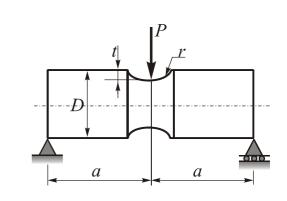

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 1


- 1. Generalized forces and displacements. Reciprocal theorems.
- 2. Influence of different boundary conditions on the magnitude of critical force. Length reduction factor.

4.

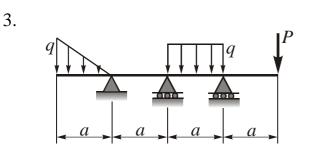
<u>Given:</u> a=1 m, h=2 m, M=20 kNm.

Aim: calculate vertical displacement of *D*-point.

Given: a=1 m, $D = 10 \times 10^{-2} m$, $t = r = 10 \times 10^{-3} m$ $P_{\text{max}} = 15kN$, $P_{\text{min}} = -5kN$, steel 40XH, polishing.

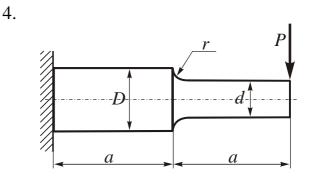
<u>Aim</u>: calculate n_s in groove cross-section.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card Nº 2

- 1. Reciprocal theorems (proof).
- 2. Fatique strength diagram.

<u>Given:</u> a=1 m, P=10 kN, q=30 kN/m.

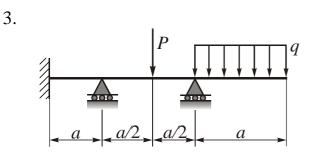
<u>Aim</u>: design the graphs $Q_z(x)$, $M_y(x)$.

<u>Given:</u> a=0.5 m, D/d=1.5, d=8 cm, $P_{max} = 10 kN$, $P_{min} = -10 kN$, r=0.1d, steel 40XH, rough polishing. <u>Aim:</u> calculate n_S in cross-section with fillet.

Accepted by Department of Aircraft Strength meeting.

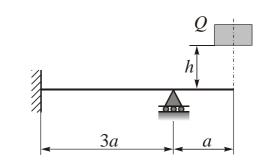
Record of proceeding N_{23} , 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 3


4.

- 1. Determination of generalized displacements. Mohr's integral (proof).
- 2. Fatigue of materials and its features.

Given: a=2 m, q=4 kN/m, P=10 kN.

<u>Aim</u>: design the graphs Q_z, M_y .

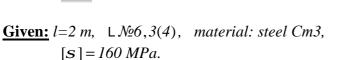
<u>Given:</u> a=1 m, Q=10 kN, h=0.02 m, $IN \ge 20$.

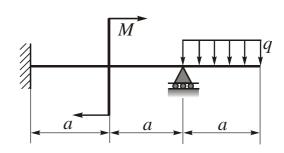
<u>Aim:</u> calculate $\boldsymbol{s}_{\max dyn}$.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 4

4.

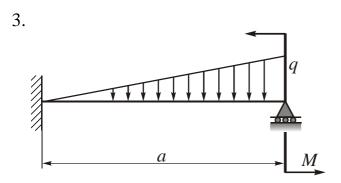
- 1. Vereschagin's formula for calculating Mohr's integral.
- 2. Fatigue strength diagram and limitations of its application in fatigue analysis.

<u>Given:</u> *a*=2 *m*, *q*=20 *kN/m*, *M*=10 *kN*.

Aim: calculate [P].

<u>Aim</u>: design the graphs Q_z, M_y .

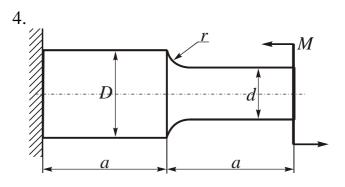
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 5


- 1. Force method. Canonical equations of the force method (proof).
- 2. Boundary conditions for Yasinski formula application.

<u>Given:</u> a=3 m, q=30 kN/m, M=10 kNm, [s] = 160 MPa.

