.13°. The second principal plane is
defined by the angle 2(9p2 =26.6°.

The principal stresses and principal planes are shown in Fig. (d).
Note. The sum of the normal stresses is equal to oy + o or — 40 MPa.

(4) Maximum shear stresses. The maximum positive and negative shear
stresses are represented by points S, and S, on Mohr's circle (figure (b)). Their

magnitudes, equal to the radius of the circle, are
Tmax =0 MPa.

The angle ACS; from point 4 to point S; is 90°+53.13°=143.13°, and therefore
the angle 26 for point §; is

26’51 =143.13°.
The corresponding angle Qsl to the plane of the maximum positive shear stress is
one-half that value, or 6?51 =71.6°, as shown in figure (). The maximum negative

shear stress (point S, on the circle) has the same numerical value as the positive

stress (50 MPa).

The normal stresses acting on the planes of maximum shear stress are equal
to 0,4,¢» Which 1s the coordinate of the center C of the circle (-20MPa). These
stresses are also shown in figure (e).

Note. The planes of maximum shear stress are oriented at 45° to the
principal planes.
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P PROBLEMS
Problem 3.78 An element in Problem 3.80 An element in
uniaxial stress is subjected to tensile uniaxial stress 1is subjected to a

stresses o, =80MPa, as shown in the

figure. Using Mohr's circle, determine:
(1) the stresses acting on an element
oriented at an angle € =21.8° from the
x axis, and (2) the maximum shear
stresses and associated normal stresses.
Show all results on sketches of properly
oriented elements.

Ay

80 MPa
>

>

Problem 3.79 An element in
uniaxial stress is  subjected to
compressive stresses o, =68 MPa, as

shown in the figure. Using Mohr's
circle, determine: (1) the stresses acting
on an element oriented at an angle
€ =31° from the x axis, and (2) the
maximum shear stresses and associated
normal stresses. Show all results on
sketches of properly oriented elements.

Ay

68 MPa

compressive stress of 40 MPa, as shown
in the figure. Using Mohr's circle,
determine: (1) the stresses acting on an
element oriented at a slope of 1 on 2
(see figure), and (2) the maximum shear
stresses and associated normal stresses.
Show all results on sketches of properly
oriented elements.

Ay
1
2
O 40 MPa
Problem 3.81 An element in

pure shear is subjected to stresses

Tyy =—32MPa, as shown in the figure.

Using Mohr's circle, determine: (1) the
stresses acting on an element oriented at
an angle € =20° from the x axis, and
(2) the principal stresses. Show all
results on sketches of properly oriented
elements.

32 MPa
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Problem 3.82 An clement in
pure shear is subjected to stresses

Tyy =30 MPa, as shown in the figure.

Using Mohr's circle, determine: (1) the
stresses acting on an element oriented at
an angle 6=75° from the x axis, and
(2) the principal stresses. Show all
results on sketches of properly oriented
elements.

30 MPa

e

Problem 3.83 An element in
biaxial stress is subjected to stresses
o, =—80 MPa and o, =-20 MPa, as

shown in the figure. Using Mohr's
circle, determine: (1) the stresses acting
on an element oriented at an angle
€ =30° from the x axis, and (2) the
maximum shear stresses and associated
normal stresses. Show all results on
sketches of properly oriented elements.

Y

l20 MPa

J

T

Problem 3.84 An element in
biaxial stress is subjected to stresses

o,=20MPa and o, =-10 MPa, as

shown in the figure. Using Mohr's
circle, determine: (1) the stresses acting
on an element oriented at an angle
0 =60° from the x axis, and (2) the
maximum shear stresses and associated
normal stresses. Show all results on
sketches of properly oriented elements.

AV
10 MPa
Y
20 MPa
- O — -
X
Problem 3.85 An element in

biaxial stress is subjected to stresses
o,=-16 MPa and o), =42 MPa, as

shown in the figure. Using Mohr's
circle, determine: (1) the stresses acting
on an element oriented at a slope of 1
on 2.5 (see figure), and (2) the
maximum shear stresses and associated
normal stresses. Show all results on
sketches of properly oriented elements.
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Problem 3.86 For an element in
plane stress the normal stresses are
oy=-15MPa and o, =60 MPa (see

figure). Using Mohr's circle, determine
the maximum permissible value of the
shear stress 7, if the allowable shear

stress in the material is 65 MPa.

Y
A 60 MPa
— Ty
l s T 15 MPa
— L 4——;
~f—

|

Problem 3.87 For an element in
plane stress, the normal stresses are
o, =26 MPa and o, =-70 MPa (see

figure). Using Mohr's circle, determine
the maximum permissible value of the
shear stress 7, if the allowable shear

stress in the material is 55 MPa.

Yy
l70 MPa
—> Txy
S 0‘ > =
26 MPa
-

1

Problem 3.88 An element in
plane stress is subjected to stresses

o, =-10 MPa, o, = 50 MPa, and

Tyy =25 MPa, as shown in the figure.

Using Mohrt's circle, determine the
stresses acting on an element oriented at
an angle & =45° from the x axis. Show
these stresses on a sketch of an element
oriented at the angle 6.

J
A 50 MPa
—> 25 MPa
— O || -— —
10 MPa
~f——

'

Problem 3.89 An element in
plane stress is subjected to stresses
o, =-6.2 MPa, oy =-20.4 MPa, and

Tyy =—9 MPa, as shown in the figure.

Using Mohr's circle, determine the
stresses acting on an element oriented at
an angle 8 =30° from the x axis. Show
these stresses on a sketch of an element
oriented at the angle 6.

Ty

l20.4 MPa
B s
6.2 MPa
— 0 -~
9.0 MPa
e



3.5 Hooke’s Law for Plane Stress and its Special Cases. Change of
Volume. Relations between E, G, and v

3.5.1 Hooke’s Law for Plane Stress

In Section 3.1 the stresses acting on inclined planes when linearly elastic
material is subjected to plane stress (Fig. 3.22) were considered. The stress-
transformation equations derived in those calculations were obtained solely from
equilibrium, and therefore the properties of the materials were not needed. Now, it
1s important to investigate the strains in the material, which means that the
material properties must be considered. However, we will limit our consideration
to materials that meet two important conditions: first, the material is uniform
throughout the body and has the same properties in all directions (homogeneous
and isotropic material), and second, the material follows Hooke's law (linearly
elastic material). Under these conditions, we can obtain the relationships between
the stresses and strains in the body.

Let us begin by considering the normal strains ¢, and ¢, in plane

£y,
stress. The effects of these strains are shown in Fig. 3.23, which represents the
changes in dimensions of small element having edges of lengths a, b, and c. All
three strains are shown positive (elongation) in Fig. 3.23. The strains can be
expressed in terms of the stresses (Fig. 3.22) by superimposing the effects of the

individual stresses. For instance, the strain ¢, in the x direction due to the stress
o, is equal to o, /E, where E is the modulus of elasticity. Also, the strain &,

due to the stress oy is equal to —vo,, / E, where v 1s Poisson's ratio. Of course,

we will assume that as earlier, the shear stress z,,, produces no normal strains in

the x, y, or z directions. Thus, the resultant strain in the x direction is
1

gx:—(O'x—VO'y). (347)
E
y + 4
a ae
o, C e ol
bsy
> caz/,t P Bk
| // // ‘ ‘
[ (0) 12 __lT____/ '
X
I L N I | | |
— = | : ! : | b
| |
Yo () | l i |
///hl— x : O)I_________ | : o
| /// /// x

Fig. 3.22 Element of material in plane stress Fig. 3.23 Element of material subjected to
(0,=0) normal strains &, £,,,and &,
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Similarly, we obtain the strains in the y and z directions:

£y :é(ay—vax), (3.48)

£ =—%(ax +o,). (3.49)

These equations may be used to find the normal strains (in plane stress) when the
stresses are known.
The shear stress t), (Fig. 3.22) causes a distortion of the element such that

each z face becomes a rhombus (Fig. 3.24). The shear strain Vxy 1s the decrease in

angle between the x and y faces of the element and is related to the shear stress by
Hooke's law in shear, as follows:

T
Yy =%, (3.50)

where G is the shear modulus of elasticity.

Note. We assume, that the normal stresses o, and oy have no effect on
the shear strain x,.
Consequently, Egs. (3.47 y

through 3.50) give the strains (in
plane stress) when all stresses (o,

o) and 7)) act simultaneously.

The first two equations (3.47
and 3.48) give the strains ¢, and ¢,

in terms of the stresses. These
equations can be solved
simultaneously for the stresses in
terms of the strains:

E
oy =—— ey +ve,), (351)
I-v "
E
oy = 5 (ey + vgx). (3.52) Fig. 3.24 Shear strain Yy and distortion of z-
I-v
face

In addition, we have the following equation for the shear stress in terms of the
shear strain:

Ty =Gryy. (3.53)
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Equations (3.51) through (3.53) may be used to find the stresses (in plane
stress) when the strains are known. Of course, the normal stress o, in the z

direction is equal to zero.

Equations (3.47) through (3.53) are known collectively as Hooke's law for
plane stress. They contain three material constants (£, G, and v ) but only two are
independent because of the relationship

G=E

2(1+v)

(3.54)

It will be founded below.
3.5.2 Special Cases of Hooke's Law

In the special case of biaxial stress (Fig.3.12), we have Ty =0 and

therefore Hooke's law for plane stress simplifies to

Ex =E(Jx —vay),
£y =%(O'y - vax), (3.55)

v
&, =—E(Gx +O'y),

or
_E
o= (or ey
(3.56)
oy =—2 (e, +vey).
I-v
ry These equations are the same as Eqgs. (3.47)
through (3.49) and (3.51), (3.52) because the
effects of normal and shear stresses are
Ox Oy independent of each other.
y @) ’ X For wuniaxial stress, with oy =0
(Fig. 3.25), the equations of Hooke's law
Fig. 3.25 Uniaxial stress state simplify even further:
o
Ex = Ex, (3.57)
Vo
gy =6, =— Ex , (3.58)

o, =Ee¢,. (3.59)
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Finally, we consider pure shear (Fig. 3.26), which means that o, =0, =0.

yﬂ 3 y“ _

o
=y
(e}

= NN

yx
(a) (b)

Fig. 3.26 Element in pure shear

Then we obtain

Ex=6,=6,=0, (3.60)
T
Vxy =%. (3.61)

Note, that the normal stress o, is equal to zero in all three of these special
cases of plane stress state.

3.5.3 Change of Volume

Similarly to Section 2.1.3, the unit volume change at a point in a strained
body can be found by considering the deformed element of Fig. 3.23. The original
volume of this element is Vjy = abc, and its final volume is

Vi=abe(l+&,)(1+¢,)(1+¢,), or (3.62)

Vi :abc(1+gx +E), + &, +ExE, +EE, +8x8y6‘2). (3.63)

If we only consider structures having very small strains, then we can

disregard the products of small strains in comparison with the strains themselves.
Thus, the final volume (Eq. 3.63) becomes

Vi=abc(l+e,+e,+é,). (3.64)
Therefore, the absolute change in volume is
AV =V Vg =abe(e, +&,+¢,), (3.65)
and the unit (relative) volume change (or dilatation) becomes
e:M:£x+gy+gz. (3.66)

"o
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This equation gives the dilatation in terms of the normal strains.

Note. (1) Formula (3.66) is valid for any material, whether or not it
follows Hooke's law, provided the strains are small. (2) This equation is not
limited to plane stress, but is valid for any stress conditions. (3) Shear strains
produce no change in volume.

When the material follows Hooke's law, we can substitute Eqs. ((3.47)
through (3.49)) into Eq. (3.66) and obtain the following expression for the unit
volume change (in plane stress) in terms of the stresses:

AV 1-2v
62702—(O'x+0'y). (3.67)

Knowing this expression for e, we can find the volume change for any object
subjected to plane stress by integrating throughout its volume.

3.5.4 Relations between E, G, and v

Now let us develop the fundamental relationship, Eq. (3.54), connecting the
modulus of elasticity E, shear modulus of elasticity G, and Poisson's ratio v.
Consider an element subjected to pure shear. Mohr's circle for this case shows that
O] =Tmax and o3 =-7,,,« on the planes making 45° with the shear planes (see

Fig. 3.20a).
Thus application of the Eq. (3.47) for &, =¢),0,=01,0,=03, and

Tyy =0 results in

& =%—v%:fm%(1+v). (3.68)

On the other hand, for the state of pure shear strain, it is observed from Mohr's
circle that & 1S y.x /2 (see Chapter 5). Hooke's law connects the shear strain

and shear stress: ¥,ax = Tmax / G- Hence
T

g =—Dax 3.69
156 (3.69)
Finally, equating the alternative expressions for & in Egs. (3.68) and (3.69), we
obtain
G= £ : (3.70)
2(1+v)

It can be shown that for any choice of orientation of coordinate axes x and
vy, the same result Eq. (3.70) is obtained. Therefore, the two- and three-
dimensional stress-strain relations for an isotropic and elastic material can be
written in terms of two constants.
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{:" EXAMPLES

Example 3.10

A cylindrical pressure vessel is constructed from a long, narrow steel plate
by wrapping the plate around a mandrel and then welding along the edges of the
plate to make a helical joint (see figure (a)). The helical weld makes an angle
a =55° with the longitudinal axis. The vessel has inner radius » =1.8 m and wall
thickness #=20 mm. The material is steel with modulus E =200 GPa and
Poisson’s ratio v=0.30. The internal pressure p is 800 kPa. Calculate the
following quantities for the cylindrical
part of the wvessel: (1) the
circumferential and  longitudinal
stresses o] and o5, respectively; (2)

the maximum in-plane and out-of-
plane  shear stresses; (3) the
circumferential and  longitudinal
strains ¢ and &,, respectively; and (4)

(@) Cylindrical pressure vessel with a helical
the normal stress o, and shear stress N

7,, acting perpendicular and parallel,
respectively, to the welded seam.

Solution (1) Circumferential  and  longitudinal  stresses.  The
circumferential and longitudinal stresses o] and o5, respectively, are pictured in
Fig. b, where they are shown acting on a stress element at point A on the wall of

the vessel. The magnitudes of the stresses can be calculated from equations of
equilibrium:

_pr _pr
=T 2T
B (800 kPa)(l.S m)

o= =72 MPa, oy=2L=36MPa.
2

20 mm
The stress element at point 4 is shown again in Fig. ¢, where the x axis is in the
longitudinal direction of the cylinder and the y axis is in the circumferential
direction. Since there is no stress in the z direction (o3 =0), the element is in

biaxial stress. This assumption is based on the comparison of magnitudes of
internal pressure and the smaller of two principal stresses, i.e. o, .
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6 =35°

(b) Side view of pressure vessel

by A)Y
INER =72 MPa ‘{1

16.9 MPa

60.2 MQ/(
G, =0, =36 MPa

Al /\ \

(c) Two-dimensional view of an element in (d) Two-dimensional view of an element
biaxial stress oriented to xy axes oriented to the x,y; axes

The ratio of the internal pressure (800 kPa) to the smaller in-plane principal stress
(36 MPa) is 0.022. Therefore, our assumption that we may disregard any stresses
in the z direction and consider all elements in the cylindrical shell, even those at
the inner surface, to be in biaxial stress is justified.

(2) Maximum shear stresses. The largest in-plane shear stresses occur on

planes that are rotated 45° about the z axis (see Eq. 3.39):

"2 1 _PT_ 13 MPa.
2 4  4¢
The maximum out-of-plane shear stresses are obtained by 45° rotations about the
x and y axes, respectively, thus,
o] pr oy _pr
T =—="—, (7 :

(max), 2 2t (Fmax),, = 2 4
Because we are disregarding the normal stress in the z direction, the largest out-
of-plane shear stress equals to:

( Tmax )

:%:ﬂz%MPa.

Tmax Y
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This last stress is the absolute maximum shear stress in the wall of the vessel.

(3) Circumferential and longitudinal strains. Since the largest stresses are
well below the yield stress of steel, we may assume that Hooke's law applies to
the wall of the vessel. Then we can obtain the strains in the x and y directions
(figure (c)) from equations of the Hooke’s law for biaxial stress (3.55):

1 1
gx—E(ax—vay), gy—E(ay—vax).
Note, that the strain &, is the same as the principal strain ¢, in the longitudinal

direction and that the strain &, is the same as the principal strain & in the

circumferential direction. Also, the stress o, is the same as the stress o5, and the

stress o, is the same as the stress o7. The preceding two equations can be written

in the following forms:

£ =%(1—2v)=ﬂ(1—2v),

2tE
o pr
81 :i(Z—v):E(Z—ZV).

Substituting numerical values, we find
(36 MPa)[ 1-2(0.30) |

&) =22 (1-2v)= =72x107°,
E 200 GPa
& :%(2 —v)= (72 ;gngg(é; 039) _306x10°°.
a)

These are the longitudinal and circumferential strains, respectively, in the
cylinder.

(4) Normal and shear stresses acting on the welded seam. The stress
element at point B in the wall of the cylinder (figure (d)) is oriented so that its
sides are parallel and perpendicular to the weld. The angle € for the element is

0=90°—a=35°,
as shown in figure (d). The stress-transformation equations may be used to obtain
the normal and shear stresses acting on the side faces of this element.

The normal stress o, and the shear stress 7, ,, acting on the x; face of the

1M
element are obtained from Egs. (3.8) and (3.9), which are repeated here:
Oy +0, O,—0y _
Oy, = 5 + 5 c0s20 +17,),sin 20,

o)
—_r Vg
Ty = 5 sin20 +7,,,c0s 20.
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Substituting o =0 = pr/2t, 0, =0y =pr/t and 7,, =0, we obtain

_Prs_ _Prg;
Tx = (3-cos20), 7, = ” sin 2.

These equations give the normal and shear stresses acting on an inclined plane
oriented at an angle € with the longitudinal axis of the cylinder.
Substituting pr /4t =18 MPa and 8 =35° into last two equations, we obtain

oy =47.8MPa, 7., =169 MPa.

These stresses are shown on the stress element of Fig. d.

To complete the stress analysis, we can calculate the normal stress oy,

acting on the y; face of the element from the sum of the normal stresses on
perpendicular faces:

O] t0) Zle +Gy1.
Substituting numerical values, we get

Oy =01 +0)—0y = 72 MPa + 36 MPa —47.8MPa = 60.2 MPa

as shown in figure (d).

From the figure, we see that the normal and shear stresses acting
perpendicular and parallel, respectively, to the welded seam are

o, =478 MPa, 7,=169 MPa.

Interestingly, when seen in a side view, a helix follows the shape of a sine

curve (Fig. e). The pitch of the helix is
p=rndtané,

where d is the diameter of the circular
cylinder and @ is the angle between a

—
normal to the helix and a longitudinal
O] |7 line. The width of the plate that wraps
\ into the cylindrical shape is
4 ! ’ w=7mdsing.

Thus, i1f the diameter of the
(e) Side view of a helix cylinder and the angle € are given,
both the pitch and the plate width are established. For practical reasons, the angle
0 1is usually in the range from 20° to 35°.

T

P PROBLEMS

Problem 3.90 A rectangular and y directions, respectively, are
steel plate with thickness #=6.0 mm is attached to the plate. The gage readings
subjected to uniform normal stresses give normal strains &, =0.00062

o, and o,, as shown in the figure. (elongation) and

X y? . .
Strain gages 4 and B, oriented in the x €y = —0.00045 (shortening). ~ Knowing
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that E=210GPa and v=0.3,

Problem 3.92 The normal

determine the stresses o, and o), and strains &, and &, for an element in

the change Ar in the thickness of the
plate.

Problem3.91 A rectangular
aluminum  plate  with  thickness
t=8mm is subjected to uniform

normal stresses o, and o, as shown

in the figure. Strain gages 4 and B,
oriented in the x and y directions,
respectively, are attached to the plate.
The gage readings give normal strains

&, =300x 1070 (elongation)  and

&, =80x 107° (elongation). Knowing
that £ =80 GPa and v=0.3, determine

the stresses o, and o, and the change

y
At in the thickness of the plate.

Oy

plane stress (see figure) are measured
with strain gages. (1) Obtain a formula
for the normal strain ¢, in the z

direction in terms of ¢,,&,, and

Poisson's ratio v. (2) Obtain a formula
for the dilatation e in terms of ¢, ¢,,

and Poisson's ratio v.

| Xy
Bmrmpn
v o | °
Problem 3.93 A  magnesium
plate in biaxial stress is subjected to
tensile stresses o, =30MPa and
o,=15MPa  (see  figure).  The

corresponding strains in the plate are
£, =550x107° and &, =100x107°.

Determine Poisson's ratio v and the
modulus of elasticity E for the material.

Oy
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Problem 3.94 A steel plate in
biaxial stress is subjected to stresses
o, =125 MPa and o), =—62 MPa (see

figure). The corresponding strains in the
plate are ¢, =700x 107° (elongation)
£, =-500x107°

Determine Poisson's ratio v and the
modulus of elasticity £ for the material.

0)

and (shortening).

Y

Problem 3.95 A rectangular
plate in biaxial stress (see figure) is

subjected to normal stresses
o, =65MPa (tension) and
o, =—30MPa (compression). The plate

Yy
has dimensions 200x300x15 mm and is
made of aluminum with £ =70 GPa
and v=033. (1) Determine the

maximum in-plane shear strain y,, n
the plate. (2) Determine the change Atf
in the thickness of the plate. (3)
Determine the change AV in the
volume of the plate.

Gy,

Problem 3.96 A rectangular
plate in biaxial stress (see figure) is
subjected to normal stresses
o,=-60 MPa  (compression) and

o, =20 MPa (tension). The plate has

dimensions 200x400x20 mm and is
made of aluminum with £ =75 GPa
and v=030. (1) Determine the

maximum in-plane shear strain y,,x 1n
the plate. (2) Determine the change Af
in the thickness of the plate. (3)
Determine the change AV in the
volume of the plate.

Oy

Problem 3.97 A brass cube
50 mm on each edge is compressed in
two perpendicular directions by forces
P=100kN (see figure). Calculate the
decrease AV in the volume of the cube,
assuming £ =100 GPa and v=0.34.

| P=120 kN

P=120 kN




Chapter 3 TWO-DIMENSIONAL (PLANE) STRESS STATE 167
Problem 3.98 A 100-mm cube P,
of concrete (£ =20GPa, v=0.1) is t T 0
compressed in biaxial stress by means <~ —
of a framework that is loaded as shown 7 h%
in the figure. Assuming that each load 0
F  equals 90kN, determine the B x‘_l b O X T_>P x
decrease AV in the volume of the < b -
cube. 0 Y
-

Problem 3.99 A square plate of
width b and thickness ¢ is loaded by
normal forces P, and P, and by shear

forces Q, as shown in the figure. These
forces produce uniformly distributed
stresses acting on the side faces of the
plate. Calculate the change AV in the
volume of the plate if the dimensions
are b=500mm and ¢=30mm, the
plate is made of magnesium with
E=45 GPa and v=0.35, and the
forces are P, =450 kN, Py =150 kN,

and Q=100 kN.

Problem 3.100 A square steel
plate of width b and thickness ¢ is
loaded by normal forces P, and P,,

and by shear forces O, as shown in the
figure. These forces produce uniformly
distributed stresses acting on the side
faces of the plate. Calculate the change
AV in the volume of the plate if the
dimensions are H»=300mm and
t =20mm, the plate is made of steel
with £=210GPa and v=0.33, and the
forces are P, =600kN, Py =250kN,

and O =150kN.

¥
t
e 0
- y
| bo e
P— p 1@ a —> P,
- b >
Q Y
P




168

Chapter 3 TWO-DIMENSIONAL (PLANE) STRESS STATE

Problem 3.101 A circle of
diameter d =200mm is etched on a
brass plate (see figure). The plate has
dimensions 500x500x20 mm. Forces
are applied to the plate, producing
uniformly distributed normal stresses
o, =40MPa and o, =15MPa.

Calculate the following quantities: (1)
the change in length Aac of diameter
ac. (2) the change in length Abd of
diameter bd . (3) the change Af¢ in the
thickness of the plate; (4) the change
AV in the volume of the plate. Assume
E =100GPa and v=0.34.

. o

////////

/i y

. ////// I

/

Problem 3.102 A cantilever
beam of length L and rectangular cross
section (width b and height /) supports
a concentrated load P at the free end
(see figure). (1) Derive a formula for
the increase AV, in the volume of the
tension half of the beam when the load
P is applied. (2) Derive a formula for
the decrease AV, in the volume of the
compression half of the beam. (3) What
is the net change in volume of the entire
beam?

Q
=Y

N A

b

Problem 3.103 A  rectangular
plate of aluminum (£ = 70 GPa, v =
0.3) is subjected to uniformly
distributed loading, as shown in the
figure. Determine the values of w, and

wy, (in kilonewtons per meter) that

produce change in length in the x
direction of 1.5mm and in the y
direction of 2 mm. Use a =2 m, b =
2m, and £ = 5 mm.

ﬁlAAAAA

<

A
- Wy
a i
- :
/ 4—’) __________________________ / Z. —>x
Y YY VY Yy
Problem 3.104 A  rectangular

steel plate (E =210 GPa, v=0.3) is
subjected to uniformly distributed
loading, as shown in the figure.

Determine the values of w, and w,, (in

kilonewtons per meter) that produce
change in length in the x direction of
1.5 mm and in the y direction of 2 mm.
Use a=4 m, b=2 m,and 1t =5 mm.
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Problem 3.105 A steel plate
ABCD of thickness ¢=5mm is
subjected to  uniform stresses
o, =120 MPa and o, =90 MPa (see
figure). For E =200 GPa,

v=0.33,a=160mm and »=200mm,

calculate the change in (1) length of
edge 4B; (2) length of edge AD; (3)
length of diagonal BD; and (4)
thickness.

y

TENEY

e —
b| --— — O,
e —
X
Al YYyyy [D
- a ]
Problem 3.106 A steel plate
ABCD of thickness ¢+ = 5 mm is

subjected to biaxial loading that results
in uniform stresses o, =100 MPa and

o, =—60 MPa For

Y
E=200GPa,v=0.33,a =160 mm and
b =200 mm, calculate the change in (1)
length of edge AB; (2) length of edge
AD; (3) length of diagonal BD; and (4)
thickness.

(see  figure).

yﬂ Gy
ARRE NNy
| < e
b| ~-— — O
|- -
AREERERCEE
Problem 3.107 A  cylindrical

steam boiler made of 8-mm steel plate
is 1.2m in inner diameter and 3 m
long. Use E=200GPa and v = 0.3.
For an internal pressure of 3 MPa,
calculate (1) the change in the inner
diameter; (2) the change in thickness;
and (3) the change in length.

Problem 3.108 Verify that the
change in radius » of a sphere subjected
to internal pressure p is given by

2
pl"
Ar=——(1-
g 2Et( V),

where ¢ — thickness.
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3.6 Strain-Energy Density and Strain Energy in Plane Stress State

As previously mentioned, the strain-energy density is the strain energy
stored in a unit volume of the material. For an element in plane stress, we can
obtain the strain-energy density by referring to the elements pictured in Figs. 3.23
and 3.24. Because the normal and shear strains occur independently, we can add
the strain energies from these two elements to obtain the total energy.

Let us begin by finding the strain energy associated with the normal strains
(Fig. 3.23). Since the stress acting on the x-face of the element is o, (see

Fig. 3.22), we find that the force acting on the x-face of the element (Fig. 3.23) is
equal to o,bc. In structural loading, this force increases gradually from zero to its

maximum value. At the same time, the x face of the element moves through the
distance ag, . Therefore, the work done by this force 1s

1

E(O'Xbc)(agx). (3.71)
Similarly, the force o,ac acting on the y-face does work equal to
%(ayac)(bey). (3.72)
The sum of these two terms gives the strain energy stored in the element
"TbC(axgx +o,8,). (3.73)

Thus, the strain-energy density (strain energy per unit volume) due to the
normal stresses and strains is
1

Uy, = E(Gng +o,8,). (3.74)

The strain-energy density associated with the shear strains (Fig. 3.24) may
be evaluated similarly to strain-energy density associated with the normal strains.
We begin the analysis by considering a small element of material subjected to
shear stresses 7 on its side faces (Fig. 3.27a). For convenience, we will assume
that the front face of the element is square, with each side having length 4.
Although the figure shows only a two-dimensional view of the element, we
recognize that the element is actually three-dimensional with thickness ¢
perpendicular to the plane of the figure. Under the action of the shear stresses, the
element is distorted so that the front face becomes a rhombus, as shown in Fig.
3.27b. The change is angle at each corner of the element is the shear strain y ,,.

The shear forces Q acting on the side faces of the element (Fig. 3.27c) are

found by multiplying the stresses by the areas 4t over which they act:
Q=rht. (3.75)
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These forces produce work as the element deforms from its initial shape (Fig.
3.27a) to its distorted shape (Fig. 3.27b). To calculate this work we need to
determine the relative distances through which the shear forces move. This task is
made easier if the element in Fig. 3.27c¢ is rotated as a rigid body until two of its
faces are horizontal, as in Fig. 2.27d. During the rigid-body rotation, the net work
done by the forces Q is zero because the forces occur in pairs that form two equal
and opposite couples.

—_— Tyx .
A ’[xy / yx
Ty
h
Tyy
= g T yx/
(a) (b)
0 0
e _Q>
0 © :
Y xy 0
L .
-3 0
(©) (d)

Fig. 3.27 Element in pure shear

As can be seen in Fig. 3.27d, the top face of the element is displaced
horizontally through a distance ¢ (relative to the bottom face) as the shear force
is gradually increased from zero to its final value Q. The displacement ¢ is equal
to the product of the shear strain y,, (which is a small angle) and the vertical
dimension of the element:

O =y yh. (3.76)
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If we assume that the material is linearly elastic and follows Hooke’s law, then
the work done by the forces Q is equal to Q5/2, which is also the strain energy

stored in the element:
U=W = %5 (3.77)

Note that the forces acting on the side faces of the element (Fig. 3.27d) do
not move along their lines of action — hence they do no work. Substituting from
Egs. (3.75) and (3.76) into Eq. (3.77), we get the total strain energy of the
element:

2
vt
U= x; . (3.78)
Because the volume of the element is /¢ , the strain-energy density in pure shear
U 0 1S
2

TX 7/)6
0, = % (3.79)
By combining the strain-energy densities for the normal and shear strains,
we obtain the following formula for the strain-energy density in plane stress:

VEy + Ty (3.80)

Substituting for the strains from Egs. (3.47) through (3.50), we obtain the strain-
energy density in terms of stresses:

1
U0=5((7x6‘x+0' E,+T

R Ty
Uy —E(Gx +oy _2V0'x0y)+ﬁ' (3.81)

In a similar manner, we can substitute for the stresses from Eqgs. (3.51) through
(3.53) and obtain the strain-energy density in terms of strains:
2
E ( 2., .2 ) Griy
—— e +é&, —2ve g, | +——. 3.82
2 (1 _ v2 ) X y X=y 2 ( )
To obtain the strain-energy density in the special case of biaxial stress, we
simply drop the shear terms in Egs. (3.80), (3.81), and (3.82).
For the special case of uniaxial stress, we substitute the following values

Ug=

0,=0, 17,=0, &,=-ve,, =0
into Eqgs. (3.81) and (3.82) and obtain, respectively,
2 2
oy Eex
=—=2 or Up= 3.83
"E 0= (3.83)

These equations agree with Eq. (2.21) in Section 2.3. Also, for pure shear we
substitute

oy=0,=0, &x=6,=0
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into Egs. (3.77) and (3.78) and obtain

2 2

T Gyy
Uy=—2, or Uy=—2, 3.84
0555 0 2 (3.84)

These equations are similar in form to those for uniaxial stress (Eq. 3.79) and
agree with Eq. (2.24) of Section 2.3.
The strain energy for plane stress state may be expressed as the integral
2

1 1( » 2 Ty
U= [Updv =7 | E(ax +O'y—2v0'x0'y)+?y av. (3.85)
V V
The integration is produced over the volume of the member. Note, that the

strain energy is a nonlinear (quadratic) function of loading or deformation.
The principle of superposition is therefore not valid for strain energy.

P PROBLEMS

Problem 3.110 A brass cube 20 in the figure. Assuming that each load
mm on each edge is compressed in two F equals 50 kN, determine the strain
perpendicular  directions by forces energy U stored in the cube.
P=100kN (see figure). Calculate the
strain energy U stored in the cube, O
assuming £ =90 GPa and v=0.34. \

| P=100 kN

P=100 kN

Problem 3.112 A square plate
Problem 3.111 A 7-cm cube of of width b and thickness ¢ is loaded by
concrete  (£=20GPa, v=0.1) is normal forces P, and P, and by shear

compressed in biaxigl stress by means e 0, as shown in the figure. These
of a framework that is loaded as shown ¢, .aq produce uniformly distributed
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stresses acting on the side faces of the

Problem 3.113 Brass plate (see

plate. Calculate the strain energy U figure) has dimensions
stored in the plate if the dimensions are 400 x 400 x 10mm. Forces are applied to
b =100 mm and t= 10 mm, the plate is o plate, producing  uniformly
made of magnesium with £ =45 GPa . . .
distributed normal stresses
and v=0.35, and the forces are
P. =150 kN, Py =150 kN, and Cx =30 MPa and oy =20 MPa.
0 =80 kN. Calculate the strain energy U stored in
the plate. Assume £ =100GPa and
=0.34.
AP, v
t z
- —4& / ’ Oy
A D T 77
0 o
Pe— p O—%|l|—>
Q - b > /4 s
‘ L X
Q <— Oy
3.7 Variation of Stress Throughout Deformable Solid.
Differential Equations of Equilibrium
5 The components of stress state
G, +&dy - 0Ty dy generally vary from point to point in a
% | oy loaded  deformable  body.  Such
. variations of stress, accounted for by
o || 4 0 A t,+——dx the theory of elasticity, are governed by
>8x the equations of statics. Fulfillment of
Ox ‘s these requirements establishes certain
dx Gyt axx dx  relationships referred to as the
0 o differential equatioys of ?quilibrium.
- For a two-dimensional case, the

y

Fig. 3.28 Stress variation on an element

stresses acting on an infinitesimally
element of sides dx, dy and of unit

thickness are shown in Fig. 3.28. As we move from point O to O', the increment
of stress may be expressed by a truncated Taylor's expansion: o + (0o, / 0x)dx.
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The partial derivative is used as o, varies with x and y. The stresses o Ty Tyys and

7y similarly change.

Evidently, that the element of Fig.3.28 must satisfy the condition
ZMO =0:
oo or
9 vy | (aGXd dyjd—+ T+~ dx | dxdy -
oy 2 ox 2 ox

ot
yx —
— {ryx + Wdy}dxdy =0.

(3.86)

Neglecting the triple products involving dx and dy, we have

Tay =Ty
as already obtained in Chapter 2.

The equilibrium of x-directed forces, ZFX =0, yields

0o, 0Ty,
o, + dx |dy—o,dy+ Txy +—=dy dx—rxydx:O. (3.87)
ox oy

A similar expression is written for ZFy =0. Simplifying these

relationships, we have
oo, 07
ZZx YV

ox oy
(3.88)
& + ari — O
oy ox

This differential equations of equilibrium apply for any type of material. These
relationships show that the rate of change of normal stress must be accompanied
by a rate of change in shearing stress. As Egs. (3.88) contain the three unknown

Stresses Oy, 0y, Ty problems in stress analysis are internally statically

indeterminate. In the mechanics of materials, this indeterminacy is eliminated by
introducing appropriate assumptions and considering the equilibrium of finite
segments of a member. The equations for the case of three-dimensional stress may
be generalized from the foregoing expressions by referring to equations of statics:

D> F,. =0, ZFy =0, > F,=0,> M, =0, ZMy =0, > M,=0. (3.85)
The complete analysis of structural members by the method of equilibrium
requires consideration of a number of conditions relating to certain laws of forces,
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laws of material deformation, and geometrical conditions. This essential
relationships, referred to as basic principles of analysis are:

Statics. The equations of equilibrium of forces must be satisfied through the
member.

Deformations. The stress-strain or force-deformation relations (for
example, Hooke’s law) must apply to the behavior of the material on which the
member is constructed.

Geometry. The conditions of geometric fit or compatibility of deformations
must be satisfied; that is, each deformed portion of the member must fit together
with adjacent portions.

In the case of a two-dimensional problem in elasticity, it is required that the
following eight quantities be ascertained: o, 0, Tays Exs €y Vs U and v. Here

u,v — components of the displacement of the point. These components must

satisfy eight governing equations throughout the member in addition to the
boundary conditions:

g oo O _v, ou

Yool Y oy Ty ox oy’

Ox % v _ O« Cxy
E,=—2—V—, £, =———y—>, = 3.89

doy Ty 99y Ony

ox oy Y ox

Solutions applying the methods of elasticity are not presented in this text.
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An element of deformable solid subjected to only normal stresses o, o,

and o, acting in three mutually perpendicular directions is said to be in a state of

triaxial stress (Fig. 4.1a). Since there are no shear stresses on the x, y, and z faces,
the stresses o, o,, and o, are the principal stresses in the material (remember

that they are named as oy, 0y, 03, while o) =2 0y = 03).

Fig. 4.1 Element in triaxial stress

In the case, when an inclined plane parallel to the z axis is cut through the
clement (Fig. 4.1b), the only stresses on the inclined face are the normal stress o
and shear stress 7, both of which act parallel to the xy plane. Because the stresses
o and t (Fig. 4.1b) are found from equations of force equilibrium in the xy
plane, they are independent of the normal stress o,. Therefore, we can use the

transformation equations of plane stress, as well as Mohr's circle for plane stress,
when determining the stresses o and 7. The same general conclusion holds for
the normal and shear stresses acting on inclined planes cut through the element
parallel to the x and y axes.

4.1 Maximum Shear Stresses

We know that in plane stress state, the maximum shear stresses occur on
planes oriented at 45° to the principal planes. Therefore, for a material in triaxial
stress (Fig. 4.1a), the maximum shear stresses occur on elements oriented at
angles of 45° to the x, y, and z axes. For example, consider an element obtained by
a 45° rotation about the z axis. The maximum positive and negative shear stresses
acting on this element are

Ox "%y _,01-03

—+
(Tmax )z ~ ~

4.1)
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Similarly, by rotating about the x and axes through angles of 45°, we obtain
the following maximum shear stresses:
C,—0; Oy —O
(Tmax ), = y2 =+ 22 3, (4.2)

o, —O o1—O
(7max ), =+ 5=+ 12 3. (4.3)
The stresses acting on elements
oriented at various angles to the x, y,
and z axes can be visualized with the
aid of Mohr's circles. For elements
oriented by rotations about the z axis,
the corresponding circle is labeled 4 in
Fig. 4.2. Note that this circle is drawn

for the case in o; >0, and both oy
and o, are tensile stresses.

-+

In a similar manner, we can
construct circles and for elements
oriented by rotations about the x and y
Fig. 4.2 Mohr's circles for an element in  gxes, respectively. The radii of the
triaxial stress circles represent the maximum shear
stresses given by Eqgs. (4.1, 4.2, and 4.3), and the absolute maximum shear stress
is equal to the radius of the largest circle. The normal stresses acting on the
planes of maximum shear stresses have magnitudes given by the abscissas of the
centers of the respective circles.

Considered stresses act on planes obtained by rotating about the x, y, and z
axes. We can also cut through the element in skew directions, so that the resulting
inclined planes are skew to all three coordinate axes. The normal and shear
stresses acting on such planes can be obtained by a more complicated three-
dimensional analysis. However, the normal stresses acting on skew planes are
intermediate in value between the algebraically maximum and minimum principal
stresses, and the shear stresses on those planes are smaller (in absolute value)
than the absolute maximum shear stress obtained from Eqgs. (4.1, 4.2, and 4.3).

YT

4.2 Hooke’s Law for Triaxial Stress. Generalized Hooke’s Law

The uniaxial stress-strain relation (see Chapter 2) may be extended to
include biaxial and triaxial states of stress often encountered in engineering
applications. In the derivations which follow, we rely upon certain experimental
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evidence: a normal stress causes no shearing strain whatever, and a shearing
stress produces only a shearing strain. Also, the principle of superposition
applies under multiaxial loading, since the strain components are small
quantities. These assumptions are limited to isotropic materials stressed in the
linearly elastic range.

Consider one more a structural element of unit thickness subjected to a

biaxial state of stress (Fig. 4.3a). Under the action of the stress o, not only

would the direct strain o,/E occur, but a y contraction as well, —vo,/E,
indicated by the dashed lines in the figure. Similarly, were oy, to act alone, an x

contraction —vo,, /E and a y strain o, /E would result. Thus simultaneous

action of both stresses o, and o, results in the following strains in the x and y

y
directions:

gx Uy
&, =—X—py— 4.4
Y E E 44

O o

Y X
&, =———y—2 4.5
Y E E *5)

The elastic stress-strain relation, under the state of pure shear (Fig. 4.3b), is
of the form

-
Y xy :%' (4.6)
(@)
y VA
L Ox
E
I o, — >
- ] |<—v— xy
X |I E
| Ox
|
b
E——
o g — -
Gy
(a) (b)

Fig. 4.3 Element in state of (a) biaxial stress and (b) pure shear.
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That is, 7,,, produces only its corresponding shearing strain y,, . From Egs. (4.4,

4.5, and 4.6) we obtain the following stress-strain relations mentioned above as
Egs. (3.51) through (3.53):

E
o, = 2 (gx +V8y), 4.7)
-V
E
o, = 5 , (4.8)
l-v (gy + vgx)
Ty =Gy 4.9)

Equations (4.4 — 4.6) through (4.7 — 4.9) represent Hooke's law for two-
dimensional stress.
An identical analysis enables one to connect the components &, 7, 7y, of

strain with stress and material properties. The foregoing procedure is readily

y extended to a three-dimensional state
* c, of stress (see Fig.4.4). Then the
I . strain-stress relations, known as the
ry;,)-’ . generalized Hooke's law, consist of
; (0p 4 the expressions:
o T A 1
—— {' T, . o, ‘9x:E|:O-x_V(O-y+O-Z):|9 (4.10)
|
/)_O_ _____ )iz__ > 1
GZ/// = — —
“ <_r« X g, E[ay v(O'x+0'Z)], (4.11)
/ * 1
Z e :_[az —v(o,+ ay)], (4.12)
Fig. 4.4 Three-dimensional state of stress E
_ Txy _ TyZ _Txz
Yoy =75 (4.13) Vyz =7 (4.14) Vxz = (4.15)

Positive value for a stress (strain) component signifies tension (extension),
and a negative value compression (contraction). Note, if a particular normal
stress is compressive, the sign of the corresponding term in Egs. (4.10 — 4.15)
changes.

In triaxial stress, when shear stresses are absent, and normal stresses
became principal, Hooke’s law has more simple configuration. Equations for the
strains:

O-x

1% O A%
8x=7—5(0y+02), or Slzfl—f((fz+(73), (4.16)



Chapter 4 TRIAXIAL STRESS 181

o)

gyzfy—%(az+0'x), or 82=%—%(61+G3), (4.17)
822%—§(Gx+6y), or 53:%—%(01+02). (4.18)

In these equations, the standard sign conventions are used; that is, tensile stress o
and extensional strain & are positive.

The preceding equations can be solved simultaneously for the stresses in
terms of the strains:

0x=(1+v)f1_2v)[(l—v)5x+v(5y+5z)], (4.19)
), = (1+v)fl _2v)[(1—v)gy +v(e +ey)), (4.20)
o, = (1+v)l(21_2v) [(1—\/)52 +v(5x +é&y, )} (4.21)

In the special case of biaxial stress, we can obtain the equations of Hooke's
law by substituting o, =0 into the above Eqgs. (4.16 —4.18).

4.3 Unit Volume Change

The unit volume change (or dilatation) for an element in triaxial stress is
obtained in the same manner as for plane stress (see Section 3.5.3). If the element
1s subjected to strains &,., £, and ¢,, we may use Eq. (3.66) for the unit volume

change:

e=&,té,+¢&,. (4.22)

Note that this equation is valid for any material provided the strains are
small.
If Hooke's law holds for the material, we can substitute for the strains ¢,

£y and ¢, from Eqgs. (4.16 through 4.18) and obtain

ezl—ZV(

Ox+0,+ O'Z). (4.23)
Equations (4.22) and (4.23) give the unit volume change in triaxial stress in

terms of the principal strains and stresses, respectively.
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4.4 Strain-Energy Density in Triaxial and Three-Dimensional Stress

The strain-energy density for an element in triaxial stress is obtained by the

same method used for plane stress (see Section 3.6). When principal stresses o,
and o, act alone (biaxial stress), the strain-energy density is

Uy = ;(a £x 0,8, ). (4.24)

When the element is in triaxial stress and subjected to principal stresses oy, 0,

and o, the expression for strain-energy density becomes

1
Uy = 2(0 £+ 08, +0,E, ). (4.25)

Substituting for the strains from Eqs. (4.16) through (4.18), we obtain the strain-
energy density in terms of the principal stresses:

(2, 2 2\ v
Uy ZE(GX +o0),+0; )—E(Gxay +0,0, + O'yO'Z). (4.26)

In a similar manner, but using Eqs. (4.19) through (4.21), we can express the
strain-energy density in terms of the principal strains:

E 2,2, .2
Uy = [1—1}(5 +¢& +5)+2v35 +86‘+6‘6‘:| 4.27
O 2(1+v)(1-2v) (1=v)ex 2 (e )] @2
For general (three-dimensional) state of stress it will be
Uy :i[oﬁ + 0'5 + 022 —2v(0'xay +0,0,+0,0, )} +
| (4.28)
+2G( £y+r)2, +rz)

Note. When calculating from these expressions, we must be sure to substitute
the stresses and strains with their proper algebraic signs.

The total strain energy stored in an elastic body can be obtained by integrating
the strain-energy density over the entire volume:

U = [[[Ugdxdydz = [UgdV . (4.29)

Using this expression, we can evaluate the strain energy for members under
combined loading. Note, that the strain energy is a nonlinear (quadratic)
function of loading or deformation. The principle of superposition is therefore
not valid for strain energy.
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4.5 Spherical Stress

A special type of triaxial stress,
called  spherical  stress,  occurs X
whenever all three normal stresses are * So

equal (Fig. 4.5): ] Go

Oy =0,=0,=0). (4.30) i P
Under these stress conditions, any : P
plane cut through the element will be ~ ©0 : Oy
subjected to the same normal stress o, <€ = : o
and will be free of shear stress. Thus, /'L____ ______

: c P

we have equal normal stresses in every 0 / - y
direction and no shear stresses. Every / o |
plane is a principal plane, and the three
Mohr's circles shown in Fig. 4.2 reduce l
to a single point. z %0

The normal strains in spherical
stress are also the same in all
directions, provided the material is homogeneous and isotropic. If Hooke's law
applies, the normal strains are as obtained from Eqgs. (4.16) through (4.18).

£ =%(1 ~2v), (4.31)

Fig. 4.5 Element in spherical stress

Since there are no shear strains, an element in the shape of a cube changes
in size but remains a cube. In general, any solid subjected to spherical stress will
maintain its relative proportions but will expand or contract in volume depending
upon whether o) is tensile or compressive.

The expression for the unit volume change can be obtained from Eq. (4.22)
by substituting for the strains from Eq. (4.29). The result is
3op(1-2
e=3g = w . (4.32)
Equation (4.32) is usually expressed in more compact form by introducing
a new quantity called the volume modulus of elasticity, or bulk modulus of
elasticity, which 1s defined as follows:

E
K=——. (4.33)
3 (1 — 2v)
With this notation, the expression for the unit volume change becomes
%0
e=—-, 4.34
© (4.34)

and the volume modulus is

K=20 (4.35)
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Thus, the volume modulus can be defined as the ratio of the spherical stress
to the volumetric strain, which is analogous to the definition of the modulus £ in
uniaxial stress. Note, that the preceding formulas for e and K are based upon
the assumption that the strains are small and that Hooke's law holds for the
material.

From Eq. (4.33) for K, we see that if Poisson's ratio v equals 0.33, the
moduli K and E are numerically equal. If v=0, then K has the value E/3, and

if v=0.5, K becomes infinite, which corresponds to an absolutely rigid material
having no change in volume (that is, the material is incompressible). Thus, the
theoretical maximum value of Poisson's ratio is 0.5.

The formulas for spherical stress were derived for an element subjected to
uniform tension in all directions, but of course the formulas also apply to an
element in uniform compression. In the case of uniform compression, the stresses
and strains have negative signs. Uniform compression occurs when the material is
subjected to a pressure p. This state of stress is often called Aydrostatic stress.

' EXAMPLES

2

Example 4.1
A steel rectangular block is
subjected to an uniform pressure of
p =150 MPa acting on all faces.

)
l Calculate the change in volume and
dimensions for ¢ =40 mm, b =30 mm,

X
/Z\L/)/,‘ and L=100mm. Use E =200 GPa
Z a and v=0.3.

Solution Inserting o,=0,=0,=0p=—p into Egs. (4.10) through

Y
(4.15) and setting £, =&, = ¢, =& we obtain
P
g =——(1-2v).
b=—L(1-2v)
The given numerical values are substituted into the above to yield
150x10°

£y = (1-0.6)=-0.3x107>.

200x10°
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Thus the change in the volume of the block, using Egs. (3.66) or (4.22), is
AV ==3¢y(abL)=-108 mm° . Deformations in the x,y, and z directions are, re-
spectively,

Al =8, =(-300x107°)(100) =~0.03 rum,

Al, =96,

(~300x107)(30) = ~0.009 mm,

Al =5, =(~300x107)(40) = ~0.012 mm,

where the minus sign indicates contraction.

Example 4.2

A solid cast-iron cylinder (see XA
figure) 1s subjected to axial and radial
compressive stresses 40 and 10 MPa,
respectively. For E =100 GPa, I
v=0.25,d =120mm, and L =200mm,
determine the change in (1) the length AL
and diameter Ad and (2) the volume of L
the cylinder AV .

Solution Note that o, =-40 MPa

and along any radius
o,=0,=0)=-10MPa. The

corresponding axial and radial strains, using Eqs. (4.10 through 4.15), are

1 109 1 6
LY P - 140-2(10+10) |==350x10
o E[G’C W0 +0)] 100><109{ 4( " )} A
1 1 1 %
—g. =6=—— — =——|10——(10+40) | =25%x10 .
£,=6,=¢ E|:O'0 v(og+0y)] 100)(109{ 4( + )} x

(1) The decrease in length and increase in diameter are
AL= 5,1 =(~350x107)(200) =0.07 mm,
Ad = 2d =(25%107°)(120) = 0.003 mm.