Aim: using force method, design the graphs

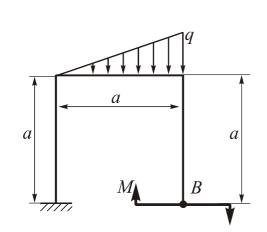
section.

<u>Given:</u> $a=1 m, D = 8 \times 10^{-2} m, d = 6 \times 10^{-2} m,$ $r = 0.6 \times 10^{-2} m, M_{\text{max}} = 20 \text{ kNm},$ $M_{\text{min}} = -10 \text{ kNm}, 18XH3A, rough$ polishing.

<u>Aim:</u> calculate factor of safety in fatigue in crosssection with fillet.

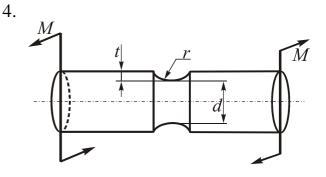
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

 Q_z, M_y , calculate diameter of round solid


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 6

- 1. Multispan beams. Three moment equations (proof).
- 2. Determination of terms "generalized force" and "generalized displacement".

<u>Given:</u> a=1 m, q=30 kN/m, M=10 kNm, EI = const

<u>Aim:</u> calculate horizontal displacement of *B*-point.

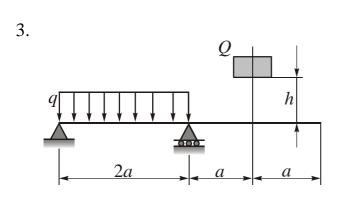
<u>Given:</u> $d = 8 \times 10^{-2} m$, t/r=1, r/d=0,1, $M_m = 5 kNm$, $M_a = 25 kNm$, steel 30XH, rough polishing.

<u>Aim:</u> calculate factor of safety in cross-section with groove.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner


3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 7

- 1. General features of fatigue failure of materials. General characteristics of the cycle of loading. Influence of different factors on fatigue limit.
- 2. Stress reduction factor, its determination and the features. Corresponding condition of stability.

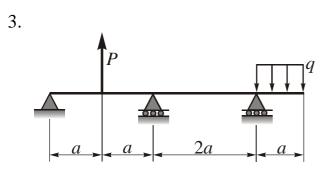
4.

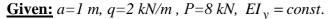
<u>Given:</u> a=1 m, q=30 kN/m, Q=1 kN, rectangle cross-section: $h = 12 \times 10^{-2} m$, $b = 6 \times 10^{-2} m$, $E = 2 \times 10^{5} MPa$. <u>**Given:**</u> *a*=2 *m*, *P*=20 *kN*, *q*=4 *kN/m*, *I№*18

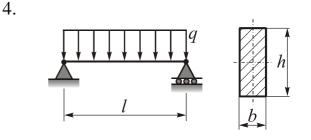
<u>Aim</u>: design the graphs N_x, Q_z, M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


<u>Aim:</u> calculate $S_{max dyn}$


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 8

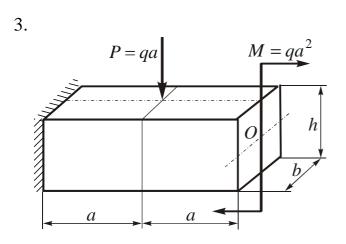
- 1. Experimental study of fatigue limit. Vohler's curve. Influence of different factors on fatigue limit.
- 2. How to determine statical displacement (s_{st}) in the formula of dynamic factor?

<u>Given:</u> l=2 m, $s_y = 240MPa$, $h = 18 \times 10^{-2} m$, $b = 9 \times 10^{-2} m$.

<u>**Aim:**</u> design the graphs Q_z, M_y .

Aim: calculate ultimate value of distributed load.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 9

- 1. Factor of safety in fatigue, its theoretical and graphical calculation.
- 2. Effect of concentrated moments applied to multispan beam supports on the three moment equation.