(2) The decrease in volume is determined from Eq. (4.22),
e=&, +26 =(-350+2x25)107° =-300x107°.
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Therefore
AV = eV =(~300x107° ) {z(60)* (200)] = ~679 mm®
where the negative sign means a decrease in the volume of the cylinder.
Example 4.3

A long, thin plate of thickness ¢, width b, and length L carries an axial load
P which produces the uniform stress o,, as shown in figure. The edges at

y=1b/2 are placed between the two smooth, rigid walls so that lateral expansion
in the y direction is prevented. Determine the components of stress and strain.

y
. L Y

A
Oy —> X Ox b
z Y

Y

Solution In this example we have y,, =y, =y, =0,¢,=0,0,=0, and
o, =—P/bt. Equations (4.10 through 4.15) then reduce to

1
&y =E(ax—vay), (a)
1
O:E(Jy —vax), (b)
&, ———(Jx +v0y), (©)
from which
1—v?
Oy =VOy, &y == O
Substitution of the above into Eq. (c) results in &, =—ve, /(1—v). We thus have
SP NY SRPRN b Y (s 4
A A G A E bt ° E bt
It is intereating to note that the following ratios may now be formed:
ox__E _e_ Y
e 1=v2 & 1-v
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The quantities E / (1 —~ v2) and v/(1—v) are called the effective modulus of

elasticity and the effective value of Poisson's ratio, respectively. The former is
useful in the theory of wide beams and plates.

T

Problem 4.1 An eclement of
aluminum in the form of a rectangular
parallelepiped (see figure) of
dimensions a=3cm, b=12 cm, and
¢ =9 cm is subjected to triaxial stresses
o, =75 MPa, oy =-30 MPa, and

o, =—10 MPa acting on the x, y, and

z faces, respectively. Determine the
following quantities: (1) the maximum
shear stress 7,,,,, 1n the material; (2) the

Aa,Ab, and Ac the

dimensions of the element; (3) the
change AV in the volume; and (4) the
strain energy U stored in the element.
Assume E =70GPaand v=0.33.

changes n

% . ,
: |
b
0, ___________________________ Yy
/
z
Problem 4.2 An element of

steel (£ =200 GPa, v=0.30) in the
form of a rectangular parallelepiped
(see figure) of dimensions a =250 mm,

PROBLEMS
b=200 mm, and c¢=150 mm is
subjected to triaxial stresses

oy =-50 MPa, o, =-60 MPa, and

o, =—-30 MPa acting on the x, y, and
z faces, respectively. Determine the
following quantities: (1) the maximum
shear stress 7., 1n the material; (2) the
Aa,Ab, and Ac
dimensions of the element; (3) the

change AV in the volume; and (4) the
strain energy U stored in the element.

changes in the

-
-
-
-
-
s
-

z

Problem 4.3 A cube of cast iron
(E£=95GPa and v=0.25) with sides
of length @ =8 cm (see figure) is tested
in a laboratory under triaxial stress.
Gages mounted on the testing machine
show that the compressive strains in the

material are &, =-350x 107 and
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&y

following quantities: (1) the normal
and o, acting on the

=g, =—05x 107%. Determine the

stresses o, O

y
x, v, and z faces of the cube; (2) the
maximum shear stress 7., In the

material; (3) the change AV in the
volume of the cube; and (4) the strain
energy U stored in the cube.

-
-
-
-
-
-
-
-

z

Problem 4.4 A cube of granite
(E=60 GPa and v =0.25) with sides
of length a=60mm (see figure) is
tested in a laboratory under triaxial
stress. Gages mounted on the testing
machine show that the compressive

strains n the material are
&, =—620x 107° and
&) =&, =-250x 1075, Determine the

following quantities: (1) the normal

o, and o, acting on the

Yy
x, vy, and z faces of the cube; (2) the

stresses oy,

maximum shear stress 7, In the
material; (3) the change AV in the
volume of the cube; and (4) the strain
energy U stored in the cube.

z

Problem45 An element of
aluminum in triaxial stress (see figure)
is subjected to stresses o, =40 MPa,

0, =-35 MPa, and o, =-20 MPa. It

is also known that the normal strains in
the x and y  directions are

£, =713.8x107°
=-502.3x107° (shortening). What

(elongation)  and

&
Yy
1s the bulk modulus K for the
aluminum?
Yy
Cy
. /GZ
O -~ : TG,
HOM .,
O // A o
|
’z/ Gy
Problem4.6 An element of

nylon in triaxial stress (see figure) is
subjected to stresses o, =—4.5 MPa,

0,=-3.6 MPa, and o,=-2.1 MPa.

It 1s also known that the normal strains
in the x and y directions are
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£, =-740x107° and &, =-320x10"°

(shortenings). What is the bulk modulus
K for the aluminum?

yG
y

a (I

—1
Ox =% | ~— O,

0N - .,
cFz// 4 o

I

’z/ Oy

Problem 4.7 A rubber cylinder
R of length L and cross-sectional area
A 1s compressed inside a steel cylinder
S by a force F' that applies a uniformly
distributed pressure p to the rubber

(see figure). (1) Derive a formula for
the lateral pressure p between the
rubber and the steel, disregarding
friction between the rubber and the
steel, and assuming that the steel
cylinder is rigid when compared to the
rubber; (2) Derive a formula for the
shortening ¢ of the rubber cylinder.

F

NNNNNNNNNNNY E—

Problem4.8 A block R of
rubber 1s confined between plane
parallel walls of a steel block S (see
figure). A  uniformly distributed
pressure p is applied to the top of the

rubber block by a force F'. (1) Derive a
formula for the Ilateral pressure p
between the rubber and the steel,
disregarding friction between the rubber
and the steel, and assuming that the
steel block is rigid when compared to
the rubber. (2) Derive a formula for the
dilatation e of the rubber. (3) Derive a
formula for the strain-energy density
U\ of the rubber.

ANMMNININIEINNN

R
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Problem 4.9 A solid spherical
ball of brass (£ =105 GPa, v=0.34) is
lowered into the ocean to a depth of
5000 m. The diameter of the ball is
25 cm. Determine the decrease Ad in
diameter, the decrease AJ in volume,
and the strain energy U of the ball.

Problem 4.10 A solid steel
sphere (E=200 GPa, v=03) is
subjected to hydrostatic pressure p such
that its volume is reduced by 0.4%. (1)
Calculate the pressure p. (2) Calculate
the volume modulus of elasticity K for
the steel. (3) Calculate the strain energy
U stored in the sphere if its diameter is
d =120 mm.

Problem 4.11 A solid bronze
sphere (volume modulus of elasticity
K =100 GPa) is suddenly heated
around its outer surface. The tendency
of the heated part of the sphere to
expand produces uniform tension in all
directions at the center of the sphere. If
the stress at the center is 80 MPa, what
1s the strain? Also, calculate the unit
volume change e and the strain-energy
density U, at the center.

Problem 4.12 A of
magnesium 100 mm on each side is
lowered into the ocean to a depth such
that the length of each side shortens by

cube

0.018 mm. Assuming that E =45 GPa
and v=0.35, calculate the following
quantities: (1) the depth d to which the
cube is lowered, and (2) the percent
increase in the density of the
magnesium.

Problem 4.13 Determine  the
axial strain in the block of the figure
when subjected to an axial load 20 kN.
The block is constrained against y-and
z-directed contractions. Use
a=60mm, b =10.0mm, L =10.0 cm,
E =70 GPa, and v =0.33.

J

i

-
o
L
2/4\7/ »/J
Problem 4.14 The rectangular

concrete block shown in the figure is
subjected to loads which have the
P, =100kN, P, =150 kN,
and P, =50kN. Calculate (1) the

changes in lengths of the block and (2)
the value of a single force system of

resultants

compressive forces applied only on the
y faces that would produce the same y-
directed strain as do the initial forces.
Use £=24 GPaand v=0.2.
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y y
Py Py
200 mm 200 mm
: 4 i i
I 4 100 mm I 100 mm
[ 7 [ 7 C
— | P, :
B _ | . B ___ |y 0
// X // X
B i 50 mm B 50 mm
7 Vd
P | P, |
O z
Problem 4.15 The rectangular Problem 4.16 A SO—mn.q—
concrete block shown in the figure is dlapleter , and _ 100-mm-long SOh_d
subjected to loads which have the cylinder is subjected to hydrostatic
resultants P, =0, P, =150kN, and loading with o, =0, =0, =-50 MPa.
Use E=205GPa and v=0.33.

P, =50kN. Calculate (1) the changes

in lengths of the block and (2) the value
of a single force system of compressive
forces applied only on the y faces that
would produce the same y-directed

strain as do the initial forces. Use
E=24 GPaand v=0.2.

Calculate (1) the change in length of the
cylinder and (2) the change in volume
of the cylinder.



Chapter 5 Plane Strain

The strains at a point in a deformable elastic solid vary according to the
orientation of the axes, in a manner similar to that for stresses. First of all, we
will derive the transformation equations that relate the strains in inclined
directions to the strains in the reference directions. These transformation
equations are widely used in experimental investigations of stress-strain state
involving measurements of strains.

Strains are usually measured by strain gages, for example, gages are
placed in aircraft to measure structural behavior during flight. Since each gage
measures the strain in one particular direction, it is usually necessary to calculate
the strains in other directions by means of the transformation equations.

5.1 Plane Strain versus Plane Stress Relations

First of all, let us estimate the term “plane strain” and its relations to plane
stress. Consider a small element of material having sides of lengths a, b, and ¢ in
the x, y, and z directions, respectively (Fig. 5.1a). If the only deformations are
those in the xy plane, then three strain components may exist: the normal strain ¢,

in the x direction (Fig. 5.1b), the normal strain ¢,, in the y direction (Fig. 5.1c¢),

Y
and the shear strain y,, (Fig. 5.1d). An element of material subjected to these

strains is said to be in a state of plane strain. It follows that an element in plane
strain has no normal strain ¢, in the z direction and no shear strains y,, and y,,

in the xz and yz planes, respectively.

y
P

A4 .
A=
[0 S E— — |
b * :

l O T

/ R [

(a) (b)
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1%
] ’
bSy !
‘ —
’ny 'I;\ 1
b l/ 1
/ > O >
O X b
() (d)
Fig. 5.1 Strain components &,., &y and Vxy in the xy plane (plane strain)

In result, plane strain is defined by the following conditions:
&,=0, 7x=0, 7,=0. (5.1)
The remaining strains (&, €,, and y,,, ) may have nonzero values.

The plane strain occurs when the front and rear faces of an element of
material (Fig. 5.1a) are fully restrained against displacement. This idealized
condition is seldom reached in real structural elements. But the transformation
equations of plane strain are useful, because they also apply to plane stress.

The definition of plane strain (Egs. 5.1) is analogous to that for plane stress.
In plane stress, the following stresses must be zero:

0,=0, 7,=0, 7,=0, (5.2)

whereas the remaining stresses (0x,0y, and Tyy) may have nonzero values. A

comparison of the stresses and strains in plane stress and plane strain is given in
Fig. 5.2.

Under ordinary conditions plane stress and plane strain do not occur
simultaneously. An element in plane stress will undergo a strain in the z direction
(Fig. 5.2); hence, it is not in plane strain. Also, an element in plane strain usually
will have stresses o, acting on it because of the requirement that &, =0;

therefore, it 1s not in plane stress. An exception occurs when an element in plane
stress is subjected to equal and opposite normal stresses (that is, when o, =-0 )

and Hooke's law holds for the material. In this special case, there is no normal
strain in the z direction, as shown by Eq. (3.49), and therefore the element is in a
state of plane strain as well as plane stress. Another hypothetical special case is
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when a material has Poisson's ratio equal to zero (v = O). Then every plane stress
element 1s also in plane strain because &, =0 (Eq. 3.49).

The stress-transformation equations derived for plane stress in the xy plane
(Egs. 3.8 and 3.9) are valid even when a normal stress o, is present. The
explanation is grounded on the fact that the stress o, does not enter the equations

of equilibrium used in deriving Eqgs. (3.8) and (3.9). Therefore, the transformation
equations for plane stress can also be used for the stresses in plane strain.

PLANE STRESS PLANE STRAIN
y
ik
€
Gy y
AT~ 27
T -
% /‘;__» ’ny . < _"I_ = _I/ /
5 ! Ox e B ANy ! /
| — i _I_>
- : 1 |, X
H Or - —r I O I [
el X [ B s
o 7 X
/ - g
z l /
Z
7 0,=0; 7,,=0; 7,=0; Ty, =05 7,=0;
H w»
2 & Oy, Oy, and 7,, may have nonzero oy, oy, and 7,,, may have nonzero
z values values
z Yz =05 7y, =0; &,=0; 7=0; 7,=0;
g N &y, &), &, and y,, may have &y, €y, and y,, may have nonzero
” nonzero values values

Fig. 5.2 Comparison of plane stress and plane strain

Now we will derive the strain-transformation equations for the case of
plane strain in the xy plane. But these equations are valid even when a strain ¢,

exists. The reason 1s simple enough — the strain ¢, does not affect the geometric

relationships used in the derivations. Therefore, the transformation equations for
plane strain(ed) state can also be used for the strains in plane stress(ed) state.

If you remember, the transformation equations for plane stress state were
derived solely from equilibrium and therefore are valid for any material, whether
linearly elastic or not. The same conclusion applies to the transformation
equations for plane strain state since they are derived solely from geometry. They
are independent of the material properties.
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5.2 Transformation Equations for Plane Strain State

In the derivation of the y
transformation equations for plane o
. . . e
strain, we will use the coordinate axes

shown in Fig. 5.3. We will assume that

the normal strains &, and &, and the

X
shear strain Vxy associated with the xy !
axes are known (Fig. 5.1). We will 9\

determine the normal strain &, and the ) b3

shear strain y, , associated with the Fig. 5.3 Axes xj and yj rotated through an
angle @ from the xy axes

x1y; axes, which are rotated
counterclockwise through positive angle € from the xy axes. It is not necessary to
derive a separate equation for the normal strain &y, because it can be obtained

from the equation for Ex, by 6 +90° substituting for 6.

5.2.1 Normal strain &y,

To determine the normal strain &, in the x; direction, we consider

infinitesimally small element of material oriented so that the x; axis is along a

diagonal of the z face of the element and the x and y axes are along the sides of
the element (Fig. 5.4a). The figure shows a two-dimensional view of the three-
dimensional element, with the z axis toward the viewer.

We will begin from the strain ¢, in the x direction (Fig. 5.4a). This strain
produces an elongation in the x direction equal to &,dx, where dx is the length of

the corresponding side of the element. As a result of this elongation, the diagonal
of the element increases in length by an amount
&dxcosd, (a)

as shown in Fig. 5.4a.
Secondly, consider the strain &), in the y direction (Fig. 5.4b). This strain
produces an elongation in the y direction equal to gydy, where dy is the length of

the side of the element parallel to the y axis. As a result of this elongation, the
diagonal of the element increases in length by an amount

&,dysind, (b)
which is shown in Fig. 5.4b.
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Finally, consider the shear strain y,,, in the xy plane (Fig. 5.4c). This strain

produces a distortion of the element such that the angle at the lower left corner of
the element decreases by an amount equal to the shear strain. Consequently, the
upper face of the element moves to the right (with respect to the lower face) by an
amount y,,dy. This deformation results in an increase in the length of the

diagonal equal to
Vxydycosd, (c)

Ty & ,dy sin
y € dx cos0 RS T S Ti; ot

yl _____ : S : _T(gydy

o 2 dy

: .
- i 4

O ar— e O 4. X

as shown in Fig. 5.4c.

(a) (b)
v Y xydy cosd X
J1 T Y xydy
—1Y xx,i\ g
ds x4 ;,f
/ ol o Y
- g3
| l
0 != dx =! X
(c)

Fig. 5.4 Deformations of an element in plane strain due to: (a) normal strain & ; (b) normal

strain gy; and (c) shear strain 7xy
The total increase Ads in the length of the diagonal ds is the sum of the

preceding three expressions; thus,
Ads = g dxcos0 + & ,dysinf + y,,dycost. (d)

The normal strain Ex, in the x; direction is equal to this increase in length divided

by the initial length ds of the diagonal:
Ads dx dy . dy
g, =——=¢,—cosO+¢g,—sinf+y, ., —cosb. e
Moods Yds Y ds T2y ds (©)
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Taking into account that dx/ds=cos@ and dy/ds=sinf, we obtain the
following equation for the normal strain:

Ex, = Ex cos? 0 + £y sin? 6+ Vxysin@coso. (5.3)

Thus, we have obtained an expression for the normal strain in the x; direction in
terms of the strains &, £y, and Yxy associated with the xy axes. As mentioned

previously, the normal strain £y in the y; direction is obtained from this

equation by substituting & +90° for 6.

5.2.2 Shear strain yy .y, -

Let us now find the shear strain y,,, associated with the xjy; axes. This
strain is equal to the decrease in angle between lines in the material that were
initially along the x; and y; axes. Consider Fig. 5.5, which shows both the xy and
x1y; axes, with the angle between them. The line Oa represents a line in the
material that initially was along the x; axis (that is, along the diagonal of the
element in Fig. 5.4). The deformations produced by the strains ¢, &,,
(Fig. 5.4) cause line Oa rotate through a counterclockwise angle o from the x;

and 7y,

axis to the position shown in Fig. 5.5. Similarly, line Ob was originally along the
y| axis, but because of the deformations it rotates through a clockwise angle S.

The shear strain y,, is the decrease in angle between the two lines that

originally were at right angles:
A

Vi =+ B (5.4) Y

\b

In order to find the shear strain Ve B

- =o +
we must determine the angles « and . Yy p a

The angle o can be found from <o
the deformations shown in Fig. 5.4 as ‘ '
follows. The strain &, (Fig. 5.4a)

produces a clockwise rotation of the 0
diagonal of the element. Let us denote \ .~ \

this angle of rotation as ¢;. It is equal 0 X
Fig. 5.5 Shear strain associated

to the distance &,dxsiné divided by Yy

the length ds of the diagonal: with the x;)) axes

o zgx%siné?. ()
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Similarly, the strain produces a counterclockwise rotation of the diagonal

g

y
through an angle «; (Fig. 5.4b). This angle is equal to the distance &),dy cos &
divided by ds :

d
a) =&, d—icos 0. (2)

Finally, the strain y,, produces a clockwise rotation through an angle o3 (Fig.
5.4c) equal to the distance y,,dy sin@ divided by ds -
dy .
o3 =y, —SIing. h
3= 7xy ds (h)

Therefore, the resultant counterclockwise rotation of the diagonal (Fig. 5.4), equal
to the angle @ shown in Fig. 5.5, is

dx . dy dy . :
a=—o1+ar—ar=—&,—sinlf@+¢&,—cos @ — —sin 4. 1
1 2 3 X g Y s 7xyds (1)

Again observing that dx/ds =cos @ and dy/ds =sin 8, we obtain
a:—(gx —gy)siné?cosﬁ—yxy sin2 6. (5.5)
The rotation of line Ob (Fig. 5.5), which initially was at 90° to line Oa, can

be found by substituting @+90° for @ in the expression for «. The resulting
expression is counterclockwise when positive (because a is counterclockwise
when positive), hence it is equal to the negative of the angle [ (because f is
positive when clockwise). Thus,

Yij =(5x —ey)sin(6'+90°)c0s(6’+90°)+7/xy sin2(9+90°) =

—(5x —gy)sinﬁcos«9+}/xy cos? 8. (5.6)
Adding o and S gives the shear strain Y (see Eq. 5.4):
Yy = —2(gx - 8y)sin<9005¢9 + 7y (0052 6 —sin® 6) . )
To obtain more useful form, let us divide each term by 2:
7x—£y1:—(5x —gy)sin0c0s¢9+%(cos26’—sin2 6’). (5.7)

In result, we obtained the expression for the shear strain y, , associated with the

X1y axes in terms of the strains &, &, and y,,, associated with the xy axes.
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5.2.3 Transformation Equations For Plane Strain

The equations for plane strain (Egs. 5.3 and 5.7) can be expressed in terms
of the angle 26 by using the following trigonometric identities:

cos> 0:%(1+cos29), sin? 9:%(1—00s29), sin @ cosﬁzésin29.

Thus, the transformation equations for plane strain are
ExtE, &E,—€
Ex, = r S, x 7 cos2(9+@sin2¢9, (5.8)
! 2 2 2
Ex — &
Toan ST Gn00+ I 0520 (5.9)
2 2 2
Note. These equations are the counterparts of Egs. (3.8) and (3.9) for plane
stress.
In comparison of two sets of equations, Ex, corresponds to Oxi» Vxy / 2

corresponds to 7., ,

corresponds to 7,,.

&y corresponds to oy, &, corresponds to o, and y,, /2

The analogy between the transformation equations for plane stress and
those for plane strain shows that all of the observations made in Chapter 3
concerning plane stress, principal stresses, maximum shear stresses, and Mohr's
circle have their counterparts in plane strain. For instance, the sum of the normal
strains in perpendicular directions is a constant (compare with Eq. 3.11):

Ex T Ey TExTE). (5.10)
Note. This equality can be verified easily by substituting the expressions for

Ex, (from Eq. 5.8) and Ey, (from Eqg. 5.8 with @ replaced by 8+ 90°).

5.3 Principal Strains

Principal strains exist on perpendicular planes with the principal angles Hp

calculated from the following equation (compare with Eq. 3.19):

tan 26, = Ty | (5.11)
Ex &y

The principal strains can be calculated from the equation

2 2
Ex &) Ex — &) Yy
£y = + + , 5.12
1,2 > [ > j ( 5 (5.12)
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which corresponds to Eq. (3.26) for the principal stresses. The two principal
strains (in the xp plane) can be correlated with the two principal directions using
the technique described for the principal stresses.

Note. (1) In plane strain the third principal strain is €, =0. (2) The shear

strains are zero on the principal planes.
5.4 Maximum Shear Strains

The maximum shear strains in the xy plane are associated with axes at 45°

to the directions of the principal strains. The algebraically maximum shear strain
(in the xy plane) is given by the following equation (compare with Eq. 3.38):

2 2
Ymax _ || Sx "0y | [T (5.13)
2 2 2

The algebraically minimum shear strain has the same magnitude but is negative.
In the directions of maximum shear strain, the normal strains are
. :€x+8y:gl+gz
aver 2 2 :
Eq. (5.14) is analogous to Eq. (3.40) for stresses.

The true maximum shearing strain of three-dimensional analysis proceeds
from Eq. (3.39):

(5.14)

(7max)t:51_53- (5.15)
Here ¢ and ¢3 are the algebraically largest and smallest principal strains,

respectively.

The maximum out-of-plane shear strains, that is, the shear strains in the xz
and yz planes, can be obtained from equations analogous to Eq. (5.13).

An element in plane stress that is oriented to the principal directions of
stress (see Fig. 3.17b) has no shear stresses acting on its faces. Therefore, the
shear strain ,, ,, for this element is zero. It follows that the normal strains in this

element are the principal strains. Thus, at a given point in a stressed body, the
principal strains and principal stresses occur in the same directions.

5.5 Mohr’s Circle for Plane Strain

Mohr's circle for plane strain is constructed in the same manner as the circle
for plane stress, as illustrated in Fig. 5.6. Normal strain ¢, is plotted as the

: .. : |7 :
abscissa (positive to the right) and one-half the shear strain (%} is plotted as
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the ordinate (positive downward). The center C of the circle has an abscissa equal
to &,,0r (Eq. 5.14).

€1
- £ =iB(9=90°)
¥
AY)
_Yw D
2
A _
0 P C 297 yx*m T &

J /A e
~—&

2 DO =0) 2

. |
e =0

c _8x+8y ¥ gx_gy

<~ Caver — g >
2 2
- gx >
€ >~
Yx1y1
2

Fig. 5.6 Mohr's circle for plane strain

Point A4, representing the strains associated with the x direction (0 = O) , has

coordinates &, and y,, / 2. Point B, at the opposite end of a diameter from A4, has

coordinates €y and — Vxy / 2, representing the strains associated with a pair of

axes rotated through an angle @ =90°.

The strains associated with axes rotated through an angle 6 are given by
point D, which is located on the circle by measuring an angle 26 coun-
terclockwise from radius CA. The principal strains are represented by points A

and P, and the maximum shear strains by points S| and S,. All of these strains

can be determined from the geometry of the circle or from the transformation
equations.
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5.6 Measurement of Strains (Continued)

Strain gages of different types and design as the most accurate method have
been developed for measuring the normal strain state components on the free
surface of any structural element where the plane stress exists. Now we consider a
typical bonded strain gage and its special combinations.

Taking the outward normal to the surface as the z direction, we have

0, =7, =Ty, =0. Inasmuch as this stress condition offers no restraint to out-of-

plane elastic deformation, a normal strain develops in addition to the in-plane
strain components (gx,gy, yxy). It follows from the generalized Hook's law

that y,, =y,, =0. Thus the strain &, is a principal strain. This out-of-plane

normal strain is significant in the determination of the true maximum shear strain.
Observe that Egs. (5.8, 5.9) were derived for a state of plane strain. However,
the principal strain &, is obtained in terms of &, and ¢, using equation,

derived from Egs. (3.55):

52:—i(5x+8y). (5.16)

Since each gage measures the normal strain in only one direction, and since
the directions of the principal stresses are usually unknown, it is necessary to use
three gages in combination, with each gage measuring the strain in a different
direction. From three such measurements, it is possible to calculate the strains in
any direction. 4 group of three gages arranged in a particular pattern is called a
strain rosette. Because the rosette is mounted on the surface of the body, where
the material is in plane stress, we can use the transformation equations for plane
strain to calculate the strains in various directions.

A rosette usually consists of three specifically arranged gages whose
axes are either 45 or 60° apart, as illustrated in the Fig. 5.7.

c
\ o

/ Backing

\
Filament

(a) (b)

Fig. 5.7 (a) strain gage; (b) strain rosette
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Consider three strain gages with angles 8,, 6,, and 6. with respect to

the reference x axis (Fig. 5.7b). The a-, b-, and c-directed normal strains are from
Eq. (5.3):

_ 2 2 .
Eq =ExCOS™ O, +&,8In" 0, + 7y, sinbg,cos6,,

y
Ep =&y cos? Op + ¢, sin’ Op + 7y sinGpcos b, (5.17)

_ 2 2 .
Ec =&xCOS™ O +£,8In" O, + 7y, sin G .c080,.

y
When the values of ¢,, &, ¢, are measured for prescribed 6,, 6, and 6., the

values of ¢y, ¢, and y,,, can be found by simultaneous solution of Egs. (5.17).

5.7 Calculation of Stresses

The strain equations are derived solely from geometry. Therefore, the
equations apply to any material, whether linear or nonlinear, elastic or inelastic.
However, if it is desired to determine the stresses from the strains, the material
properties must be taken into account.

If the material follows Hooke's law, we can find the stresses using the
appropriate stress-strain equations (for example, from Section 3.5 for plane stress
or Section 4.2 for triaxial stress).

Suppose that the material is in plane stress and that we know the strains
Exs> €y and Vxy from strain-gage measurements. Then we can use the stress-strain

equations for plane stress (Eqgs. 3.51 through 3.53) to obtain the stresses in the
material.

Secondly suppose, that we have determined the three principal strains
&1, &, and &3 for an element of material (if the element is in plane strain, then

&3 =0). Knowing these strains, we can find the principal stresses using Hooke's

law for triaxial stress (see Eqgs. 4.19 through 4.21). Once the principal stresses are
known, we can find the stresses on inclined planes using the transformation
equations for plane stress.

EXAMPLES

Example 5.1
An element of material in plane strain undergoes the following strains:

£, =340x107%, £, =110x107°, »,, =180x107°.
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These strains are shown in figure (a), as the deformations of an element of unit
dimensions. Since the edges of the element have unit lengths, the changes in
linear dimensions have the same magnitudes as the normal strains &, and ¢,,.

The shear strain y,, is the decrease in angle at the lower-left corner of the

element.
y
110x10-% | ”
[ X
T I 9O><10;6/ X1
180x107° |/ i N S \e=a
0" — o 110107 23601070
| <340x107 10 X
(a) (b)
%
1 W
80x106< :
\ /Xq 225 x 10;6/ 4 225x1076
- \/ . ° - \\‘\‘\
~370x10~ epl =19.0 1 ) =6 "
0] X 202 x10
(c) (d)

Element of material in plane strain: (a) element oriented to the x and y axes; (b) element
oriented at an angle @ = 300; (c) principal strains; (d) maximum shear strains. The edges of
the elements have unit lengths

Determine the following quantities: (1) the strains for an element oriented

at an angle € =30°, (2) the principal strains, and (3) the maximum shear strains.
(Consider only the in-plane strains, and show all results on sketches of properly
oriented elements).

Solution (1) Element oriented at an angle 6 =30°. The strains for an
element oriented at an angle € to the x axis can be found from the transformation
equations (Egs. 5.8 and 5.9) after preliminary calculations:

Ex+&y _(340+110)x10~°
2

£x—&y _(340-110)x107°
2

—225%x107°,

—115x107°,
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79 _90x107°.
2

Now substituting into Egs. (5.8) and (5.9), we get

_&xtE, & —¢&

Ey = + ycos26’+7ﬂsin29:
: 2 2 2
— (2251076 )+ 115% 1076 fe0s 60°) + (90 x 1076 Jsin 60°) = 360 x 1076
yxlyl —_ éx ¢
2
= (1151070 |sin60°)+ 90 1076 Jcos 60°) = —55x 107°.
Therefore, the shear strain is

Y sin 26 + %00526’ =

-6
Yy =~ 110x10 .

The strain ¢,, can be obtained from Eq. (5.10), as follows:

N
-6 -6
gy =&x+&y =&y =(340+110-360)x 107" =90x10™".

The strains Ex,> €y, and Vxy, are shown in figure (b) for an element

oriented at & =30°. Note that the angle at the lower-left corner of the element
increases because y, , is negative.

(2) Principal strains. The principal strains are readily determined from
Eq. (5.12), as follows:

2 2
+ —
b = Ex+ &) s Ex — &) . Yxy | _
2 2 2

=225x107 i\/(115x10_6 + (90><10‘6)2 =225x107° £146x107°.
In result, the principal strains are
£ =370x10"%, £, =80x107F,
in which &; denotes the algebraically larger principal strain and &, denotes the

algebraically smaller principal strain (keep in mind, we consider only in-plane
strains).

The angles to the principal directions can be obtained from Eq. (5.11):
Yxy 180

ex—&, 340-110

The values of 249p between 0 and 360° are 38.0° and 218.0°, and therefore the

angles to the principal directions are
0, =19.0° and 109.0°.

=(.7826.

tan 2(9p =
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To determine the value of 6, associated with each principal strain, we
substitute &, =19.0° into the first transformation equation (Eq. 5.8) and solve for

the strain:

&
Ey = + 5 ycos2¢9+%sin2¢9:

—(225x1076 )+ (1151076 Jcos38°) + (00 x 1076 Jsin 38.0°)=370x 1076.
This result shows that the larger principal strain &) is at the angle 91?1 =19.0°.

The smaller strain &, acts at 90° from that direction (49 by = 109.0°). Thus,
£=370x107 and 8, =19.0° (& > &, ,i.e.370x1070 >360x1076),
£2=80x1070 and 6, =109.0° (5, <&, ,i.e.80x1070 <90x1076 )

Note that & + &, = &y +&y: (370x1076 +80x107® )= (360 x 1076 + 90x 1076 |

The principal strains are shown in figure (c). Note, that there are no shear
strains on the principal planes.

(3) Maximum shear strain. The maximum shear strain is calculated from
Eq. (5.13):

2 2
Ey — €&
o J(_xz [ e U T R

Vmax = 292x107°.

The element having the maximum shear strains is oriented at 45° to the principal
directions; therefore, €5 =19.0°+45°=64.0° and 26, =128.0°. By substituting

this value of 26, into the second transformation equation (Eq. 5.9), we can

determine the sign of the shear strain associated with this direction. The

calculations are as follows:
&, —&
yx;yl =2 5 J sin2¢9+7ﬂc0529:

= (115%107 sin128.0°)+ (90 x 1076 cos128.0°) = ~146x10~°
This result shows that an element oriented at an angle 6y, =64.0° has the

maximum negative shear strain.
We can get the same result by observing that the angle 9s1 to the direction

of maximum positive shear strain is always 45° less than le . Hence,

Hsl = «9p1 -45°=19.0°-45°=-26.0°,
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Oy, =05, +90°=64.0°.
The shear strains corresponding to 6 and 6, are ymax =292x107% and

Ymin = —292 x 1079, respectively.
The normal strains on the element having the maximum and minimum
shear strains are
E,+E
Caver = % =225%107°.

A sketch of the element having the maximum in-plane shear strains is shown in
figure (d).

Example 5.2

A 45° strain rosette consists of three electrical-resistance strain gages
arranged to measure strains in two perpendicular directions and also at a 45° angle
between them, as shown in figure (a). The rosette is bonded to the surface of the
structure. Gages 4, B, and C measure the normal strains &,, &, and &, in the

directions of lines Oa, Ob, and Oc, respectively.
Explain how to obtain the strains &, , &), , and y, ,, associated with an

element oriented at an angle & to the xy axes (figure (b)).

\
| Y
1
0
|,
0] X
(a) (b)
(a) 45° strain rosette; (b) element oriented at an angle & to the

Xy axes

Solution At the surface of the stressed object, the material is in plane
stress. Since the strain transformation equations (Egs. 5.8 and 5.9) apply to plane
stress as well as to plane strain, we can use those equations to determine the
strains in any direction.
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(1) Strains associated with the xy axes. Because gages A and C are aligned with
the x and y axes, respectively, they give the strains ¢, and ¢,, directly:

Ex =&y, &y =&

y
To obtain the shear strain y,,, we use the transformation equation for

normal strains (Eq. 5.8):

Ex+E, &Ey—€
Ex; = - 5 Y = 5 4 c0529+}/ﬂsin2¢9.
For an angle 8 =45°, we know that Ex, = &b (figure (a)); therefore, the preceding

equation gives

E,+ e, €

a C + a
2

&p = ; “c (c0s90°) + %(sin 90°).

Solving for y,,,, we get

Vxy =26p— 6, —&p-
Thus, the strains ¢, £y and Y xy may be determined from the given strain-gage

readings.

(2) Strains associated with the x;y| axes. Knowing the strains ¢, &, and

Vxy» We can calculate the strains for an element oriented at any angle 6 (figure

(b)) from the strain-transformation equations (Egs. 5.8 and 5.9) or from Mohr's
circle. We can also calculate the principal strains and the maximum shear strains
from Egs. (5.12) and (5.13), respectively.

Example 5.3
Ty Using a 45° rosette, the
following strains are measured at a
c point on the free surface of a stressed
— o .
45 b member

N £, =900x1075,

B \ &, =700x107,
¢ 45° 6, =-100x10°.
4 \ These correspond to 0,=0°,6,=45",
o a __X_ and 0. =90° (see figure). Determine

the strain components ¢__¢.. and .
45° strain rosette P x>y Vxy
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Solution For this problem, Egs. (5.17) become

_ _ _1
Eq =Ex, Ec=Ey, 5b_§(5x+‘9y+7xy)>

or
Ex =g €y =E&cs Vxy =2¢y, _(ga +86‘)‘
Upon substitution of numerical values, £y =900 x 10‘6, &y = ~100x10"° and

Vay = 600x10~C The principal stresses and the maximum shearing stresses for
these data are found below.

The principal strains can be calculated from the Eq. (5.12):

2 2
5, _|900-100 | |(900+100Y*  (600Y*| o6
1,2 2 2 2

from which

e =983x107%, £, =-183x107°.
=&+ =800x107°.
The maximum shearing strains are given by the Eq. (5.13):

2 2
Ymax = iz\/(L’;Ooj +(6—(2)O] x107° =£1166x10™°.

As a check, note that ¢, + ¢

Example 5.4

At a point on the free surface of ¢
a structure being tested, the 60° rosette \
readings indicate that

NS

£, =70x107°,
&, =850x107°,
=250x107°
8: ><o o ec eb ea =0
for 9,=0°,0,=60" and ¢.=120 a
(see figure). Calculate (1) the in-plane E— X

principal  strains;  (2)  in-plane (a) Strainrosette
maximum shearing strains and (3) the
true maximum shearing strain (v = 0.3).

Solution In this problem, Egs. 5.17 reduce to ¢, = ¢,

1 I V3

Ep =5 (gx + gy)—z(gx —gy)+ T]/xy,
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& :%(‘("X +8y)_%(gx _gy)_éyxy’

which yield
Ex =&, = 7O><10_6,
£, =1[2(e +5c)—ga]=§[2(850><10_6 +250x10‘6)— 70x10‘6]: 710x107°,
i(gb —gc):%(850x10_6 —250><10_6): 693x107°.

Vxy = 3
Equations (5.12) and (5.13) are therefore

2 2
fs = 70+710i\/(70—710j +(6§3) 106,

2 2

2 2
70-710 693 -6
=|+2. /| —— | +| — x10 7,
V' max \/( > j ( ) j
from which

£ =862x10"0, £ =-82x10"%,  y =4943x107

Normal strains corresponding to 7,,,. are

Eaver = %(70 +710)=390x107°.

Orientations of the principal axes are in accordance with Eq. (5.11):
Yy 693
Ex—&, 710-T10
The values of 20, between 0 and 360° are: 26,= —47.2° and

20, = —47.2° +1800=132.8", or 0, = —23.6° and 0, = 66.4°.
To determine the value of 0p associated with each principal strain, we

tan 20p = =-1.083.

substitute 6, = 66.4° into the first transformation equation (Eq. 5.8) and solve for

the strain:
Ey + & Ey — €&
g, =—2 42X ycos29+@sin29:
T 2 2
= (3901076 )+ (320 107 [cos132.8%) + (346.8 x 107 |sin132.8°) = 862 x 107

This result shows that the larger principal strain & is at the angle 8, = 66.4° (see

figure (b)). Similarly, for 6, =664"+45"=1114", Eq. (5.9) yields
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Vxyy = Vmax- This result shows that the element oriented at an angle

0, =111.4" has the maximum negative shear strain. The result is given in Fig. c).

/ (YN

2

A \
; _ - -6
/// \ 6 390 X 10 6 /// 390 X 10
/ 862x10” BN )
7~
o 0, =111.4°
f 0, =66.4 : S
\ b
X ‘ - _
p= TS 043%107°
(b) (c)
Principal strains and corresponding angles Maximum shearing strains and corresponding
angles

Using Eq. (5.16) to determine the “out-of-plane” principal strain ¢, in
terms of the “in-plane” strains &, and &), the “out-of-plane” principal strain
1S

£, =&y = —%(70+710)x10_6 = -334x107%.

The true maximum shearing strain equals

(Vmax )y = &1 — €3 = (862 +334)x107°=1196x107°.

The plane-strain components found can also be used to construct a Moht's
circle.

Example 5.5

The strain components at a point in a machine part are given by
£, =900x107% &, =-100x107%, and y  =600x107°. Determine (1) the
principal strains and (2) the maximum shearing strains. Show the results on a

properly oriented deformed element. The Poisson’s ratio v = 0.3.

Solution (1) Principal strains. The principal strains can be calculated from
the Eq. (5.12):

2 2
o _|900-100, |(900+100* (600Y"| . 6.
1.2 2 2 2
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from which
£ =983x107°%, £, =-183x107°.
=61 +& =800x107°.

The planes of principal strains and corresponding angles of principal
directions are found from Eq. (5.11):

tan 20, = :( 600 jx10_6:0.60.
£e—2, (9004100

The values of 26’p between 0 and 360° are:

20, =31° and 20, =31°+180° =211°, or g, =15.5° and g, =105.5°.
To determine the value of 6, associated with each principal strain, we

As a check, note that ¢, + ¢

substitute &, =15.5° into the first transformation equation (Eq. 5.8) and solve for
the strain:

g
Ey = + y00526+%sin29:

~(400x1076 )+ (5001076 feos31°) + (300 x 107 [sin 31.0°) = 983 x 107°.
This result shows that the larger principal strain &; is at the angle Qpl =15.5°.

The smaller strain &5 acts at 90° from that direction (ﬁpz = 105.50). Thus,

£ =983x107° and 0, =15.5° (¢ > &, ,i.c.983x1070 >900x10°)
£, =-183x10"° and 0, =105.5° (gz <g,,ie (-183x107°) < (—100x10_6)).

The principal strains are shown in Fig. a.
Note, that there are no shear strains on the principal plains.
(2) Maximum shearing strains. They are given by the Eq. (5.13):

2 2
7/r3ax |4 \/(L;looj +(?) x107¢ = +583x107,

The algebraically maximum shear strain y,,¢ equals to +1166x107°. The

algebraically minimum shear strain has the same magnitude, but is negative.

The element having the maximum shear strains is oriented at 45° to the
principal directions; therefore, 6, =15.5°4+45°=60.5° and 26, =121.0°. By
substituting this value of 26; into the second transformation equation (Eq. 5.9),

we can determine the sign of the shear strain associated with this direction. The
calculations are as follows:

Y Ex —&y .
N 7X ys1n2¢9+}/ﬂcos26?:
2 2 2
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= {500 %1076 )sin121.0°)+ (300 x 107 [c0s121.0°) = 583 x 1076 .
This result shows that an element oriented at an angle 6; =60.5° has the

maximum negative shear strain.
We can get the same result by observing that the angle HSI to the direction

of maximum positive shear strain is always 45° less than ), . Hence,
Oy, =0, —45°=15.5°-45°=-29.5°,
0y, =6, +90°=060.5°.
The shear strains corresponding to 6, and Oy, are yy, =+1166x 107° and

Vinin = —1166 X 10_6, respectively. A sketch of the element having the maximum

in-plain shear strains is shown in Fig. b. The initial and deformed elements are
indicated by the solid and dashed lines, respectively.
The normal strains associated with the axes of y,,x are represented by the

formula

faver = Extéy (900 —-100
2 2
If a state of plane stress exists in the member under consideration, the third
principal strain for v equals to 0.3 is from Eq. (5.16):

£ =3 = =23 (900-100)x 1076 = —343x 1076
275103

jx 1070 = 400x107°.

Then the true maximum shear strain equals

(Vmax )y = &1 — €3 = (983 +343)x107° =1326x107° .
Note. In this case, the maximum in-plane shear strain does not represent the
largest shearing strain.

ﬂy
X1
N 7400107
\//\‘* ™ =60.5
400x107° 1166x1076 ¥
(a) (b)

Element of material in plane strain: (a) principal strains; (b) maximum shear strains
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P o

Problem 5.1 through 5.5 The
state of strain at specific points is given
in the table below. Determine the state
of strain associated with the specified

angle . Use Egs. (5.8, 5.9).

Problem &x, gy’ Ty ’ 0
10°° 10¢ 107°
5.1 —500 600 1500 30°
5.2 500 1200 -1200 -45°
5.3 200 400 100 45°
5.4 -300 500 200 60°
55 -750 —-200 200 -30°

Problem 5.6 through 5.15 The
state of strain at a point in a thin plate in
the table below is given. Calculate (1)
the in-plane principal strains and the
maximum in-plane shear strain and (2)
the true maximum shearing strain (v =
0.3). Sketch the results on properly
oriented deformed elements.

Problem ex, gy' Txy :
107 10% 107

5.6 400 0 300
5.7 —-900 —-400 —-300
5.8 —750 100 500
5.9 —-200 600 600
5.10 520 100 150
5.11 830 -300 250
5.12 —360 -500 —300
5.13 —500 500 —500
5.14 —-300 800 650
5.15 850 350 100

PROBLEMS

Problem 5.16 During the static
test of an aircraft panel, a 45° rosette
measures the following normal strains
on the free surface:

£, =—-400x107%, &, =-500x107°,

& =200x 107 Calculate the principal

strains. Show the results on a properly
oriented deformed element.

Problem 5.17 Using a 60°
rosette, we find the following strains at
a critical point on the frame of a
stressed beam:

£, =-200x107%, &, =-350x107F,

and &, =-550x10"°. Determine (1)

the maximum in-plane shear strains and
the accompanying normal strains and
(2) the true maximum shear strain. Use
v = 0.3. Sketch the results on a properly
oriented distorted element.
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B \C
60:/'
Problem 5.18 Verify that, for a

45° rosette, the principal strains are
expressed as follows:

+ 1
¢a 5 éc i5[2ga(5a —Zgb)

B%
60° y

_—
I

<Y

€127=

1
+2¢.(8, —2&p)+ 48%?.

Problem 5.19 At a point on the
free surface of a steel member (£ = 200
GPa, v =0.3) subjected to plane stress, a
60° rosette measures the strains

£, =1200x107%, &, = -650x107°

and ¢, = 550x107°. Determine (1) the

principal strains and their directions and
(2) the corresponding principal stresses
and the maximum shear stress. Sketch

the results on a properly oriented
element.

Ay

=Y

0

Problem 5.20 At a point on the
surface of a stressed structure (see

figure), the strains are
£, =-200x10"%, &, =—500x107F,

and £, =-900x107° for
0,=0°,0,=120°, and 6, =240,

Calculate (1) the in-plane principal
strains and (2) the in-plane maximum
shear strains. Show the results on
properly oriented deformed elements.

\

NS

— a
O B X
Problem 5.21 The strain

readings at a point on the free surface of
a member subjected to plane stress (see
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figure) are &, =500x 10°°, ‘y fy »
£,=350x10°, and &, =800x107° .
! A
for 9,=0, 6,=60", and 6, =135". -
Calculate (1) the maximum in-plane —% h > X
shearing strains and (2) the true < b
maximum shear strain (v =0.33). — EEEEE— X
Sketch the results on a properly oriented ;/ *
distorted element.
(a)
fo ’
< M I
\0
N /: X
‘ 0, 0,=0 b 'l
— % (b)
[0) —— X
Problem 523 A thin

Problem 522 A thin
rectangular plate in biaxial stress is

subjected to stresses o, and o0, as

shown in figure (a). The width and
height of the plate are »=20cm and
h=10cm, respectively. Measurements
show that the normal strains in the x and

y directions are gx:195><10_6 and

£y :—125><10_6, respectively. With
reference to figure (b), determine the
following quantities: (1) the increase
Ad 1n the length of diagonal Od; (2) the
change A¢ in the angle ¢ between
diagonal Od and the x axis; and (3) the
change Ay in the angle y between

diagonal Od and the y axis.

rectangular plate in biaxial stress is

subjected to stresses o, and o), as

shown in figure (a). The width and
height of the plate are » =140mm and
h =90 mm, respectively. Measurements
show that the normal strains in the x and

y directions are ¢, =102x10° and

=-31x10° , respectively. Using

£y
two-dimensional view of the plate (see
figure (b)), determine the following
quantities: (1) the increase Ad in the
length of diagonal Od; (2) the change

A¢ in the angle ¢ between diagonal Od
and the x axis; and (3) the change Ay
in the angle y between diagonal Od
and the y axis.
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)y
R
! A
4_ h »-0 x
: b
o : *f* ----------------- —%
(a)
_ d
o

S
=

Y

(b)

Problem 5.24 A thin square
plate in biaxial stress is subjected to

stresses o, and o,,, as shown in figure

y’
(a). The width of the plate 1s > =30mm.
Measurements show that the normal
strains in the x and y directions are

£, =214x10"" and &, =56x107°,
respectively. Determine the following
quantities (see figure (b)): (1) the
increase Ad in the length of diagonal
Od; (2) the change A¢ in the angle ¢
between diagonal Od and the x axis;
and (3) the shear strain y associated

with diagonals Od and cf (that is, find
the decrease in angle ced).

217
34
Gy

! [
<— b -0 x

YEL . .
/,'f -1r--¢- -------- —x

(a)
TJ’
C d

I EA NV
O. b | X
(b)

Problem 525 A thin square
plate in biaxial stress is subjected to
stresses o, and o, as shown in figure

(a). The width of the plate is
b =250mm. Measurements show that
the normal strains in the x and y

directions are &, =427 x 107 and

&y =113x 1076 , respectively.

Determine the following quantities: (1)
the increase Ad in the length of
diagonal Od; (2) the change A¢ in the
angle ¢ between diagonal Od and the x
axis; and (3) the shear strain y
associated with diagonals Od and cf

(that is, find the decrease in angle ced).
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Y
g
' A
4— b -0 x
L, .
/,'r 1r* — %
(a)
y
c d
b| e
N r
O.__ b X
(b)
Problem 5.26 An

element

subjected to plane strain (see figure) has

strains as follows: &, =110x 1079,
-6 -6
€, =240x10 and  y,, =90x10 ",

Calculate the strains for an element
oriented at an angle @ =30° and show
these strains on a sketch of a properly
oriented element.

m

___________________________

=Y

Problem 5.27 An element of
material subjected to plane strain (see

figure)
&y =420

has  strains

x107°, &,

as follows:

—_180x107° and

Vxy =300x 107, Calculate the strains

for an element oriented at an angle

0 =50°

and show these strains on a

sketch of a properly oriented element.

Problem 5.28 The strains

A

n

plane strain (see figure) are as follows:
&y =500x 1070 , €y = 150 x 10_6, and

Vxy

— _340x107°.

Determine

the

principal strains and maximum shear

strains,

and

show these strains on

sketches of properly oriented elements.

Yy
Sy ‘\\
/"‘\ YXy
1

=Y

Y
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Problem 5.29 The strains for an
element in plane strain (see figure) are

as follows: &y =120x 10_6 ,
£, =-450x107°, and
Vxy =300 107%.  Determine  the

principal strains and maximum shear
strains, and show these strains on
sketches of properly oriented elements.

P

m

__________________________

=)

0 1 - |

- =8X\‘

Problem 5.30 An element of
material in plane strain (see figure) is

subjected to strains &, =480x 107°,
-6 -6
€,=70x10"", and y,, =420x10 ".

Determine the following quantities: (1)
the strains for an element oriented at an
angle € =70°; (2) the principal strains,
and (3) the maximum shear strains.

Show the results on sketches of
properly oriented elements.
ﬂy
€y /" """"""""""""""
A !
—] ,"’lexy
1 /
19) X
L

Problem 5.31 A steel plate with

modulus of elasticity £ =210x 10°GPa
and Poisson's ratio v=0.30 is loaded in

biaxial stress by normal stresses o, and
o, (see figure). A strain gage is
bonded to the plate at an angle ¢ =30°.
If the stress o, 1s 124 MPa and the
the gage
& =407 x 10_6, what is the maximum
in-plane shear stress (Tmax) and shear

strain measured by 1s

Xy
strain (Vax ) o ? What is the maximum
shear strain (7,x )XZ in the xz plane?

What is the maximum shear strain
(mmax ) Ve in the yz plane?

e

Problem 5.32 An
plate with modulus of elasticity
E =70 GPa and Poisson's ratio v=0.30
is loaded in biaxial stress by normal

aluminum

stresses o, and o) (see figure). A

strain gage is bonded to the plate at an
angle ¢=21°. If the stress o, 1is

86.4 MPa and the strain measured by
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the gage is ¢ = 946><10_6, what is the

maximum  in-plane  shear  stress

(Tmax ) o and shear strain (¥pax ) o ?

What is the maximum shear strain
(7max )xz in the xz plane? What is the

maximum shear strain (yax ) Ve in the

yz plane?