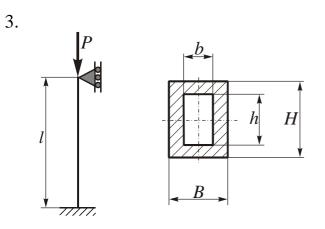
<u>Given:</u> a=1 m, $b=8 \times 10^{-2} m$, $h=16 \times 10^{-2} m$, q=2 kN/m, $E=2 \times 10^5 MPa$.

Aim: calculate vertical displacement of O-point.

<u>Given:</u> *a*=1 *m*, *q*=10 *kN/m*, *P*=10 *kN*.

<u>Aim:</u> design the graphs N_x , Q_z , M_y , using equation of three moments to open statical indeterminacy.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 10

- 1. Boundary conditions in application of fatigue limit diagram to check fatigue strength of the cross-section with stress concentrator.
- 2. Vereschagin's method and its application.

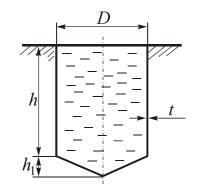
<u>Given:</u> l=3 m, $b=6 \times 10^{-2} m$, $h=10 \times 10^{-2} m$, $B=8 \times 10^{-2} m$, $H=12 \times 10^{-2} m$, $n_y=3$. material steel *Cm3*. <u>Given:</u> $h=1 m, D=0.8 m, r=10^3 kg/m^3,$ [s]=100 MPa.

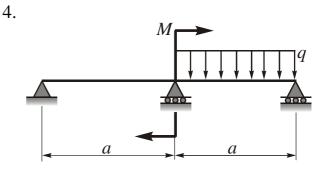
<u>Aim:</u> calculate thickness of the wall *t* for two versions of vessel support.

<u>Aim:</u> calculate P_{cr} , [P]

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

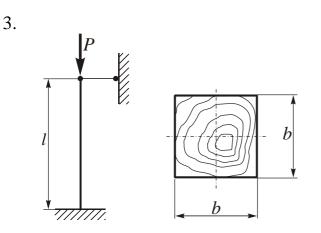
Examination card № 11

- 1. Fatigue strength diagram (method of design).
- 2. Oblique bending: method of critical point calculation.

<u>Given:</u> h=1 m, $h_1 = 0.5 m$, D=1 m, $r = 10^3 kg/m^3$, $t = 0.5 \times 10^{-2} m$.

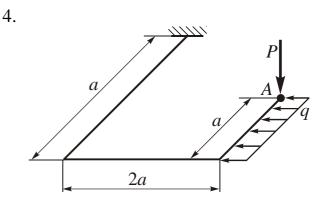
<u>Aim</u>: determine stress distributions along the depth <u>Aim</u>: design the graphs Q_z , M_y . of cylindrical part.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 12

- 1. Stable and unstable equilibrium of elastic system. Euler's formula (proof).
- 2. Fatigue limit and its experimental determination.

<u>Given:</u> $l=2 m, b = 10 \times 10^{-2} m, P=15 kN,$ [*s*] = 10 MPa, material of the post – pine.

Aim: check stability of pine.

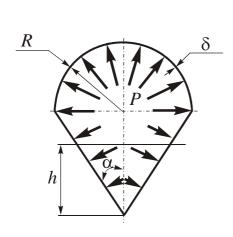
<u>Given:</u> a=1 m, q=2 kN/m, P=20 kN.[s] = 140 MPa, $E = 2 \times 10^5 MPa.$

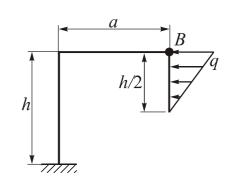
<u>Aim:</u> calculate diameter of round section of third portion.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

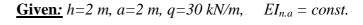
Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 13

1. Influence of different boundary conditions on the value of critical force for compressed rod.


4.

2. Assymetry factor in periodic loading. The most dangerous cycle of loading.

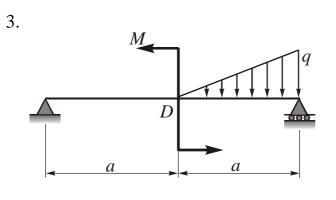
<u>Given:</u> $R=2,5 m, P=1,0 MPa, d = 2 \times 10^{-2} m,$ $a = 60^{\circ}, h = 0,1 m.$

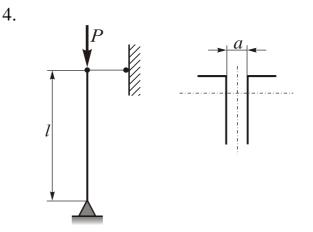
Aim: calculate angle of twist at *B*-point.

<u>Aim:</u> calculate S_m, S_q at *h* depth.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 14

- 1. Diagram of critical stresses. Yasinski formula for critical stress determination and its limitations.
- 2. Method of determination of critical points in eccentric tension-compression.

<u>Given:</u> a=1 m, q=20 kN/m, $M=10 kN/m IN \ge 18$, $E = 2 \times 10^5 MPa$.

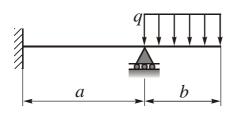
<u>Aim:</u> calculate vertical displacement of *D* point using Mohr's method.

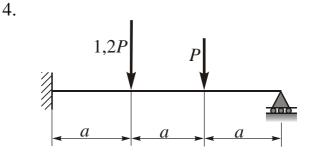
<u>Given:</u> l=3 m, cross-section of the post – two nonequileg angles $N \ge 14/9$ (1), $K = 2.5, a = 4 \times 10^{-2} m$, material – steel Cm3.

<u>Aim</u>: calculate P_{cr} , [P].

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 15

- 1. Two methods of critical force calculation. Conditions of stability. Direction of buckling and its prediction.
- 2. Ways of fatigue strength improvement.

<u>Given:</u> a=4 m, b=2 m, q=10 kN/m.

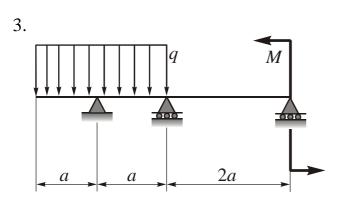
<u>Aim</u>: design the graphs Q_z, M_y .

<u>Given:</u> a=1 m, INo16, $S_y = 300MPa$.

Aim: calculate ultimate value of *P*-force.

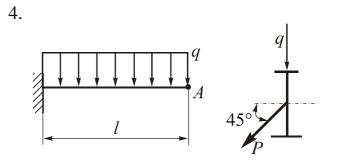
Accepted by Department of Aircraft Strength meeting.

Record of proceeding N_{23} , 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 16

- 1. Stability of equilibrium of the rod in compression. Euler's formula (proof).
- 2. Theoretical and effective stress concentration factors.

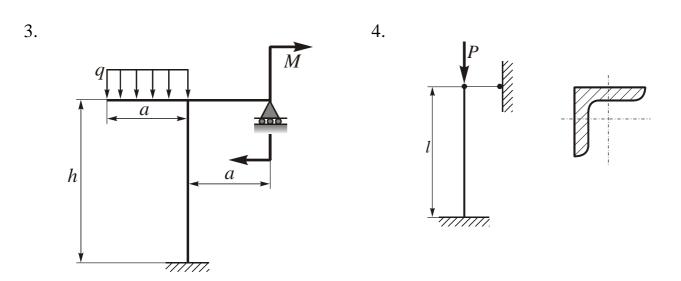
<u>Given:</u> a=1.5 m, q=2 kN/m, M=6 kNm $EI_y = const$.

<u>Aim</u>: design the graphs $Q_z(x)$, $M_y(x)$.

<u>Given:</u> l=2 m, q=10 kN/m, P=10 kN, $E = 2 \cdot 10^{11} Pa$, IN40 (force P is applied at A-point).

<u>Aim:</u> calculate resultant linear displacement of *A*-point.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 17

- 1. Laplace formula for stresses in thin-walled shell under internal pressure (proof).
- 2. General characteristics of the cycle of loading.