Problem 5.33 An
element in plane stress is subjected to
stresses o, =—58 MPa, oy = 7.6 MPa,

=—-10 MPa (see figure). The

aluminum

and 7y,

modulus of elasticity £ =70 GPa and
Poisson's ratio v=0.33. Determine the
following quantities: (1) the strains for
an element oriented at an angle
€ =35°; (2) the principal strains, and
(3) the maximum shear strains. Show
the results on sketches of properly
oriented elements.

ACy
e e
y Ty
—>T 0 x l<—6x
—

l

Problem 5.34 An element of
brass in plane stress is subjected to
stresses o, =—150 MPa,

o, =-210 MPa, and 7,,=15MPa

(see figure). The modulus of elasticity
E =100 GPa and Poisson's ratio
v=0.34. the following
quantities: (1) the strains for an element
oriented at an angle 6 =50°; (2) the
principal strains, and (3) the maximum
shear strains.

Determine

Show the results on
sketches of properly oriented elements.

Cy
_>
y Txy
GX

]l o —
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Problem 5.35 During a test of
an airplane wing, the strain gage
readings from a 45° rosette (see figure)

are as follows: gage 4, 520 x 10_6; gage
B, 360x107%; and gage C, —80x1075.
Determine the principal strains and
maximum shear strains, and show them

on sketches of properly oriented
elements.

Problem 536 A 45° strain
rosette (see figure) mounted on the
surface of a frame gives the following

readings: gage 4, £, =310x 107%; gage
B, &, =280x 10_6; and gage C,
£.=-160x107°. the

principal strains and maximum shear
strains, and show them on sketches of
properly oriented elements.

Determine

Problem 537 A 60° strain
rosette is shown in the figure. Gage 4

measures the normal strain ¢, in the
direction of the x axis. Gages B and C
measure the strains &, and &, in the

inclined directions shown. Obtain the

equations for the strains &, and

Sy,

7y associated with the xy axes.

lly

% ) \C
60° 60°

A

[
I

X

Problem 5.38 On the surface of
a structural element in a space vehicle,
the strains are monitored by means of
three strain gages arranged as shown in
the figure. During a flight, the following

strains were recorded:
£, =1100x107%, £, =200x107°, and
& =200 x 107°. Determine the

principal strains and principal stresses
in the material, which is a magnesium

alloy for which FE=41GPa and
v=0.35. Show the principal strains and
principal stresses on sketches of

properly oriented elements.
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Problem 5.39 The strains on the
surface of structural element made of
aluminum alloy (£ =70 GPa, v=0.33)
and tested in a space shuttle were
measured by means of strain gages. The
gages were oriented as shown in the
figure, and the measured strains were

£, =1100x107%, £, =1496x107°,
and gC=—39.44><10_6. What 1s the

stress o, 1n the x direction?

LAY
& N
—_— :
O 400 =—" 40° X

Problem 5.40 A solid circular
bar of diameter d =3 cm is subjected to
an axial force P and a torque moment
M; (see figure). Strain gages 4 and B

mounted on the surface of the bar give

£, =100x107°

gb:—55><10_6. The bar is made of

steel having £ =210 GPa and v=0.30.
(1) Determine the axial force P and the
torque moment M,. (2) Determine the

readings and

maximum shear strain y,¢ and the

maximum shear stress 7,,,,x 1n the bar.

d My
: ~
(% {(3—~-
!
B Nase
A
C
Problem 541 A cantilever
beam of rectangular cross section

(width b =25 mm, height 42 =100 mm)
is loaded by a force P that acts at the
midheight of the beam and is inclined at
an angle a to the vertical (see figure).
Two strain gages are placed at point C,
which also i1s at the midheight of the
beam. Gage 4 measures the strain in the
horizontal direction and gage B
measures the strain at an angle £ =60°

to the horizontal. The measured strains
are &, =120x 1076

g, =-370x107°. the

force P and the angle o, assuming the
material is steel with £ =200 GPa and
v=0.33.

and

Determine
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B
cL\

— A

B
4,4 v
C

Problem 542 A cantilever
beam of rectangular cross section
(width b =20 mm, height 4 =80 mm,
magnesium alloy with £ =41 GPa and
v=0.35) is loaded by a force P that
acts at the midheight of the beam and is
inclined at an angle o to the vertical
(see figure). Two strain gages are
placed at point C, which also is at the

midheight of the beam. Gage A4
measures the strain in the horizontal
direction and gage B measures the strain
at an angle £ =75° to the horizontal.

The measured strains are
£,=171x10"% and &, =-262x107°.
Determine the force P and the angle « .

— N




Chapter 6 Limiting Stress State. Uniaxial Limiting Stress State.
Yield and Fracture Criteria for Combined Stress

The mechanical behavior of materials subject to uniaxial loads is presented
on stress-strain diagrams. In these cases, the onset of inelastic behavior, or failure
by yielding or brittle fracture can be predicted readily with acceptable accuracy.
However, most structures are subjected to a variety of combined loads. Several
theories of failure (syn. failure criteria) have been developed for predicting
failure of brittle and ductile materials in these situations, when in the point under
consideration two or three principal stresses are applied. A yield criterion, often
expressed as yield surface, or yield locus, is an hypothesis concerning the limit of
elasticity under any combination of stresses. Since stress and strain are tensor
qualities they can be described on the basis of three principal directions, in the
case of stress these are denoted by o, o,, and o;.

We consider here only two simple brittle fracture and three yield theories

(criteria). In our discussion of these theories, we denote the ultimate stress
obtained in a tension test by o,, and in a compression test by o,, . The yield-

point stress determined from a tensile test is designated by o . In this analysis,

we will consider an element subjected to triaxial principal stresses where
o, > 0, >0, and the subscripts 1, 2, and 3 refer to the principal directions. The

following represents these most common criteria as applied to anisotropic
materials (uniform properties in all directions).

6.1 Maximum Principal Stress Theory (Rankine, Lame)

The maximum principal stress theory, or Rankine theory, is applied
satisfactorily to many brittle materials. It is based on a limiting normal stress and
states that fracture occurs when either of the principal stress o, or o, at a point

in the structure reaches the ultimate stress in simple tension or compression for
the material. It follows that fracture impends when
or ‘0'3‘:0uh : (6.1)

c

0, = O-ulz,

For materials possessing the same ultimate strength in tension and

ult,

compression (O'uht =0, zau), in the case of plane stress (o3 =0), Eq. (6.1)

becomes
o,=0, oOr ‘0'2‘:%. (6.2)

Failure is prevented when
o,<0, or |oy|<a,. (6.3)
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The above expression is plotted
in Fig. 6.1. Failure will occur for any
combination of stresses on or outside
the boundaries; no fracture occurs for a

combination of stresses inside the
square.
Experiments show that this

theory can predict fracture failures
reasonably well for brittle materials
(particularly in quadrant 1 in Fig. 6.1),
and the Rankine theory is generally
accepted in design practice for such
materials.

c52/Gu !

1.0

-0.5 0.5
No fracture
predicted

-1.0 [ Fracture

Fig. 6.1 Fracture criterion
maximum principal stress

Y

-1.0 1.0 o,/o,

based on

6.2 Maximum Principal Strain Theory (Saint-Venant)

The theory is based on the assumption that inelastic behavior or failure is
governed by a specified maximum normal strain. Failure will occur at a particular
part in a body subjected to an arbitrary state of strain when the normal strain
reaches a limiting level corresponding to the yield point during a simple tensile
test. Failure is predicted when either of the principal strains, resulting from the
principal stresses, o),, equals or exceeds the maximum strain corresponding to

the yield strength, o, of the material in uniaxial tension or compression. In terms

of the principal stresses the fracture will be prevented when

0'1—1/(0'2+0'3)<0'y.

(6.4)
A 62/0'y

c1/0y

No yielding
predicted

v=0.35

Failure by yielding

Fig. 6.2 Fracture criterion based on maximum principal strain
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Equation (6.4) is depicted in Fig. 6.2. The boundaries of the parallelogram mark
the onset yielding, with points outside the shaded region representing the yielded
state.

6.3 Maximum Shear Stress Theory (Tresca, Guest, Coulomb)

Applied satisfactory to ductile materials, the theory is based on the concept
on limiting shearing stresses at which failure occurs. It asserts that yielding begins
when the maximum shearing stress equals the maximum shearing stress at the
vield point in a simple tension test. The largest value of the shear stress is

1 e :

T :5‘0'1—0'3‘. In uniaxial limiting tension, o,=0;=0 and 7, =0,/2.

max

Therefore, at the onset of yielding,
Toax =0, OF ‘0'1 - 03‘ =0,. (6.5)
In the case of plane stress (o, =0), when o, and o, are of opposite sign

(that is, one tensile, the other compressive), the yield condition is given by

‘0'1 —Jz‘zay. (6.6)
Gy/c )1 When o, and o, carry the same sign,
1.0 the maximum shearing stress is half
the numerically larger principal stress
o, or o,. Thus, the criterion
705 corresponding to this situation is
: : . ‘al‘zo'y or ‘O‘Z‘=O'y. (6.7)
— 1.0/ 05 /1.0 o1/o, Equations (6.6) and (6.7) are
No yieldin_g__o' - depicted in Fig. 6.3. Note that Eq.
predicted F.allu.re by (6.6) applies to the second and fourth
10 ylelding quadrants. In the first and third
Fig. 6.3 Yield criterion based on maximum quadrants the criteria are expressed by
shearing stress Eq. (6.7). The boundaries of the

hexagon mark the onset yielding, with points outside the shaded region
representing the yielded state.

The maximum shear stress theory is frequently applied in machine design
because it is slightly conservative and is easy to apply. Good agreement nth
experiment has been realized for ductile materials. The main objection of this
theory is that it ignores the possible effect of the intermediate principal stress, o,.
However, only one other theory, the maximum distortional strain energy theory,
predicts yielding better than does the Tresca theory, and the differences between
the two theories are rarely more than 15%.
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6.4 Total Strain Energy Theory (Beltrami-Haigh)

Applicable to many types of } oy/0,
materials, the theory predicts failure 1.0
or inelastic behavior at a point when
the total strain energy per unit volume T 05
associated with the principal stresses,
/o

0, , 5, equals or exceeds the total strain . .

energy corresponding to that for the

yield strength, o, of the material in _
No yielding
predicted

uniaxial tension or compression.

Failure is prevented when v=0.35

-1.0

, 5 Failure by
Oy +0; 03— yielding
Fig. 6.4 Yield criterion based on maximum

2
_2‘/(0'10'2 + 0,03+ 0'10'3) <o, (6.8)  iotal strain energy

6.5 Maximum Distortion Energy Theory (Huber-Henky-von Mises)

The theory is based on a limiting energy of distortion, i.e. energy associated
with shear strains.

Strain energy can be separated into energy associated with volume change
and energy associated with distortion of the body. The maximum distortion energy
failure theory assumes failure by yielding in a more complicated loading situation
to occur when the distortion energy in the material reaches the same value as in a
tension test at yield.

This theory provides the best agreement between experiment and theory
and, along the Tresca theory, is very widely used today.

Failure is predicted when the distortional energy associated with the
principal stresses, o, 5, equals or exceeds the distortional energy corresponding

to that for the yield strength, o,, of the material in uniaxial tension or
compression. The failure is prevented when
[(01—02)2+(62—O'3)2+(03—61)2j|<20')2,. (6.9)
In the case of plane stress (o, =0), Eq. (6.9) reduces to

ol —0,0,+0; < Jﬁ. (6.10)
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f (L1)
I )
—1 /// 0 1 o] /Gy
NG yielding
,"predicted

- Failure by

(-1,-1) yielding

Fig. 6.5 Yield criterion based on maximum
distortion energy

e
yoot*
e

The foregoing defines the ellipse shown
in Fig.6.5. Points within the surface
represent the states of nonyielding.

The von Mises theory agrees best
with the test data for ductile materials
and is in common use in design.

Note. Of the failure criteria,
the Tresca is the most conservative
for all materials, the von Mises the
most representative for ductile
materials, and the Rankine the best
fit for brittle materials.

EXAMPLES
Example 6.1
M, The rectangular beam of the cross-section
B g yi shown in figure (a) is loaded by two bending
moments M, =7.5kN'm, M_ =3.2kN'm acting
respectively in vertical and horizontal planes of
M, M cross-sectional symmetry, and also by torque
hlCY T “ Y moment M_=7.0kN-m. Assuming the allowable
“ stress of beam material o, =160MPa, find
,y cross-sectional dimensions /# and b taking into
o account that //b=2 and maximum shear stress
b B theory of failure is used.
v
z Solution The combination of internal
(a) stresses produced by each separate internal force

is shown in the figure (b). The table of the coefficients of sectional moduli
W, =ahb” allows to find the values of & =0.246 and y =0.795 in calculation of

maximum shear stresses (see figure (b)).
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G(MZ) G(My) T(Mx)
Tmax = Y% max
- 7|
P2 rd
Ve rd
& d y y A y
Vs < X M,
N o
Ve d T
:7V max
zZ 4 z
M M,y M
oy(y)= IZ z Gx(z)= IZ TmaX:Wx
Yy Y t
(b)
Table
h
Z 1 1.5 2.0 3.0 4.0 6.0 8.0 10.0 >10
o | 0208 | 0.231 0.246 | 0.267 | 0.282 | 0.299 [ 0.307 | 0.313 | 0.333
B 10.141 | 0.196 | 0.229 | 0.263 | 0.281 | 0.299 | 0.307 | 0.313 | 0.333
Y 1 0.859 | 0.795 | 0.753 | 0.745 | 0.743 | 0.743 | 0.743 | 0.743

The general problem is to find potentially dangerous points of the section
from the viewpoint of combined action of the normal and shear stresses and write
the conditions of strength in each of them taking into account the type of stress
state at the point (uniaxial or combined).

As may be seen from figure (b) the maximum normal stress should act in
two corner points B and B'. At these points

AV;Z : (a)

z

xmax

M,
O, =0z= +
W,
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p.- B Note, that the shearing stresses
/meax(Mz) at the points B and B' are equal to

Zero:
/meax(My) t,5=0. (b)

Due to linear (uniaxial) stress-state at
the points B and B' the condition of
strength is really comparing of

/ maximum acting normal stress with
O v max ( ]\/{y) allowable one:
/ A
o, = + <oy, (c)
S ymax (M z) w, W,
(c) where W, =bh2/6, W, = hb2/6. From

this condition the first of three possible values of the cross-sectional width b, 1s
3 3
" Zi/3My/2+3MZ :i/3><7.5x1o /2+3%x3.2x10

=5.07x107 m.

160x10°

The other two potentially dangerous points are the points 4 (or 4') and C
(or C"):

O

pr-A o =%, (d)
/meax(My) ! w,
T =1 :}/MXZJ/ M, . (e)
vt w T ahb?
y’ Determine the principal stresses:

O-x 1 2 2
Txy(Mx) 0-1,2(3):7i5"0x +4Txy .
/ >

O ymax (M ) >
(d) oy =y or . (D

It should be observed that there is biaxial stressed state at the point A.
According to the maximum shearing stress theory of failure (third theory of

failure) the condition of strength is

1l
O-eq = (O-l - 0-3) < O-all H (g)

2
M M\
O'e[f:«/of+4rxy230'all, or O'elélz [Vyj +4(}/ahgzj <oyu- (h)

or
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From this condition second of three possible values of the cross-sectional width
b, will be

o 0, 2 )

3 \/(3/2 x7.5x10°) +(0.795x 7.0x10°/0.246)
= - =5.40x107* m.
160x10

C Point C 1is the last potentially

O ymax(M,) dangerous point of the cross-section. Its
stress state is biaxial because o, =M _/W,

¥ and 7 =71, =M, / ahb® . That is why we
will use the maximum shear stress theory

of failure to write the condition of strength
by analogy with the point 4:

2 2
meax(Mz) gelél :\/[sz +4( szj <o, . (1)
(e) w. ahb

Taking into account that fact that W, = hb’ / 6 we have

b>#@ (M a)

3 \/9(3.2><103 ) +(7.0x10°/0.246)

160x10°
In result of comparing of three values of b the largest one is proposed as the cross-

sectional width: b =b, =5.725x107> m, h__ =11.46x107> m.

T.X'Z(MX)

=5.725x1072 m.

Example 6.2
The rectangular beam of the cross-section shown in figure (a) is loaded by
two bending moments M, =7.5 kN'm, M_ =3.2 kN'm acting respectively in

vertical and horizontal planes of cross-sectional symmetry, and also by torque
moment M _=7.0 kN'-m and normal force N_=2.0 kN. Assuming the allowable

stress of beam material o, =160 MPa, find cross-sectional dimensions / and b
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taking into account that 4/b=2 and maximum shear stress theory of failure is
used.

Solution The combination of internal stresses produced by each separate
internal force is shown in figure (b). The table of the coefficients of sectional
moduli W, =ahb® allows to find the values of @=0.246 and y=0.795 in
calculation of maximum shear stresses (see figure (b)).

M, o (M) 5 (M)
y e
B A
A« 7|
& vd
u, v 7
ey | iy W Ly y
, Al
N v d x
X X x}/ﬁ o
4 vd
b V=) 4
o z z
z _MZ-y :Mz'y
c(¥)= Iy G x(2) Iy
(a)
T(M,) G (Ny)
Tmax =T max
vy Ve
Ve Ve
A y & v y
<
X V' Ve
<L Ve
Tmax &7 &
z z
T _ My _ Ny
max — th 6) —?

(b)
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Table

% 1 1.5 2.0 3.0 4.0 6.0 8.0 10.0 >10
o | 0208 0.231 | 0.246 | 0.267 | 0.282 | 0.299 | 0.307 | 0.313 | 0.333
B 10.141 | 0.196 | 0.229 | 0.263 | 0.281 | 0.299 | 0.307 | 0.313 | 0.333
Y 1 0.859 | 0.795 | 0.753 | 0.745 | 0.743 | 0.743 | 0.743 | 0.743

First of all, it is necessary to find potentially dangerous points of the section
from the viewpoint of combined action of the normal and shear stresses and write
the conditions of strength in these points taking into account the type of stress
state at the point (uniaxial or combined).

As may be seen from figure (b) the maximum normal stress should act in
unique corner point B. At this point

N, M, M
o, =op=—"-4+—L4 =2
max A Wy WZ

(a)

=
S

Note, that the shearing stress at the
meax(Mz)/ point B is equal to zero:
(b)

T B = 0 .
c (M) 7
A Mmax ey / Due to linear (uniaxial) stress-state at the
G (Ny)

points B and B' the condition of strength is
the really comparing of maximum acting
normal stress with allowable one:
N X My M z
o, =—<+ +
max A Wy W'Z
where W, =bh>/6, W, = hb*[6.
To simplify the solution we will solve
the problem in two approaches. Rough result
may be obtained neglecting o(N,). Then

(c)

SO

»{X(Nx)

G ymax (M)
G ymax (M)

the first of three possible values of the cross-
sectional width b, 1s

NIRRT _i/_%x7.5><103/2+3><3.2x103
! 160x10°

(©)

=5.07x107 m.

O
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In second approach check the strength of point B comparing actual stress
in accordance with formula (c) with allowable one:
Nx My Mz Nx 6My 6Mz Nx 3My 3]‘42
=—*4 + =ttt =t
A W, W, bh bh hb”  2b° 2b b
2.0x10° 3x7.5x10°  3x3.2x10°

3=

meax - GB

2(5.07x102) 2(5.07x102)" (5.07x1072)

=(3.89+86.33+73.67)x10° =163.89x10° Pa=163.89 MPa.

Let us estimate the overstress of the point B:

Ao = Oymax ~ Gall — 163.89 -160

o 160

=0.0243=2.43%.

In applied mechanics, 5% overstress is permissible. It means that the width
b, =5.07 cm is final from the viewpoint of the strength of the point B.

The other two potentially dangerous points are A and C points. In the first
approach, we will neglect G(N ) in both points and, first of all, find rough values

X

of the width b. In second approach, we will estimate the overstress of these points
produced by G(Nx ) , because 5% overstress is permissible in applied mechanics.

p-4
/meax(My) O'x=£+%; (d)
S ox(N) 4
: M,
Ty =T =730 (©)

Because of biaxial stressed state
at the point A, according to the
maximum shearing stress theory of

failure condition of strength is

1
Oy :(51_53)3@111’ ()

d) or, in the first approach,

2
M MYV
ol =\o +4r,} S0, or ol = (v) 1) 2ou @

y

In result, rough value of cross-sectional width is equal to

. \/(3><My/2)2 +(yM,Ja)’ _

O

b, >
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i/ \/(3/2 x7.5x10°) +(0.795x 7.0x10°/0.246)
- =5.40x1072 m.

160x10°
In second approach, calculate the overstress of the point 4, produced by G(N )

X

and estimate it. Actual value of the equivalent stress is

2
GIH— ﬂﬁ-& +4( Mx jz_ &+3My 2+( MXJZ_
“ 4 W, " anb? 20 2b° " b
2 2

2.0x10° N 3x7.5x10° .\ 0.795x7.0x10°
2 3 3
2(5.40x10_2) 2(5.40x10_2) 0.246(5.4ox10—2)

\/(0.34><106 +71.44><106)2 +(143.66x106)2 ~160.59 MPa.

I

O-eq _O-all . 16059—160
o 160

=0.0037=0.37%.

Overstress Ao =

The overstress Ao <5%. It is permissible and the value b, =5.40 cm is
final from the viewpoint of the strength of point A.

Point C is the last potentially 2-C

. . o M
dangerous point of the cross-section. / xmax (M)
Its stress state is biaxial because / o, (Ny)
O-x:NX/A+MZ/WZ’ TXZ:TmX:
) s

=M, [(ahb®). That is why we will

use the maximum shear stress theory 1, (M)
of failure to write the condition of
strength by analogy with the point 4:

> ) Gx(Nx)
(711]2\/[%4‘]\42] +4( Mx j Saall' Axmax(Mz)

eq 2
w. ahb (e)
Taking into account that fact that WV, = hb* / 6 in the first approach calculate

the rough value of cross-sectional width ignoring U(Nx) , 1.e. using the formula

\ >#J9 (M a)
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P \/9(3.2><103 ) +(7.0x10°/0.246)

; =5.725%107 m.
160x10

In second approach, calculate the overstress of the point C, produced by O'(N )

X
and estimate it. For this, calculate actual value of equivalent stress in the point
substituting b; value into (h) formula:

O_[]]_ (L+3sz2+(ij2_
e 20 b ab’
2 2

2.0x10° 3%x3.2x10° 7.0x10°
2\2 * 2\3 * 2)\?
2(5.725><10‘ ) (5.725><10— ) 0.246(5.725x10‘ )

2 2
:\/(0.305><106+51.16x106) +(151.65><106) —160.14x10° Pa=160.14 MPa .

m

eg ~Oan _160.14-160

o
= 0.00088 = 0.088%.
o 160

Overstress Ao =

The overstress Ao <5%. It is permissible and the value by =5.725cm is final

from the viewpoint of the strength of point C.
In result of comparing of three actual values of b the largest one is proposed

as the cross-sectional width: b =b, =5.725x107m, h_ =11.45x10""m.

max

Example 6.3

The rectangular beam of the cross-section shown in figure (a) is loaded by
bending moment M, =7.5kN'm, and also torque moment M =7.0kN-m.
Assuming the allowable stress of beam material o, =160MPa, find cross-
sectional dimensions 4 and b taking into account that 4/b =2 and maximum shear
stress theory of failure is used.

Solution The combination of internal stresses produced by each separate
internal force is shown in figure (b). The table of the coefficients of sectional
moduli W, =ahb® allows to find the values of a=0.246 and y=0.795 in

calculation of maximum shear stresses (see figure (b)).



Chapter 6 LIMITING STRESS STATE 237
M G(My) T(My)
1 Timax =T max
A
M,
hlCrTNY |C y y A y
' PaN
y X Mx
% Tmax
b / V4 Z
z M, -z M
o, .(z2)=—2 Tmax = —
X Iy max w,
(a) (b)
Table
h
Z 1 1.5 2.0 3.0 4.0 6.0 8.0 10.0 >10
o |0.208 | 0.231 0.246 | 0.267 | 0.282 | 0.299 | 0.307 | 0.313 | 0.333
B (0.141 ] 0.196 | 0.229 | 0.263 | 0.281 | 0.299 | 0.307 | 0.313 | 0.333
Y 1 0.859 | 0.795 | 0.753 | 0.745 | 0.743 | 0.743 | 0.743 | 0.743

Potentially dangerous points of the section from the viewpoint of combined
action of the normal and shear stresses may be found in result of analysis of
internal stresses produced by separate internal force shown in the figure (a). Note
that 4 and A4' points are two equidangerous points of maximum normal stresses
and also C and C' points are two equidangerous points of maximum shear
stresses. Totally, the points 4 and C (or 4' and C') are two potentially dangerous
points under this specified loading. The conditions of strength will be written
taking into account the combined stress state in these points.

As may be seen from figure (a) maximum normal stress should act in the
point A simultaneously with relatively large shear stress (see figure (b)).
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p- A
/meax(My) o :& (a)
Xxmax Wy 2

4 M X M X
Txy = Tmax = 7/ 2 °° (b)

y. W, ahb
Ty (M) Due to biaxial stressed state at
the point 4 and in accordance with the
. (M) maximum shearing stress theory of
AMax Ay failure condition of strength may be

(b) written as
O'g][ :(01_03)305111 (@)
or

2
M M, Y
Gelf]1:«/05+4rxy2£0all, or oig: [—yj +4(}/ahgzj <oy (h)

b \/(3><My/2)2 +(}/Mx/05)2 _

2 2
. \/(3/2 x7.5x10°) +(0.795x7.0x10°/0.246
= - =5.40x107* m.
160x10
Point C is second potentially dangerous point of the cross-section. Its stress
state is pure shear, which is really an important particularity of biaxial stress state.

Acting stress 7_=7,., =M, / (ahbz). That is why we will use the maximum

shear stress theory of failure to write the condition of strength by analogy with the
point A:

p.C 2
o :\/0+4( szj <o, - (1)

ahb
/ From this

3
b5 [ Msl i/7.0><1o /0.6246 102 m
(M) \ o 160x10

In result of comparing of two values of b the
largest one 1s proposed as the cross-sectional width:

© b =b,=5.62x107 m, h_ =11.24x107 m.
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Example 6.4
The rectangular bar of the cross-section shown in figure (a) is loaded by
bending moment M _=3.2 kN'-m acting in horizontal plane of cross-sectional

symmetry, and also by torque moment M _=7.0 kN'm and normal force
N, =2.0 kN. Assuming the allowable stress of

beam material o,=160 MPa, find cross-
sectional dimensions 4 and b taking into account
that 4/b=2 and maximum shear stress theory of
nle fi\;[x M, y failure is used.
“ | . - .
Solution The combination of internal
2 Ny stresses produced by each separate internal force is
shown in figure (b). The table of the coefficients of
sectional moduli W, =ahb® allows to find the
b z values of & =0.246 and y =0.795 in calculation
(a) of maximum shear stresses (see figure (b)).
C5(2‘42) T(Mx) G(]Vx)
Tmax =YTmax
p - L
L& 7| & v
L& d v L&
Vs od y N Vs Vs y
P&\
» of My x rs
“ L 7 " V4
A | e A | |~
= 4
z zZ z
M, -z M N
ox()=— Tmax = Ox=—"
X [y max VI/Z X A
(b)
Table
h
’ 1 1.5 2.0 3.0 4.0 6.0 8.0 10.0 >10
o | 0208 | 0.231 | 0.246 | 0.267 | 0.282 | 0.299 | 0.307 | 0.313 | 0.333
B |0.141 | 0.196 | 0.229 | 0.263 | 0.281 | 0.299 | 0.307 | 0.313 | 0.333
Y 1 0.859 | 0.795 | 0.753 | 0.745 | 0.743 | 0.743 | 0.743 | 0.743
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First of all, it is necessary to find potentially dangerous points of the section
from the viewpoint of combined action of the normal and shear stresses and write
the conditions of strength in these points taking into account the type of stress
state at the point (uniaxial or combined). It is evident that unique dangerous point
C exists in this type of loading, because it is simultaneously the point of
maximum normal and shear stresses (see figure (b)).

To simplify the solution we will solve the problem in two approaches. In

the first approach, we will neglect (N, ) in the point and find rough value of the

width b. In second approach, we will estimate the overstress of this point
produced by G(Nx), because 5% overstress is permissible in applied mechanics.

p.C The stress state in point C is biaxial
meax(sz because o,=N.[A+M_ |W_,
Gx(Nx)/( T =Tpe =M, [(@hb?). That is why we will
use the maximum shear stress theory of failure to

3 write the condition of strength:

N, M.\ (MY
Txz i

o, = £ =1 +4 | <o,- (a
eq { A VI/Z j (athJ all ( )
V) Taking into account that fact that
/ Oxtx /8 =hb2/ 6 in the first approach calculate the
G ymax (M) rough value of cross-sectional width ignoring

(c) o(N,), i.e. using the formula

b>i/\/9 M /a) )
O

3 \/9(3.2><103)2 +(7.0%10°/0.246)
- 160x10°

In second approach, calculate the overstress of the point C, produced by G(Nx)

and estimate it. For this, calculate actual value of equivalent stress in the point
substituting b value into (a) formula:

2 2
it N, 3M, M.
Geq = \/( 2b2 + b3 j + (ab3 j = (C)

2 2
2.0x10° 3x3.2x10° 7.0x10°
+ +

2(5.725x102) (5.725x102) | | 0.246(5.725x102)

=5.725%x10’m.
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2
:\/(0.305><106 +51.16x106)2 +(151.65><106) —160.14x10° Pa=160.14 MPa .

oy ~Our _160.14-160

O 160

The overstress Ao <5% . It is permissible and the value b =5.725 cm is final from
the viewpoint of the strength of point C. It 1s proposed as the cross-sectional

width: 5=5.725x107% m, h=11.45%x107 m.

Overstress Ao = =0.00088 =0.088%.

Example 6.5
The round solid rod of cross-section shown in the figure (a) is loaded by
two bending moments M, =7.5 kN'-m, M, =3.2 kN'm acting respectively in

vertical and horizontal planes of cross-sectional symmetry, and also by torque
moment M, =7.0 kKN-m. Assuming that allowable stress of beam material
o, =160 MPa, find cross-sectional diameter d taking into account that maximum
shear stress theory is used.

Solution To find dangerous points of cross-section taking into account its
polar symmetry first of all calculate resultant bending moment M ;. Its scalar

My =M+ M =\/(7.5><103)2 +(32x10°) =8.154x10° kN'm. (a)

The points of maximum normal stresses (equidangerous points 4 and A' in the
figure (a)) are really the points of M, moment plane and cross-section contour

value 1s

intersection (see figure (b)).

(b)
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In these equidangerous points o, Mz /W, , and 7., =M /W . It means

that the plane stress state is realized and the maximum shearing stress theory of
failure is necessary to use to create condition of strength:

2 2
O'elfII: [MBJ +4[Mx] <o,-
Wha w,

2 2 2
- M2+ M2+ M

Because Wp =2W

n.a-

o
eq 2

or

m

m o_
O-eq - W < O » (7)

n.a

where M][]:\/Mf+M§+M22:

:\/(7.0><103)2 +(7.5%10°) +(3.2x10°) =10.74710° kNm.

Taking into account that W, = zd> / 32 the resultant formula for d is

Vs 3
s 32M :i/32><10.747><1(l R R13x102 m
7O 3.14x160x10

Example 6.6
The round solid rod of cross-section shown in the figure (a) is loaded by
two bending moments M, =7.5 kN'm, M_ =3.2 kN'm acting respectively in

vertical and horizontal planes of cross-sectional symmetry, and also by torque
moment M =7.0 kN'm and normal force N, =2.0 kN. Assuming that allowable
stress of beam material o, =160 MPa, find cross-sectional diameter d taking

into account that maximum shear stress theory is used.

Solution To find critical points of cross-section taking into account its
polar symmetry first of all calculate resultant bending moment M ;. Its scalar

My = M2+ M =\/(7.5x103)2 +(32x10°)" =8.154x10° kN'm. (a)

Because of the N_ normal force, unique dangerous point 4 exists. It is one or two

value is

points of maximum bending normal stresses (points 4 and A4' in the figure (a)),
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which are really the points of M, moment plane and cross-section contour
intersection (see figure (b)).

(b)

In the point A4 plane stress state 1s realized because
04 =0Omax =Nyl A+Mp /W, , and 7,=7p, =M, /W,. That is why the

maximum shearing stress theory of failure is necessary to use to create condition

of strength:

N, M, (MY

i X B X

Oy = ( + ) +4[ J SOus Wo=2W,4. (a)
A4 W, w,

To simplify the solution we will solve the problem in two approaches. In
the first approach, we will neglect a(N ) in the point and find rough value of the

X

diameter d. In second approach, we will estimate the overstress of this point
produced by O'(Nx), because 5% overstress is permissible in applied mechanics.

It means that simplified condition of strength will be

2 2
Ou = (MB} +4{MXJ <O
Wn,a Wp

\/M2+M2+M2
i x ¥ z
or Op =

n.a

Vi
yis
or o, = Sou
qp.A (p.B) W

n.a

<O

where MIII:\/M§+M§+M22:
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:\/(7.0><103)2 +(7.5x103)2 +(3.2x103)2 ~10.747x10° kN-m.

Taking into account that W, = zd’ / 32 the resultant formula for d is

s 32m” _i/32><10.747><103
- 3.14x160x10°

In second approach, calculate the overstress of the point 4, produced by
o(N,) and estimate it. For this, calculate actual value of equivalent stress in the

X

=8.813x107% m.
O

point substituting d value into (a) formula:

2 2
oé” = £+ My +4 M, =
! 4 W, w

Yol
2
32 M2 + M? 2
wd wd wd
> (b)
2 2
(4x2.0x103) 32\/(7.5><103) +(3.2><103)
= >+ 3 +
3.14x(8.813x10—2) 3.14x(8.813x10—2)
3
y g LOTOAY 6 55 0ipa
3.14x(8.813x1072)

Oug — O 160.25-160

o 160

=0.00156=0.156%.

Overstress Ao =

The overstress Ao <5%. It is permissible and the value d =8.813 cm is
final from the viewpoint of the strength of point A. It is proposed as the cross-
sectional diameter.

Example 6.7
A closed-end cylinder, 0.61 m in diameter and 12.7 mm thick, is fabricated

of steel of tensile strength o, = 240 MPa . Calculate the allowable pressure the

shell can carry based upon a factor of safety f, =2. Apply the Tresca and von
Mises yielding theories of failure.
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Solution The circumferential, axial, and radial stresses are given by

o, =2 =24p, 0'2=%=12p, oy =0.

t
Insertion of these expressions into Eq. (6.5) will provide the critical pressures for
the maximum shearing stress theory:

24p,, —0:%(240><106),

Py =5.0 MPa.

Insertion of these expressions into Eq. (6.10) will provide the critical pressures for
the maximum energy of distortion theory:

P =571 MPa.
The permissible value of the internal pressure is thus limited to 5.0 MPa.

Example 6.8

A circular shaft of diameter d and tensile yield strength o, is subjected to
combined axial tensile force P and torque moment M. Determine the bending
moment M , that can also be applied simultaneously to the shaft. Use a factor of
safety f, and employ the maximum energy of distortion theory of failure.
Compute the value of M, for the following data: P=100kN, M, =5kN-'m,
d =60mm, o, =300MPa, and f, =1.2.

Solution In this example, the outer-fiber stresses in the shaft are
My P_32M, 4P _M; _16M;

WA zd  xd®’ w, xd’

n.a.

(a)

O =

Basing on the equation (6.10) we will take into account that the principal stresses
for members subjected to combined normal stress in tension and shear stress in
torsion are

2
O\, =%J_r (%) +77 . (b)

Using the maximum energy of distortion theory, and Cu1 =0, / f,, We obtain

o’ +3r% = (O'a” )2- (c)
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Introducing Eq. (a) into Eq. (¢), we derive the governing expression:

(32MB + 4P] +3(16M3TJ =(ou)" (d)

zd’® d? d

Upon simplification and rearrangement, the foregoing results in the quadratic
equation in M ,:

M," +(0.25Pd) M, +| 0.75M, +0.0156P*d” ~0.0096(o,, ) d° | 0.

The valid solution is therefore
1 | 1/2
MB:—Ecl+§[cf—4(cz+c3—c4)] 5 (e)
where ¢ =0.25Pd,c,=0.75M,*, ¢, =0.0156P?d*, and ¢, =0.0096(c,, ) d°.
When we substitute the numerical values, Eq. (e) leads to M, =2.29 kN-m.

Example 6.9

A solid shaft i1s fitted with 300-mm-diameter pulleys, supported by
frictionless bearings at 4 and B, and loaded as shown in figure (a). If
7, = 710MPa, calculate the required diameter of the shaft according to the

maximum shear stress theory.

Solution A complete free-body diagram of the shaft is shown in figure (b).
12
The determination of the largest value of (M 2+ M i +M? )/ is facilitated by use

of moments diagrams (figure (c)). At point C, we find

(M2 M2 02) " =(P 4552 +06%)  =5.62kN-m.

while at D and B points, we find 5.44 kN-m and 4.01 kN-m, respectively. Hence
the critical section is at C point.
Applying the equation in accordance with the maximum shear stress theory

(Gall = 2%11)

d:\/ AN IYERS VRS VEN
T

Substituting, we obtain

16(5.62x103)

=3 ;z(70><106)

=742 mm-
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I m

I m

2m

I m

= =
=
=
Z %
||||| n_ T
Z
Q
Q /
N
4 en
@)
Z \%
S AT R s il O
-~ Al/
~ /
N

M,,kKN-m

(c)

600
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Example 6.10

A circular cast-iron shaft (o,

=160 MPa and o, =520 MPa), rotating at

600 rpm and transmitting 40 kW is subjected to bending moment M ; =400 N-m.

Using a safety factor of 2, determine the required diameter of the shaft on the
basis of the maximum principal stress theory.

Solution Because the frequency f'= 600 rpm = 10 Hz, we calculate the
shaft torque moment:

_159kw 159(40)
10
The allowable stresses in tension and compression are 80 and 260 MPa, respec-
tively.

Since the principal stresses and the maximum shearing stress for members
subjected to combined normal stress in bending and shear stress in torsion are,
respectively,

M =636 N-m-

2
O\, :%i (%) +7°, (a)

2
=,/(§j +77, (b)

setting o, =0,/ f, , in accordance with the maximum principal stress theory of

failure, we have the following design formula:

d:\/ 16 (MB+\/M§+M§). (c)

O 4y

Introducing the data, we obtain

d= i/(L(400+\/4002 + 6362) —41.9%10m =41.9 mm
/4

80><106)

and

d:\/( 16 )(400+\/4002+6362)=28.3x10_3m:28.3mm-
T

260x10°

Hence the allowable diameter is 41.9 mm.
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ST

P PROBLEMS

Problem 6.1 The rectangular M,
beam in the figure is loaded by two
bending moments M y =10 kN'm,
acting in its vertical plane of symmetry

h N /

and also by torque moment y 7
M, =70 kKN'-m. Assuming the / Ny M,
allowable stress of beam material b
o, =160 MPa, find cross-sectional ’x/ 7
dimensions b and A, if b/h=2. Use z
maximum shear stress and maximum Problem 6.3 The rectangular

distortion energy theories of failure.

M

Ve

y

A y
b
?c/ vd
A
Problem 6.2 Estimate the

strength of rectangular beam loaded by
two bending moments M y =10 kN-m
and M_ =20 kN-m acting respectively

in vertical and horizontal planes of
cross-sectional symmetry, and also by
torque moment M, =15kNm and

normal force N, =20 kN. Assume, that
o, =160 MPa h=15 cm,
b =30 cm.

and

beam in the figure is loaded by the
bending moment M, =10kN'-m acting
in horizontal plane of cross-sectional
symmetry, and also by torque moment
M,=60kN'-m and normal force
N, =60kN. Assuming the allowable
stress of beam material o,; =120MPa,

find cross-sectional dimensions 4 and b
if b/h=2. Use maximum distortion

energy and maximum shear stress
theories of failure.
. M M,
Ny 4 M, / Y
/ b
X
Z

Problem 6.4 The round solid
rod in the figure is loaded by the
bending moment M, =10 kN'm acting
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in its horizontal plane of symmetry, and
also by torque moment M, =80 kN'm
and normal force N, =100 kN.
Assuming that allowable stress of beam
material o,; =160 MPa, find cross-
sectional diameter d taking into account
that maximum distortion energy theory
of failure is used.

Z M\
N

Problem 6.5 A d=50-mm-diameter
steel shaft (O'y =260 MPa,

7, =140 MPa) (see figure) subjected to

a load R and P=0Q =0. If the factor of
safety is f, =2, calculate the largest

permissible value of R in accordance
with (a) the maximum shear stress
theory and (b) the von Mises theory.

Problem 6.6 A d =50-mm-diameter
steel shaft

(o, =260 MPa, 7, =140MPa) (sec
figure) subjected to a load R and
P=30R, Q=0. If the factor of safety
fi=2, the
permissible value of R in accordance

with (a) the maximum shear stress
theory and (b) the von Mises theory.

is calculate largest

Problem 6.7 A thin-walled, closed-
ended metal tube (O-ult =250 MPa,

o, =380 MPa) having outer and inner

diameters of 20cm and 19 cm,
respectively, is subjected to an internal
pressure of 5 MPa and a torque moment
of 50 kN-m. Determine the factor of
safety f,, according to the maximum

principal stress theory.

Problem 6.8 A steel circular bar
(Gy =200 MPa) of 50-mm diameter 1is

acted upon by combined moments M
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and axial compressive loads P at its
ends. If M =2.0kN-m, calculate, on the
basis of the von Mises theory, the
maximum permissible value of P.

Problem 6.9 A 40-mm-wide, 80-mm-
deep, and 2.0-m-long cantilever beam
is subjected to a concentrated load of
P=5 kN at its free end. For
o, =240 MPa, what is the factor of
safety f.? Assume that failure occurs

in accordance with the maximum
energy of distortion theory.

Problem 6.10 Design a solid steel
shaft (Ty — 60 MHa) subjected to loads
of R=500N, O=300N, and P=0.

Apply the maximum shear stress theory
using a factor of safety f, =1.2.

Problem 6.11 A 6-m-long steel shaft
of allowable strength o, =120 MPa

carries a torque moment of 500 N-m
and its own weight. Use

p=17.86 Mg/m3 as the mass per unit

volume and assume that the shaft is
supported by frictionless bearings at its

ends. Calculate the required shaft
diameter in accordance with the von
Mises theory of failure.

Problem 6.12 A solid shaft AB is to transmit 20 kW at 180 rpm from the motor
and gear to pulley D, where 8 kW is taken off, and to pulley C where the
remaining 12 kW i1s taken off (see figure). Assume the ratios of the pulley
tensions to be F|/F, =3 and F;/F,=3.If 7, =50 MPa, determine the required

diameter of the shaft 4B according to the maximum shear stress theory of failure.

y A
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Problem 6.13 A solid shaft AB is to transmit 20 kW at 180 rpm from the motor
and gear to pulley D, where 8 kW is taken off, and to pulley C where the
remaining 12 kW is taken off. Assume the ratios of the pulley tensions to be
F/F,=3 and F,/F, =3.1f 7, =60 MPa, determine the required diameter of the

shaft AB according to the maximum shear stress theory of failure.

yl\

Problem 6.14 Design the steel shaft (Ty - 60 MPa) of the system shown in the

figure. Use the maximum shear stress theory of failure and a factor of safety
f,=14.

yﬂ
04m | 0.6 m

3 kN
1 kN

Problem 6.15 For the shaft of the system shown in the figure, determine the
diameter d, applying the maximum principal stress theory of failure. Use
o, =160 MPa.
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yL 0.5m T 1.2 m N 0.5m |
qfe = = & —
/ A T C D B
z
2 kN Y 6 kKN
6 kN 7 kKN

Problem 6.16 For the shaft of the system shown in the figure, determine the
diameter d, applying the maximum principal stress theory of failure. Use
o, =160 MPa.

Yi_ 05m | 1.2 m . 0.5m N
d ‘ 0.3m ‘ 03 m
S5IkN E
P S——rf &=
/ A T ¢ D B
z
5 kN

3 kN
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Appendix A Properties of Selected Engineering Materials
A.1 Density

Table A.1 Density Values for Various Engineering Materials (Room-
Temperature Conditions)

Density
Material 10° kg/m®
1 2
METALS AND METAL ALLOYS
Plain Carbon and Low Alloy Steels
Steel alloy A36 7.85
Steel alloy 1020 7.85
Steel alloy 1040 7.85
Steel alloy 4140 7.85
Steel alloy 4340 7.85
Stainless Steels
Stainless aloy 304 8.00
Stainless alloy 316 8.00
Stainless alloy 405 7.80
Stainless alloy 440A 7.80
Stainlessaloy 17-7PH 7.65
Cast Irons

Gray irons

* Grade G1800 7.30

* Grade G3000 7.30

* Grade G4000 7.30
Ductileirons

* Grade 60-40-18 7.10

* Grade 80-55-06 7.10

* Grade 120-90-02 7.10

Aluminum Alloys
Alloy 1100 2.71
Alloy 2024 277
Alloy 6061 2.70
Alloy 7075 2.80
Alloy 356.0 2.69
Copper Alloys
C11000 (electrolytic tough pitch) 8.89
C17200 (beryllium-copper) 8.25
C26000 (cartridge brass) 8.53
C36000 (free-cutting brass) 8.50
C71500 (copper-nickel, 30%) 8.94
C93200 (bearing bronze) 8.93
Magnesium Alloys
Alloy AZ31B 1.77
Alloy AZ91D 1.81
Titanium Alloys

Commercially pure (ASTM grade 1) 451
Alloy Ti-5Al-2.55n 4.48
Alloy Ti-6Al-4V 4.43
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Table A.1 (continued)

1 | 2
Precious Metals
Gold (commercially pure) 19.32
Platinum (commercially pure) 21.45
Silver (commercialy pure 10.49
Refractory Metals
Molybdenum (commercially pure) 10.22
Tantalum (commercially pure) 16.6
Tungsten (commercialy pure) 19.3
Miscellaneous Nonferrous Alloys
Nickel 200 8.89
Inconel 625 8.44
Monel 400 8.80
Haynes alloy 25 9.13
Invar 8.05
Super invar 8.10
Kovar 8.36
Chemical lead 11.34
Antimonial lead (6%) 10.88
Tin (commercialy pure) 7.17
Lead-Tin solder (60Sn-40Pb) 8.52
Zinc (commercialy pure) 7.14
Zirconium, reactor grade 702 6.51
GRAPHITE, CERAMICS, AND SEMICONDUCTING MATERIALS

Aluminum oxide

* 99.9% pure 3.98

* 96% 3.72

* 90% 3.60
Concrete 2.4
Diamond

* Natural 3.51

* Synthetic 3.20-3.52
Gallium arsenide 5.32
Glass, borosilicate (Pyrex) 2.23
Glass, soda-lime 2.5
Glass ceramic (Pyroceram) 2.60
Graphite

* Extruded 1.71

* | sostatically molded 1.78
Silica, fused 2.2
Silicon 2.33
Silicon carbide

* Hot pressed 3.3

* Sintered 3.2
Silicon nitride

 Hot pressed 3.3

* Reaction bonded 2.7

* Sintered 3.3
Zirconia, 3 mol% Y ,0s, sintered 6.0
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Table A.1 (finished)

1 2
POLYMERS

Elastomers

* Butadiene-acrylonitrile (nitrile) 0.98

« Styrene-butadiene (SBR) 0.94

* Silicone 1.1-1.6
Epoxy 1.11-1.40
Nylon 6,6 1.14
Phenolic 1.28
Polybutylene terephthalate (PBT) 1.34
Polycarbonate (PC) 1.20
Polyester (thermoset) 1.04-1.46
Polyetheretherketone (PEEK) 1.31
Polyethylene

* Low density (LDPE) 0.925

* High density (HDPE) 0.959

* Ultrahigh molecular weight (UHMWPE) 0.94
Polyethylene terephthal ate (PET) 1.35
Polymethyl methacrylate (PMMA) 1.19
Polypropylene (PP) 0.905
Polystyrene (PS) 1.05
Polytetrafluoroethylene (PTFE) 2.17
Polyvinyl chloride (PVC) 1.30-1.58

FIBER MATERIALS

Aramid (Kevlar 49) 1.44
Carbon (PAN precursor)

» Standard modulus 1.78

* Intermediate modulus 1.78

 High modulus 1.81
E Glass 2.58

COMPOSITE MATERIALS

Aramid fibers-epoxy matrix (V¢ = 0.60) 14
High modulus carbon fibers-epoxy matrix (V¢ = 0.60) 17
E glass fibers-epoxy matrix (V¢ = 0.60) 21
Wood

* Douglasfir (12% moisture) 0.46-0.50

* Red oak (12% moisture) 0.61-0.67
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A.2 Modulus of Elasticity

Table A.2 Modulus of Elasticity Values for Various Engineering Materials
(Room-Temperature Conditions)

Material

Modulus of Elasticity

GPa 10° psi

1

2 3

METALS AND METAL ALLOYS
Plain Carbon and Low Alloy Steels

Steel alloy A36 207 30
Steel alloy 1020 207 30
Steel alloy 1040 207 30
Steel alloy 4140 207 30
Steel alloy 4340 207 30
Stainless alloy 304 193 28
Stainless alloy 316 193 28
Stainless alloy 405 200 29
Stainless alloy 440A 200 29
Stainlessaloy 17-7PH 204 29.5
Cast Irons

Gray irons

* Grade G1800 66-97° 9.6-14°

* Grade G3000 90-113* 13.0-16.4°

* Grade G4000 110-138% 16-20%
Ductileirons

* Grade 60-40-18 169 24.5

* Grade 80-55-06 168 24.4

* Grade 120-90-02 164 23.8

Aluminum Alloys
Alloy 1100 69 10
Alloy 2024 724 10.5
Alloy 6061 69 10
Alloy 7075 71 10.3
Alloy 356.0 724 10.5
Copper Alloys

C11000 (electrolytic tough pitch) 115 16.7
C17200 (beryllium-copper) 128 18.6
C26000 (cartridge brass) 110 16
C36000 (free-cutting brass) 97 14
C71500 (copper-nickel, 30%) 150 21.8
C93200 (bearing bronze) 100 145
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Table A.2 (continued)
1 | 2 | 3
Magnesium Alloys
Alloy AZ31B 45 6.5
Alloy AZ91D 45 6.5
Titanium Alloys
Commercially pure (ASTM grade 1) 103 14.9
Alloy Ti-5Al-2.5Sn 110 16
Alloy Ti-6Al-4V 114 16.5
Precious Metals
Gold (commercially pure) 77 11.2
Platinum (commercialy pure) 171 24.8
Silver (commercially pure) 74 10.7
Refractory Metals
Molybdenum (commercialy pure) 320 46.4
Tantalum (commercially pure) 185 27
Tungsten (commercially pure) 400 58
Miscellaneous Nonferrous Alloys
Nickel 200 204 29.6
Inconel 625 207 30
Monel 400 180 26
Haynes aloy 25 236 34.2
Invar 141 20.5
Super invar 144 21
Kovar 207 30
Chemical lead 135 2
Tin (commercially pure) 44.3 6.4
Lead-Tin solder (60Sn-40Pb) 30 4.4
Zinc (commercialy pure) 104.5 15.2
Zirconium, reactor grade 702 99.3 144
GRAPHITE, CERAMICS, AND
SEMICONDUCTING MATERIALS

Aluminum oxide

* 99.9% pure 380 55

* 96% 303 44

* 90% 275 40
Concrete 25.4-36.6" 3.7-5.3
Diamond

* Natural 700-1200 102-174

* Synthetic 800-925 116-134
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Table A.2 (continued)

1 2 3
Gallium arsenide, single crysta 85 12.3

* In the (100) direction

* In the (110) direction 122 17.7

* In the (111) direction 142 20.6
Glass, borosilicate (Pyrex) 70 10.1
Glass, soda-lime 69 10
Glass ceramic (Pyroceram) 120 174
Graphite

* Extruded 11 1.6

* |sostatically molded 11.7 1.7
Silica, fused 73 10.6
Silicon, single crystal

* In the (100) direction 129 18.7

* In the (110) direction 168 24.4

* In the (111) direction 187 27.1
Silicon carbide

* Hot pressed 207-483 30-70

* Sintered 207-483 30-70
Silicon nitride

* Hot pressed 304 4.1

* Reaction bonded 304 44.1

* Sintered 304 4.1
Zirconia, 3 mol% Y ;03 205 30

POLYMERS
Elastomers 0.0034° 0.00049"

* Butadiene-acrylonitrile (nitrile)

« Styrene-butadiene (SBR) 0.002-0.010° | 0.0003-0.0015°
Epoxy 241 0.35
Nylon 6,6 1.59-3.79 0.230-0.550
Phenolic 2.76-4.83 0.40-0.70
Polybutylene terephthalate (PBT) 1.93-3.00 0.280-0.435
Polycarbonate (PC) 2.38 0.345
Polyester (thermoset) 2.06-4.41 0.30-0.64
Polyetheretherketone (PEEK) 1.10 0.16
Polyethylene

* Low density (LDPE) 0.172-0.282 0.025-0.041

« High density (HDPE) 1.08 0.157

« Ultrahigh molecular weight (UHMWPE) 0.69 0.100
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Table A.2 (finished)

1 2 3
Polyethylene terephthalate (PET) 2.16-4.14 0.40-0.60
Polymethyl methacrylate (PMMA) 2.24-3.24 0.325-0.470
Polypropylene (PP) 1.14-1.55 0.165-0.225
Polystyrene (PS) 2.28-3.28 0.330-0.475
Polytetrafluoroethylene (PTFE) 0.40-0.55 0.058-0.080
Polyvinyl chloride (PVC) 241-4.14 0.35-0.60
FIBER MATERIALS
Aramid (Kevlar 49) 131 19
Carbon (PAN precursor)
» Standard modulus 230 334
* Intermediate modulus 285 41.3
* High modulus 400 58
E Glass 725 10.5
COMPOSITE MATERIALS
Aramid fibers-epoxy matrix (V¢ = 0.60)
L ongitudinal 76 11
Transverse 55 0.8
High modulus carbon fibers-epoxy matrix (V¢ = 0.60)
L ongitudinal 220 32
Transverse 6.9 1.0
E glass fibers-epoxy matrix (V = 0.60)
L ongitudinal 45 6.5
Transverse 12 18
Wood
* Douglas fir (12% moisture)
Parallel to grain 10.8-13.6° 1.57-1.97°
Perpendicular to grain 0.54-0.68° 0.078-0.10°
* Red oak (12% moisture)
Parallel to grain 11.0-14.1° 1.60-2.04°
Perpendicular to grain 0.55-0.71° 0.08-0.10°

? Secant modulus taken at 25% of ultimate strength.

® Modulus taken at 100% elongation.
“ Measured in bending.
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A.3 Poisson's Ratio

Table A.3 Poisson's Ratio Values for Various Engineering Materials (Room-
Temperature Conditions)

. Poisson’s . Poisson's
Material Ratio Material Ratio
1 2 3 4
METALS AND METAL ALLOY Refractory Metals
Plain Carbon and Low Alloy Steels Molybdenum (commercially pure) 0.32
Steel alloy A36 0.30
Steel aloy 1020 0.30 |Tantalum (commercialy pure) 0.35
Steel alloy 1040 0.30
Steel aloy 4140 0.30 |Tungsten (commercially pure) 0.28
Steel alloy 4340 0.30
Stainless Steels Miscellaneous Nonferrous Alloys
Stainless alloy 304 0.30 |Nickel 200 0.31
Stainless alloy 316 0.30 |Inconel 625 0.31
Stainless alloy 405 0.30 |Monel 400 0.32
Stainless alloy 440A 0.30 |Chemical lead 0.44
Stainlessalloy 17-7PH 0.30 |Tin (commercialy pure) 0.33
Cast Irons Zinc (commercialy pure) 0.25
Gray irons Zirconium, reactor grade 702 0.35
* Grade G1800 0.26 GRAPHITE, CERAMICS, AND
* Grade G3000 0.26 SEMICONDUCTING MATERIALS
» Grade G4000 0.26  |Aluminum oxide
Ductileirons * 99.9% pure 0.22
* Grade 60-40-18 0.29 * 96% 0.21
* Grade 80-55-06 0.31 * 90% 0.22
* Grade 120-90-02 0.28 |Concrete 0.20
Aluminum Alloys Diamond
Alloy 1100 0.33 * Natural 0.10-0.30
Alloy 2024 0.33
Alloy 6061 0.33 * Synthetic 0.20
Alloy 7075 0.33 |Galium arsenide
Alloy 356.0 0.33 * (100) orientation 0.30
Copper Alloys Glass, borosilicate (Pyrex) 0.20
C11000 (electrolytic tough pitch) 0.33 |Glass, soda-lime 0.23
Glass ceramic (Pyroceram) 0.25
C17200 (beryllium-copper) 0.30 |Silica, fused 0.17




262 Chapter 7 Appendixes

Table A.3 (finished)

1 2 3 4
C26000 (cartridge brass) 0.35 |Silicon
C36000 (free-cutting brass) 0.34 * (100) orientation 0.28
C71500 (copper-nickel, 30%) 0.34 * (111) orientation 0.36
C93200 (bearing bronze) 0.34 |Silicon carbide
Magnesium Alloys * Hot pressed 0.17
Alloy AZ31B 0.35 * Sintered 0.16
Alloy AZ91D 0.35 |[Silicon nitride
Titanium Alloys * Hot pressed 0.30
Commercially pure (ASTM grade 0.34 * Reaction bonded 0.22
1) * Sintered 0.28
Alloy Ti-5Al-2.55n 0.34 |Zirconia, 3mol% Y03 0.31
Alloy Ti-6Al-4V 0.34 POLYMERS
Precious Metals Nylon 6,6 0.39
Gold (commercially pure) 0.42 Polycarbonate (PC) 0.36
Platinum (commercialy pure) 0.39 Polystyrene (PS) 0.33
Polytetrafluoroethylene (PTFE) 0.46
Silver (commercially pure) 0.37
COMPOSITE MATERIALS Polyvinyl chloride (PVC) 0.38
Aramid fibers-epoxy matrix 0.34 FIBER MATERIALS
(Vs =0.6) E Glass 0.22
High modulus carbon fibers-epoxy | 0.25  |E glass fibers-epoxy matrix 0.19
matrix (V¢ =0.6) (V¢ =0.6)

Table A.4 Elastic and Shear Moduli, and Poisson’s Ratio for Main Classes
of Materials (Room-Temperature Conditions)

. Modulus of Elasticity Shear Modulus | Poisson's

Material 5 T .
GPa 10" psi GPa | 10° psi Ratio

1 2 3 4 5 6

Metal Alloys

Tungsten 407 59 160 23.2 0.28
Steel 207 30 83 12.0 0.30
Nickel 207 30 76 110 0.31
Titanium 107 15.5 45 6.5 0.34
Copper 110 16 46 6.7 0.34
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Table A.4 (finished)

1 2 3 4 5 6
Brass 97 14 37 54 0.34
Aluminum 69 10 25 3.6 0.33
Magnesium 45 6.5 17 25 0.35
Ceramic Materials
Aluminum oxide (Al,O3) 393 57 — — 0.22
Silicon carbide (SIC) 345 50 — — 0.17
Silicon nitride (SisNy) 304 44 — — 0.30
Spinel (MgAIl;0y) 260 38 — — —
Magnesium oxide (MgO) 225 33 — — 0.18
Zirconia® 205 30 — — 0.31
Mullite (3A1,05-2SI0y) 145 21 — — 0.24
Glass-ceramic (Pyroceram) 120 17 — — 0.25
Fused silica (SIOy) 73 11 — — 0.17
Soda-lime glass 69 10 — — 0.23
Polymers
Phenol-formal dehyde 2.76-4.83 0.40-0.70 — — —
Polyvinyl chloride (PVC) 241-4.14 0.35-0.60 — — 0.38
Polyester (PET) 2.76-4.14 0.40-0.60 — — —
Polystyrene (PS) 2.28-3.28 0.33-0.48 — — 0.33
Polymethyl methacrylate 24-3.24 0.33-0.47 — — —
(PMMA)
Polycarbonate (PC) 2.38 0.35 — — 0.36
Nylon 6,6 1.58-3.80 0.23-0.55 — — 0.39
Polypropylene (PP) 1.14-1.55 0.17-0.23 — — —
Polyethylene — high density 1.08 0.16 — — —
(HDPE)
Polytetrafluoroethylene (PTFE) 0.40-0.55 | 0.058-0.080 — — 0.46
Polyethylene — low density 0.17-0.28 |0.025-0.041 — — —
(LDPE)

 Partially stabilized with 3 mol% Y ,0s.
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A.4 Strength and Ductility

Table A5 Yield Strength, Tensile Strength, and Ductility (Percent
Elongation) Values for Main Classes of Engineering Materials (Room-
Temperature Conditions)

Yield Strength Tensile Strength Percent

Material/ Condition (MPa [ksi]) (MPa [ksi]) Elongation

1 2 3 4

METALS AND METAL ALLOYS
Plain Carbon and Low Alloy Steels

Steel alloy A36

* Hot rolled 220-250 (32-36) 400-500 (58-72.5) 23
Steel aloy 1020

* Hot rolled 210 (30) (min) 380 (55) (min) 25 (min)

* Cold drawn 350 (51) (min) 420 (61) (min) 15 (min)

* Annealed (@ 870°C) 295 (42.8) 395 (57.3) 36.5

* Normalized (@ 925°C) 345 (50.3) 440 (64) 385
Steel aloy 1040

* Hot rolled 290 (42) (min) 520 (76) (min) 18 (min)

* Cold drawn 490 (71) (min) 590 (85) (min) 12 (min)

* Annealed (@ 785°C) 355 (51.3) 520 (75.3) 30.2

* Normalized (@ 900°C) 375 (54.3) 590 (85) 28.0
Steel alloy 4140

* Annealed (@ 815°C) 417 (60.5) 655 (95) 25.7

« Normalized (@ 870°C) 655 (95) 1020 (148) 17.7

* Oil-quenched and tempered (@ 1570 (228) 1720 (250) 115
315°C)
Steel alloy 4340

* Annealed (@ 810°C) 472 (68.5) 745 (108) 22

* Normalized (@ 870°C) 862 (125) 1280 (185.5) 12.2

* Qil-quenched and tempered (@ 1620 (235) 1760 (255) 12
315°C)

Stainless Steels

Stainless alloy 304

* Hot finished and annealed 205 (30) (min) 515 (75) (min) 40 (min)

* Cold worked (1/4 hard) 515 (75) (min) 860 (125) (min) 10 (min)
Stainless alloy 316

* Hot finished and annealed 205 (30) (min) 515 (75) (min) 40 (min)

* Cold drawn and annealed 310 (45) (min) 620 (90) (min) 30 (min)
Stainless alloy 405

* Annedled 170 (25) 415 (60) 20
Stainless alloy 440A

* Annedled 415 (60) 725 (105) 20

* Tempered @ 315°C 1650 (240) 1790 (260) 5
Stainless alloy 17-7PH 1210 (175) (min) 1380 (200) (min) 1 (min)

* Coldrolled

« Precipitation hardened @ 510°C | 1310 (190) (min) | 1450 (210) (min) | 3.5 (min)
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Table A.5 (continued)

1 2 | 3 | 4
Cast Irons

Gray irons

* Grade G1800 (as cast) — 124 (18) (min) —

* Grade G3000 (as cast) — 207 (30) (min) —

* Grade G4000 (as cast) — 276 (40) (min) —
Ductileirons

* Grade 60-40-18 (anneal ed) 276 (40) (min) 414 (60) (min) 18 (min)

* Grade 80-55-06 (as cast) 379 (55) (min) 552 (80) (min) 6 (min)

* Grade 120-90-02 (oil quenched 621 (90) (min) 827 (120) (min) 2 (min)
and tempered)

Aluminum Alloys

Alloy 1100

* Annealed (O temper) 34(5) 90 (13) 40

« Strain hardened (H14 temper) 117 (17) 124 (18) 15
Alloy 2024 75 (11) 185 (27) 20

* Annealed (O temper)

* Heat treated and aged (T3 345 (50) 485 (70) 18
temper)

* Heat treated and aged (T351 325 (47) 470 (68) 20
temper)
Alloy 6061

* Annealed (O temper) 55(8) 124 (18) 30

* Heat treated and aged (T6 and 276 (40) 310 (45) 17
T651 tempers)
Alloy 7075

* Annealed (O temper) 103 (15) 228 (33) 17

* Heat treated and aged (T6 505 (73) 572 (83) 11
temper)
Alloy 356.0

» Ascast 124 (18) 164 (24) 6

* Heat treated and aged (T6 164 (24) 228 (33) 35
temper)

Copper Alloys

C11000 (electralytic tough pitch)

* Hot rolled 69 (10) 220 (32) 50

* Cold worked (HO4 temper) 310 (45) 345 (50) 12
C17200 (beryllium-copper)

* Solution hesat treated 195-380 (28-55) 415-540 (60-78) 35-60

* Solution heat treated, aged @ 965-1205 (140-175) | 1140-1310 (165-190) 4-10
330°C
C26000 (cartridge brass)

* Annealed 75-150 (11-22) 300-365 (43.5-53.0) 54-68

* Cold worked (HO4 temper) 435 (63) 525 (76) 8
C36000 (free-cutting brass)

* Annealed 125 (18) 340 (49) 53

« Cold worked (HO2 temper) 310 (45) 400 (58) 25

C71500 (copper-nickel, 30%)
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Table A.5 (continued)

1 2 3 4

* Hot rolled 140 (20) 380 (55) 45

* Cold worked (H80 temper) 545 (79) 580 (84) 3
C93200 (bearing bronze) 125 (18) 240 (35) 20

» Sand cast

Magnesium Alloys

Alloy AZ31B

* Rolled 220 (32) 290 (42) 15

* Extruded 200 (29) 262 (38) 15
Alloy AZ91D

» Ascast 97-150 (14-22) 165-230 (24-33) 3

Titanium Alloys

Commercially pure (ASTM grade 1)

* Annealed 170 (25) (min) 240 (35) (min) 30
Alloy Ti-5Al-2.55n

* Annealed 760 (110) (min) 790 (115) (min) 16
Alloy Ti-6Al-4V

* Annealed 830 (120) (min) 900 (130) (min) 14

« Solution heat treated and aged 1103 (160) 1172 (170) 10

Precious Metals

Gold (commercially pure)

e Annealed nil 130 (19) 45

* Cold worked (60% reduction) 205 (30) 220 (32) 4
Platinum (commercially pure)

* Annedled <13.8(2) 125-165 (18-24) 30-40

* Cold worked (50%) — 205-240 (30-35) 1-3
Silver (commercially pure)

* Annedled — 170 (24.6) 44

» Cold worked (50%) — 296 (43) 35

Refractory Metals
Molybdenum (commercially pure) 500 (72.5) 630 (91) 25
Tantalum (commercially pure) 165 (24) 205 (30) 40
Tungsten (commercially pure) 760 (110) 960 (139) 2
Miscellaneous Nonferrous Alloys

Nickel 200 (annealed) 148 (21.5) 462 (67) 47
Inconel 625 (annealed) 517 (75) 930 (135) 42,5
Monel 400 (annealed) 240 (35) 550 (80) 40
Haynes alloy 25 445 (65) 970 (141) 62
Invar (anneal ed) 276 (40) 517 (75) 30
Super invar (annealed) 276 (40) 483 (70) 30
Kovar (anneal ed) 276 (40) 517 (75) 30
Chemical lead 6-8 (0.9-1.2) 16-19 (2.3-2.7) 30-60
Antimonial lead (6%) (chill cast) — 47.2 (6.8) 24
Tin (commercialy pure) 11 (1.6) — 57
Lead-Tin solder (60Sn-40Pb) — 52.5(7.6) 30-60
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Table A.5 (continued)

1 2 3 4
Zinc (commercialy pure)

* Hot rolled (anisotropic) — 134-159 (19.4-23.0) 50-65

* Cold rolled (anisotropic) — 145-186 (21-27) 40-50
Zirconium, reactor grade 702

» Cold worked and annealed 207 (30) (min) 379 (55) (min) 16 (min)

GRAPHITE, CERAMICS, AND SEMICONDUCTING MATERIALS®
Aluminum oxide

* 99.9% pure — 282-551 (41-80) —

* 96% — 358 (52) —

* 90% — 337 (49) —
Concrete’ — 37.3-41.3 (5.4-6.0) —
Diamond

* Natural — 1050 (152) —

* Synthetic — 800-1400 (116-203) —
Gallium arsenide

« {100} orientation, polished — 66 (9.6)° —
surface

« {100} orientation, as-cut surface — 57 (8.9)° —
Glass, borosilicate (Pyrex) — 69 (10) —
Glass, soda-lime — 69 (10) —
Glass ceramic (Pyroceram) — 123-370 (18-54) —
Graphite

* Extruded (with the grain — 13.8-34.5 (2.0-5.0) —
direction)

* | sostatically molded — 31-69 (4.5-10) —
Silica, fused — 104 (15) —
Silicon

{100} orientation, as-cut surface — 130 (18.9) —

{100} orientation, laser scribed — 81.8 (11.9) —
Silicon carbide

* Hot pressed — 230-825 (33-120) —

* Sintered — 96-520 (14-75) —
Silicon nitride

* Hot pressed — 700-1000 (100-150) —

* Reaction bonded — 250-345 (36-50) —

* Sintered — 414-650 (60-94) —
Zirconia, 3 mol% Y 203 (sintered) — 800-1500 (116-218) —

POLYMERS
Elastomers

* Butadiene-acrylonitrile (nitrile) — 6.9-24.1 (1.0-3.5) 400-600

* Styrene-butadiene (SBR) — 12.4-20.7 (1.8-3.0) 450-500

* Silicone — 10.3(1.5) 100-800
Epoxy — 27.6-90.0 (4.0-13) 3-6
Nylon 6,6

* Dry, asmolded 55.1-82.8 (8-12) 94.5 (13.7) 15-80

* 50% relative humidity 44.8-58.6 (6.5-8.5) 75.9 (12) 150-300
Phenolic — 34.5-62.1 (5.0-9.0) 1.5-2.0
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Table A.5 (finished)
1 2 3 4
Polybutylene terephthalate (PBT) 56.6-60.0 (8.2-8.7) | 56.6-60.0 (8.2-8.7) 50-300
Polycarbonate (PC) 62.1 (9) 62.8-72.4 (9.1-10.5) 110-150
Polyester (thermoset) — 41.4-89.7 (6.0-13.0) <2.6
Polyetheretherketone (PEEK) 91 (13.2) 70.3-103 (10.2-15.0) 30-150
Polyethylene
« Low density (LDPE) 9.0-145(1.3-21) | 8.3-31.4(1.2-455) | 100-650
* High density (HDPE) 26.2-33.1(3.8-4.8) | 22.1-31.0(3.2-4.5) 10-1200
« Ultrahigh molecular weight 21.4-27.6 (3.1-4.0) | 38.6-48.3 (5.6-7.0) 350-525
(UHMWPE)
Polyethylene terephthal ate (PET) 59.3(8.6) 48.3-72.4 (7.0-10.5) 30-300
Polymethyl methacrylate (PMMA) |53.8-73.1(7.8-10.6) | 48.3-72.4 (7.0-10.5) 2.0-55
Polypropylene (PP) 31.0-37.2(4.5-5.4) | 31.0-41.4(4.5-6.0) 100-600
Polystyrene (PS) — 35.9-51.7 (5.2-7.5) 1.2-25
Polytetrafluoroethylene (PTFE) — 20.7-34.5 (3.0-5.0) 200-400
Polyvinyl chloride (PVC) 40.7-44.8 (5.9-6.5) | 40.7-51.7 (5.9-7.5) 40-80
FIBER MATERIALS
Aramid (Kevlar 49) — 3600-4100 (525-600) 2.8
Carbon (PAN precursor)
« Standard modulus (longitudinal) — 3800-4200 (550-610) 2
* Intermediate modulus — 4650-6350 (675-920) 1.8
(longitudinal)
 High modulus (longitudinal) — 2500-4500 (360-650) 0.6
E Glass — 3450 (500) 4.3
COMPOSITE MATERIALS
Aramid fibers-epoxy matrix
(aligned, V¢ =0.6)
* Longitudinal direction — 1380 (200) 1.8
* Transverse direction — 30 (4.3) 0.5
High modulus carbon fibers-epoxy
matrix (aligned, V¢ =0.6)
« Longitudinal direction — 760 (110) 0.3
* Transverse direction — 28(4) 04
E glass fibers-epoxy matrix
(digned, V¢ =0.6)
« Longitudinal direction — 1020 (150) 2.3
* Transverse direction — 40 (5.8) 0.4
Wood
* Douglas fir (12% moisture) —
Parallel to grain — 108 (15.6) —
Perpendicular to grain — 2.4 (0.35) —
* Red oak (12% moisture)
Parallel to grain — 112 (16.3) _
Perpendicular to grain — 7.2 (1.05) —

& The strength of graphite, ceramics, and semiconducting materialsis taken as flexural strength.
® The strength of concrete is measured in compression.
¢ Flexural strength value at 50% fracture probability.
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Table A.6 Mechanical Properties (in Tension) for Main Classes of Materials
(Room-Temperature Conditions)

Yield Strength Tensile Strength Ductility,
Material : . %EL [in
MPa ksi MPa ksi 50mm
(2in)]?
1 2 3 4 5 6
Metal Alloys”
Molybdenum 565 82 655 95 35
Titanium 450 65 520 75 25
Steel (1020) 180 26 380 55 25
Nickel 138 20 480 70 40
Iron 130 19 262 38 45
Brass (70 Cu-30 Zn) 75 11 300 44 68
Copper 69 10 200 29 45
Aluminum 35 5 90 13 40
Ceramic Materials
Zirconia (ZrO,)® — — 800-1500 | 115-215 —
Silicon nitride (SizNa) — — 250-1000 35-145 —
Aluminum oxide (Al,0s) — — 275-700 40-100 —
Silicon carbide (SIC) — — 100-820 15-120 —
Glass-ceramic (Pyroceram) — — 247 36 —
Mullite (3A|203—28| Oz) — — 185 27 —
Spinel (MgAI;0y) — 110-245 16-36 —
Fused silica (SIO,) — 110 16 —
Magnesium oxide (MgO)°® — — 105 15 —
Soda-lime glass — — 69 10 —
Polymers
Nylon 6,6 44.8-82.8 | 6.5-12 | 75.9-945 | 11.0-13.7 | 15-300
Polycarbonate (PC) 62.1 9.0 62.8-72.4 | 9.1-105 | 110-150
Polyester (PET) 59.3 8.6 48.3-72.4 | 7.0-105 30-300
Polymethyl methacrylate 53.8-73.1 | 7.8-10.6 | 48.3-724 | 7.0-105 2.0-55
(PMMA)
Polyvinyl chloride (PVC) 40.7-44.8 | 5.9-6.5 | 40.7-51.7 59-7.5 40-80
Phenol-formal dehyde — — 34.5-62.1 5.0-9.0 1.5-2.0
Polystyrene (PS) — — 35.9-51.7 52-75 1.2-25
Polypropylene (PP) 31.0-37.2 | 4554 | 31.0-414 4.5-6.0 100-600
Polyethylene — high density 26.2-33.1 | 3848 | 22.1-31.0 3.2-45 10-1200
(HDPE)
Polytetrafluoroethylene (PTFE) — — 20.7-34.5 3.0-5.0 200-400
Polyethylene — low density 9.0-145 1.3-2.1 8.3-31.4 1.2-455 | 100-650
(LDPE)

& For polymers, percent elongation at break.

® Property values are for metal alloysin an annealed state.
“The tensile strength of ceramic materiasistaken as flexura strength.

9 Partially stabilized with 3 mol% Y ,0s.
© Sintered and containing approximately 5% porosity.
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A.6 Linear Coefficient of Thermal Expansion

Table A.7 Linear Coefficient of Thermal Expansion Values for Various
Engineering Materials (Room-Temperature Conditions)

Coefficient of Thermal
Material Expansion
107%™t |1078cH?
1 2 3
METALS AND METAL ALLOYS
Plain Carbon and Low Alloy Steels
Steel alloy A36 11.7 6.5
Steel alloy 102 11.7 6.5
Steel alloy 1040 11.3 6.3
Steel alloy 4140 12.3 6.8
Steel alloy 4340 12.3 6.8
Stainless Steels
Stainless alloy 304 17.2 9.6
Stainless alloy 316 15.9 8.8
Stainless alloy 405 10.8 6.0
Stainless alloy 440A 10.2 5.7
Stainless alloy 17-7PH 11.0 6.1
Cast Irons

Gray irons

» Grade G1800 114 6.3

* Grade G3000 114 6.3

» Grade G4000 114 6.3
Ductileirons

* Grade 60-40-18 11.2 6.2

* Grade 80-55-06 10.6 5.9

Aluminum Alloys
Alloy 1100 23.6 131
Alloy 2024 22.9 12.7
Alloy 6061 23.6 131
Alloy 7075 23.4 13.0
Alloy 356.0 21.5 11.9
Copper Alloys

C11000 (electrolytic tough pitch) 17.0 9.4
C17200 (beryllium-copper) 16.7 9.3
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Table A.7 (continued)

1 2 3
C26000 (cartridge brass) 19.9 111
C36000 (free-cutting brass) 20.5 114
C71500 (copper-nickel, 30%) 16.2 9.0
C93200 (bearing bronze) 18.0 10.0
Magnesium Alloys
Alloy AZ31B 26.0 144
Alloy AZ91D 26.0 144
Titanium Alloys
Commercially pure (ASTM grade 1) 8.6 4.8
Alloy Ti-5Al-2.55n 94 52
Alloy Ti-6Al-4V 8.6 4.8
Precious Metals
Gold (commerically pure) 14.2 7.9
Platinum (commercially pure) 9.1 51
Silver (commercialy pure) 19.7 109
Refractory Metals
Molybdenum (commercialy pure) 4.9 2.7
Tantalum (commercially pure) 6.5 3.6
Tungsten (commercially pure) 45 25
Miscellaneous Nonferrous Alloys
Nickel 200 133 7.4
Inconel 625 12.8 7.1
Monel 400 139 7.7
Haynes alloy 25 Invar 12316 6.80.9
Super invar 0.72 0.40
Kovar 5.1 2.8
Chemical lead 29.3 16.3
Antimonial lead (6%) 27.2 151
Tin (commercialy pure) 23.8 13.2
Lead-Tin solder (60Sn-40Pb) 24.0 133
Zinc (commercially pure) 23.0-32.5 12.7-18.1
Zirconium, reactor grade 702 5.9 3.3
GRAPHITE, CERAMICS, AND SEMICONDUCTING MATERIALS

Aluminum oxide

* 99.9% pure 14 4.1

* 96% 7.4 4.1

* 90% 7.0 39
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Table A.7 (continued)
1 2 3

Concrete 10.0-13.6 5.6-7.6
Diamond (natural) 0.11-1.23 0.06-0.68
Gallium arsenide 59 3.3
Glass, borosilicate (Pyrex) 33 1.8
Glass, soda-lime 9.0 50
Glass ceramic (Pyroceram) 6.5 3.6
Graphite

* Extruded 2.0-2.7 1.1-15

* | sostatically molded 2.2-6.0 1.2-3.3
Silica, fused 0.4 0.22
Silicon 25 14
Silicon carbide

* Hot pressed 4.6 2.6

* Sintered 4.1 2.3
Silicon nitride

* Hot pressed 2.7 15

* Reaction bonded 31 1.7

* Sintered 31 1.7
Zirconia, 3mol% Y ;03 9.6 5.3

POLYMERS

Elastomers

* Butadiene-acrylonitrile (nitrile) 235 130

* Styrene-butadiene (SBR) 220 125

* Silicone 270 150
Epoxy 81-117 45-65
Nylon 6,6 144 80
Phenolic 122 68
Polybutylene terephthalate (PBT) 108-171 60-95
Polycarbonate (PC) 122 68
Polyester (thermoset) 100-180 55-100
Polyetheretherketone (PEEK) 72-85 40-47
Polyethylene

* Low density (LDPE) 180-400 100-220

* High density (HDPE) 106-198 59-110

« Ultrahigh molecular weight (UHMWPE) 234-360 130-200
Polyethylene terephthalate (PET) 117 65
Polymethyl methacrylate (PMMA) 90-162 50-90
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Table A.7 (finished)

1 2 3
Polypropylene (PP) 146-180 81-100
Polystyrene (PS) 90-150 50-83
Polytetrafluoroethylene (PTFE) 126-216 70-120
Polyvinyl chloride (PVC) 90-180 50-100
FIBER MATERIALS
Aramid (Kevlar 49)
* Longitudinal direction -2.0 -1.1
* Transverse direction 60 33
Carbon (PAN precursor)
» Standard modulus
Longitudinal direction -0.6 -0.3
Transverse direction 10.0 5.6
* Intermediate modulus
Longitudinal direction -0.6 -0.3
» High modulus
Longitudinal direction -0.5 -0.28
Transverse direction 7.0 3.9
E Glass 5.0 2.8
* Longitudinal direction -4.0 -2.2
* Transverse direction 70 40
High modulus carbon fibers-epoxy matrix (V¢ =0.6)
* Longitudinal direction -0.5 -0.3
* Transverse direction 32 18
E glass fibers-epoxy matrix (V§ = 0.6)
* Longitudinal direction 6.6 3.7
* Transverse direction 30 16.7
Wood
* Douglas fir (12% moisture)
Parallel to grain 3.85.1 2.2-2.8
Perpendicular to grain 25.4-33.8 14.1-18.8
* Red oak (12% moisture)
Parallel to grain 4.6-5.9 2.6-3.3
Perpendicular to grain 30.6-39.1 17.0-21.7
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Appendix B Properties of Structural-Steel Shapes

Table B.1 Properties of Rolled-Steel (W) Shapes, Wide-Flange '
Sections (U.S. Customary Units) ——
Source: The American Institute of Steel Construction (AISC).
Note: Axes X-X and Y-y are principal centroidal axes.
*A wide-flange shape is designated by the letter W followed by the -~ -
nominal depth in inches and the weight in pounds per foot.
**Value of W s sectional modulus of area.
——
Web Flange Axis X-X Axis Y-
Designation Area | Depth thickness| Width Tlflgickness | W i | Wy . [
in.? in. in. in. in. in' |in’|in. [in*|in’]| in.
1 3 4 5 6 7 8 9 |10 | 11 | 12 13
W 30 x 211 | 62.0 |30.94| 0.775 [15.105| 1.315 |10300|663[12.9| 757 | 100 | 3.49
W 30 x 132 | 38.930.31| 0.615 [10.545| 1.000 | 5770 |380(12.2| 196 |37.2| 2.25
W 24 x 162 | 47.7 |25.00| 0.705 (12.955| 1.220 | 5170 |414|10.4| 443 |68.4| 3.05
W 24 x 104 | 30.6 [ 24.06 | 0.500 (12.750( 0.750 | 3100 |258|10.1| 259 2.91
W24 x94 |27.7|24.31| 0.515 | 9.065 | 0.875 | 2700 |222|9.87| 109 [24.0| 1.98
W24 x84 |24.71|24.10| 0.470 [ 9.020 | 0.770 | 2370 [196(9.79|94.4 1.95
W 18 x 119 | 35.1 |18.97 | 0.655 [11.265| 1.060 | 2190 |231|7.90| 253 {44.9| 2.69
W 18 x 106 | 31.1 [18.73 | 0.590 (11.200( 0.940 | 1910 |204 |7.84| 220 2.66
W18 x71 |20.8|18.47| 0.495 |7.635| 0.810 | 1170 |127|7.50|60.3({15.8| 1.70
W18 x50 |14.7 [17.99| 0.355 | 7.495 | 0.570 | 800 |88.9|7.38|40.1 1.65
W18 x35 |10.3|17.70| 0.300 | 6.000 | 0.425 | 510 |57.6(7.04|15.3 1.22
W 16 x 100 | 29.4 | 16.97 | 0.585 [10.425| 0.985 | 1490 (175|7.10| 186 (35.7| 2.51
W16 x 77 |22.6|16.52| 0.455 (10.295| 0.760 | 1110 |134|7.00| 138 [26.9| 2.47
W16 x57 |16.8 16.43| 0430 | 7.120 | 0.715 | 758 |92.2|6.72|43.1|12.1| 1.60
W16 x40 |11.8[16.01| 0.305 | 6.995| 0.505 | 518 |64.7(6.63|28.9 1.57
W16 x 31 |9.12|15.88| 0.275 | 5.525 | 0.440 | 375 |47.2|6.41|12.4|4.49| 1.17
W 14 x 145 | 42.7 | 14.78 | 0.680 (15.500( 1.090 | 1710 |232|6.33| 677 3.98
W 14 x 120 | 35.3 |14.48| 0.590 (14.670| 0.940 | 1380 |190|6.24| 495 [67.5| 3.74
W14 x82 |24.1|14.31| 0.510 (10.130| 0.855 | 882 |123|6.05| 148 |29.3| 2.48
W14 x53 |15.613.92| 0.370 | 8.060 | 0.660 | 541 |77.8|5.89|57.7|14.3| 1.92
W14 x26 |7.6913.91| 0.255 | 5.025 | 0.420 | 245 |35.3|5.65|8.91|3.54| 1.08
W12 x 87 |25.6|12.53| 0.515 (12.125| 0.810 | 740 |118|5.38| 241 (39.7| 3.07
W12 x72 |21.1[12.25| 0.430 (12.040| 0.670 | 597 |97.4|5.31| 195 3.04
W12 x50 |14.7 |12.19| 0.370 | 8.080 | 0.640 | 394 |64.7|5.18|56.3|13.9| 1.96
W12 x35 |10.3[12.50( 0.300 | 6.560 | 0.520 | 285 |45.6|5.25|24.5|7.47| 1.54
W12 x14 |4.16|11.91| 0.200 | 3.970 | 0.225 | 88.6 |14.9|4.62|2.36(1.19(0.753
W10 x60 |17.6[10.22| 0.420 (10.080| 0.680 | 341 |66.7(4.39| 116 |23.0| 2.57
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Table B.1 (finished)

1 3 4 5 6 7 8 9 [ 10 ] 11 | 12 13
W10 x 54 |15.8(10.09( 0.370 (10.030( 0.615 | 303 |60.0{4.37| 103 2.56
W10 x45 |13.3]10.10| 0.350 | 8.020 | 0.620 | 248 |49.1|4.32|53.4|13.3| 2.01
W10x33 [9.71|9.73 | 0.290 | 7.960 | 0.435 | 170 |35.0{4.19|36.6 1.94
W10 x30 |8.84(10.47| 0.300 | 5.810 | 0.510 | 170 |32.4/4.38|16.7|5.75| 1.37
W10x12 |3.54| 9.87 | 0.190 | 3.960 | 0.210 | 53.8 |10.9/3.90|2.18|1.10{0.785
W 8 x 48 14.1 | 850 | 0.400 | 8.110 | 0.685 | 184 |43.3|3.61(60.9 2.08
W 8 x 40 11.7 | 8.25 | 0.360 | 8.070 | 0.560 | 146 |35.5|3.53(49.1 2.04
W 8 x 35 10.3 | 8.12 | 0.310 | 8.020 | 0.495 | 127 |31.2|3.51|42.6|10.6| 2.03
W 8 x 28 8.25| 8.06 | 0.285 | 6.535 | 0.465 | 98.0 |24.3({3.45|21.7|6.63| 1.62
W 8 x 21 6.16 | 8.28 | 0.250 | 5.270 | 0.400 | 75.3 |18.2({3.49|9.77|3.71| 1.26
W8 x 15 444 | 811 | 0.245 | 4.015| 0.315 | 48.0 |11.8|3.29|3.41(1.70(0.876
W6 x 25 7.34| 6.38 | 0.320 | 6.080 | 0.455 | 53.4 |16.7(2.70{17.1 1.52
W6 x 20 588 | 6.20 | 0.260 | 6.020 | 0.365 | 41.4 |13.4|2.66|13.3 1.50
W6 x 16 474 | 6.28 | 0.260 | 4.030 | 0.405 | 32.1 [10.2|2.60(4.43 0.967
W6 x12 3.55| 6.03 | 0.230 | 4.000 | 0.280 | 22.1 |7.31|2.49|2.99 0.918

VA
—

Table B.2 Properties of Rolled-Steel (W) Shapes, Wide-Flange
Sections (S1 Units)
Note: Axes X-X and Y-y are principal centroidal axes. ¢ *
*A wide-flange shape is designated by the letter W followed by the
nominal depth in millimeters and the mass in kilogram per meter. — ™/
**Value of W s sectional modulus of area.
Designation* [Area, |Depth, Flange Web AXis X-X AXis Y-

10°  |mm  [Width [Thickness,|Thickness,|I, 10° [ i, [W, 10°[I, 10°] i,

1'1'111'12 mm mm mm mm4 mm Il’lIl’l3 mm4 mm

1 2 3 4 5 6 7 8 9 10 11
W 610 x 155| 19.7 | 611 | 324 19.0 12.7 |1290| 256 (4220|108 | 73.9
W 610 x 125| 15.9 | 612 | 229 19.6 11.9 985 | 249 |3220|39.3| 49.7
W 460 x 158| 20.1 | 476 | 284 23.9 15.0 795 | 199 |13340(91.6| 67.6
W 460 x 74 | 9.48 | 457 | 190 14.5 9.0 333 | 188 | 1457 |16.7| 41.9
W 460 x 52 | 6.65 | 450 | 152 10.8 7.6 212 1179 |1 942 | 64 | 31.0
W 410 x 114| 14.6 | 420 | 261 19.3 11.6 462 | 178 {2200 57.4| 62.7
W 410x 85 | 10.8 | 417 | 181 18.2 10.9 316 | 171 |1516(17.9| 40.6
W 410 x60 | 7.61 | 407 | 178 12.8 7.7 216 | 168 [1061| 12 | 39.9
W 360 x 216| 27.5 | 375 | 394 27.7 17.3 712 | 161 |3800| 282 | 101.1
W 360 x 122| 15.5 | 363 | 257 21.7 13.0 367 | 154 |2020(61.6| 63.0
W 360 x 79 | 10.1 | 354 | 205 16.8 9.4 225 | 150 (1271(24.0 | 48.8
W 310 x 107| 13.6 | 311 | 306 17.0 10.9 248 | 135 (1595|81.2| 77.2
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Table B.2 (finished)

1 2 3 4 5 6 7 8 9 10 11
W 310 x 74 [9.48| 310 | 205 16.3 94 164 | 132 (1058 |23.4| 49.8
W 310 x 52 |6.65| 317 | 167 13.2 7.6 119 | 133 | 748 [10.2| 39.1
W 250 x 80 [10.2| 256 | 255 15.6 94 126 | 111 | 985 [42.8 | 1011
W 250 x 67 |8.58| 257 | 204 15.7 8.9 103 | 110 | 803 [22.2| 63.0
W 250 x 49 [6.26| 247 | 202 11.0 7.4 70.8 | 106 | 573 [15.2| 48.8
W200x71 |9.11| 216 | 206 17.4 10.2 76.6 |91.7| 709 [25.3| 52.8
W 250 %59 [7.55| 210 | 205 14.2 9.1 60.8 [89.7| 579 [20.4| 51.8
W 250 x 52 [6.65| 206 | 204 12.6 7.9 52.9(89.2| 514 (17.7| 51.6
W 150 x 37 |4.74| 162 | 154 11.6 8.1 222 69 | 274 | 712 | 38.6
W 150 x 30 [3.79| 157 | 153 9.3 6.6 17.2|67.6| 219 |5.54| 38.1
W 150 x 24 [3.06| 160 | 102 10.3 6.6 134 | 66 | 167 |1.84| 246
W 150 x 18 [2.29| 153 | 102 7.1 5.8 9.2 163.2| 120 ({1.25| 23.3
Y
| ﬁ (S; h - hgight of a beam,
Table B.3 Properties R b — width of a flange,
f Rolled-Steel Shapes s S — thickness of a web,
0 . p —> t — average thickness of a flange,
(I-beam sections), & C > X | —axial moment of inertia,
USSR Standard W — sectional modulus,
(GOST 8239-72) t | —radius of gyration,
Y SI — first moment of a half-
- b ' _ section.
Desig Dimensions, mm . Mass
. . | Wl
nation H o Areza, I x; Wx3= Ixs st, y; y3’ ly, | per
(number) s |t cm” | cm cm’ |em | e¢m® |em' | em’ | cm kmeter,
g
1 2 4 5 6 7 8 9 10 11 12 13 14
10 100 45| 72 | 120 198 | 39,7 (406 | 230 | 179 | 649 | 1,22 | 946

14 140 49| 75 | 174 | 572 | 81,7 | 573 | 468 | 419 | 115|155 | 137
16 160 50| 78 | 202 | 873 | 109 657 | 62, | 586 | 145 | 1,70 | 159
18 180 90 (51| 81 | 234 | 1290 | 143 | 742 | 814 | 826 | 184 | 188 | 184
18a | 180|100 |51 | 83 | 254 | 1430 | 189 | 751 | 898 | 114 | 228 | 212 | 199
20 200100 52| 84 | 268 | 1840 | 184 | 828 | 104 | 115 | 231 | 207 | 210
20a (200|110 (52| 86 | 289 | 2030 | 203 [ 837 | 114 | 155 | 282 | 232 | 227
22 220|110 54| 54 | 306 | 2550 | 232 | 913 | 131 | 157 | 286 | 227 | 240
2Za 22012054 | 89 | 328 | 2790 | 254 (922 | 143 | 206 | 343 | 250 | 258
24 240 | 115|56| 95 | 348 | 3460 | 289 | 997 | 163 | 198 | 345 | 237 | 273
24a |240|125|56| 98 | 375 | 3800 | 317 | 101 | 178 | 260 | 416 | 263 | 294
27 270 | 125|160| 98 | 402 | 5010 | 371 |11,2| 210 | 260 | 415|254 | 315
27a | 270[135]60|102| 432 | 5500 | 407 | 113 | 229 | 337 | 500|280 | 339

3
55
12 120 64 (48| 73 | 147 | 350 | 584 488 | 33,7 | 279 | 872|138 | 115
73
81




Chapter 7 Appendixes

277

Table B.3 (finished)

5

9 10

11

12

13

14

300
300
330
360
400
450
500
550
600

SILHELBS Y-

135
145
140
145
155
160
170
180
190

6,5
6,5

75
8,3

10
11
12

10,2
10,7
11,2
12,3
13
14,2
15,2
16,5
17,8

46,5
499
53,8
61,9
726
84,7
100
118
138

7080
7780
9840
13380
19062
27696
39727
35962
76806

472
518
597
743
953
1231
1589
2035
2560

268
292
389
423
545
708
919
1181
1481

12,3
12,5
13,5
14,7
16,2
18,1
19,9
218
236

337
436
419
519
667
808
1043
1366
1725

499
60,1
69,9
11
86,1
101
123
151
182

2,69
295
2,79
2,89
3,03
3,09
323
3,39
354

36,5
39,2
422
48,6
57
66,5
785
92,7
108

Table B.4 Properties of Rolled-Steel (S) Shapes, American Stan-

dard I Beams (U.S. Customary Units)
Source: The American Institute of Steel Construction (AISC).
Note: Axes X-X and Y-y are principal centroidal axes.

*An American Standard Beam is designated by the letter S followed

by the nominal depth in inches and the weight in pounds per foot.
**Value of W s sectional modulus of area.

B2
cCc— T —

Designation

Area

Depth

e
)
=
e}
(¢)

Axis X-X

Axis Y-y

Web

thickness

Width
Average
thickness

| \W

in.

5
5

in. in.

n.

n.

in. in.

1

B~

(5

10

11

12 13

S 24 x100
S 24 x 80

S 20 x 95
S20x75

S18 x 70
S 18 x54.7

S 15 x50
S15x%x42.9

S 12 x50
S12x 35

S 10 x 35
S10x 254

29.3
23.5

27.9
22.1

20.6
16.1

14.7
12.6

14.7
10.3

10.3
7.46

24.00
24.00

20.00
20.00

18.00
18.00

15.00
15.00

12.00
12.00

10.00
10.00

0.745
0.500

0.800
0.641

0.711
0.461

0.550
0.411

0.687
0.428

0.594
0.311

7.245
7.000

7.200
6.391

6.251
6.001

5.640
5.501

5.477
5.078

4.944
4.661

o
o
N
o

0.870

0.916
0.789

0.691
0.691

0.622
0.622

0.659
0.544

0.491
0.491

2390
2100

1610
1280

926
804

486
447

305
229

147
124

199
175

161
128

103
89.4

64.8
59.6

50.8
38.2

294
24.7

9.02
9.47

7.60
7.60

6.71
7.07

5.75
5.95

4.55
4.72

3.78
4.07

47.7
42.2

49.7
29.6

241
20.8

15.7
14.4

15.7
9.87

8.36
6.79

13.2
12.1

13.9
9.32

7.72
6.94

5.57
5.23

5.74
3.89

3.38
2.91

1.27
1.34

1.33
1.16

1.08
1.14

1.03
1.07

1.03
0.980

0.901
0.954
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Table B.4 (finished)
1 3 4 5 6 7 8 o J10] 11 [ 12 ] 13
S8x23 6.77 | 8.00 [0.441|4.171]0.426| 64.9 | 16.2]3.10] 4.31 | 2.07 [0.798
S8x184 541 | 8.00 |0.271]4.001|0.426| 57.6 |14.4|3.26| 3.73 | 1.86 |0.831
S6x17.25 | 5.07 | 6.00 [0.465(3.565|0.359| 26.3 |8.77 |2.28| 2.31 | 1.30 [0.675
S6x125 | 3.67|6.00(0.232(3.332(0.359| 22.1 |7.37|2.45| 1.82 | 1.09 |0.705
S4x95 2.79 | 4.00 |0.3262.796|0.293 | 6.79 3.39|1.56|0.903 | 0.646 |0.569
S4x77 2.26 | 4.00 |0.193]2.663(0.293| 6.08 [ 3.04 |1.64|0.764 |0.574 {0.581
Table B.5 Properties of Rolled-Steel (S) Shapes, American g
Standard | Beams (SI Units) ——
Note: Axes X-X and Y-y are principal centroidal axes. .
*An American Standard Beam is designated by the letter S followed C X
by the nominal depth in millimeters and the mass in kilograms per
meter. C— 1
**Value of W s sectional modulus of area.
Designation*® | Area, | Depth, Flange Web Axis X-X Axis Y-
Width, | Thickness, | Thickness, (I, 10°| i, [W,10°[I, 10°| 1,
10° | mm mm mm mm mm* |mm | mm’ | mm* | mm
1’Ill’Il2
1 2 3 4 5 6 7 8 9 10 11
S610x 149 |190 (610 |184  |221 19.0 995 (229 (3260 |19.9 (323
x119 (152 |610 |178 221 12.7 878 (24112880 (17.6 |34.0
S510x141 |18.0 |508 |183 23.3 20.3 670 (193 |2640 |20.7 [33.8
x112 (143 |508 |162 20.1 16.3 533 (193 12100 {123 [29.5
S460x 104 |13.3 |457 |159 17.6 18.1 385 |170 |1685 (10.0 [27.4s
x81 |104 |457 |152 17.6 11.7 335 (180 |1466 |8.66 [29.0
S380x74 |95 (381 (143  [158 14.0 202 |146 1060 |6.53 |26.2
x64 (813 |381 |140 15. 104 186 (151|977 |5.99 |27.2
S310x74 (948 |305 |139 16.8 174 127 |116 (833 [6.53 |26.2
«52 664 |305 [129 [13.8 109 953 [120 (625 |4.11 [24.9
S250x52 |6.64 |254 [126 |125 15.1 612 |96 |482 (348 (229
x38 (481 |254 |118 12.5 79 51.6 |103 |406 |2.83 |24.2
S200x34 |437 |203 |106 10.8 11.2 27 |78.7|1266 |[1.79 |20.3
x27 135 (203 |102 10.8 6.9 24 828|236 |(1.55 (211
S150x26 |3.27 (152 |90 91 11.8 11.0 (579|144 |0.96 |17.2
x19 (236 |152 |84 91 58 9.20 (622|121 |0.76 (17.9
S100x14 |1.80 (102 |70 74 8.3 283 |39.6|55.5 [0.38 (145
x11 |145 |102 |67 74 4.8 253 |41.6|49.6 (032 (148
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Table B.6 Properties of Rolled-Steel (C) Shapes, American Standard Chan-
nels (U.S. Customary Units)

Source: The American Institute of Steel Construction (AISC). Vi
Notes: Axes X-X and Y-y are principal centroidal axes. ‘

The distance X, is measured from the centroid to the back of the

web. C
For axis y-y, the tabulated value of W is the smaller of the two sec- X
tional moduli for this axis. X0~
*An American Standard Channel designated by the letter C fol- \
lowed by the nominal depth in inches and the weight in pounds per

foot.

Flange AXis X-X Axis y-y
Area|Depth Web Avera
Designation PR thickness| Width VOIS w | I wW i X
thickness
in?| in. in. in. in. inlin’|in. | in* | in’ in. in.
1 2 3 4 5 6 7 8 9 10 11 12 13

C15x50 |14.7{15.00| 0.716 |(3.716| 0.650 |40