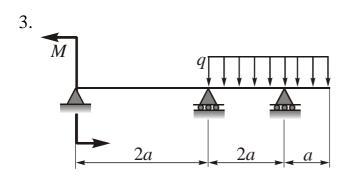
<u>Given:</u> *a*=1 *m*, *h*=2 *m*, *q*=30 *kN/m*, *M*=20 *kNm*.

<u>Aim</u>: design the graphs N_x, Q_z, M_y .

<u>Given:</u> *l*=2 *m*, *P*=180 kN, [*s*]=160 MPa, material – steel Cm3.

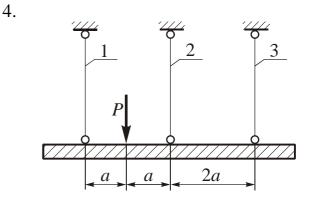
<u>Aim:</u> determine the number of equileg angle profile.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 18

- 1. Third strength theory and corresponding condition of strength.
- 2. Method of meridional stress calculating in thin-walled shells.

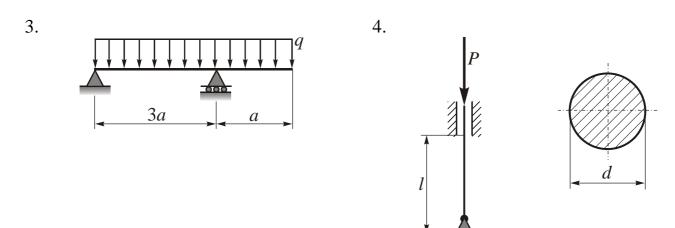
<u>Given:</u> a=1 m, q=2 kN/m, M=1 kNm.

<u>Aim</u>: design the graphs Q_z, M_y

Given:
$$AB$$
 – absolutely rigid beam,
 $A_1 = A_2 = A_3 = A = 2 \times 10^{-4} m^2$
 $\mathbf{s}_y = 300 MPa, K = 2$

Aim: calculate allowable force [*P*].

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 19

- 1. Laplace formula (proof) and its application for calculating stresses in spherical pressure vessel.
- 2. The term of "stress concentrator".

<u>Given:</u> a=1 m, IN220, $s_y = 200MPa$.

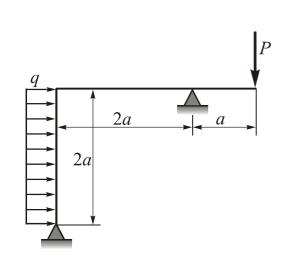
<u>Aim</u>: calculate ultimate value of loading q_{ult} .

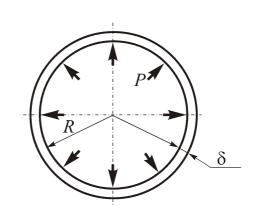
<u>Given:</u> l=2 m, P=40 kN, $[s]_c = 160 MPa$, material – steel Cm5.

<u>Aim:</u> calculate diameter of cross-section *d*.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 20

4.

- 1. Vereschagin formula for calculating Mohr's integral (proof).
- 2. Superposition principle and its application in stress analysis.

<u>Given:</u> a=1 m, q=2 kN/m, P=3 kN, EI=const. <u>Aim:</u> design the graphs N, Q_z, M_y .

<u>Given:</u>R=0.2 m, d=0.002 m, [s]=150 MPa.

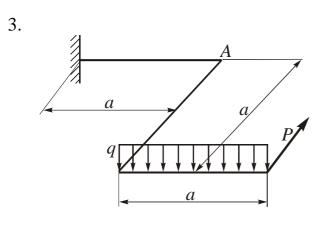
Aim: calculate allowable value of pressure [P].

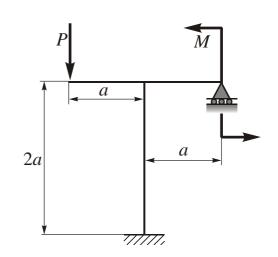
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner

3.


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 21

1. Diagram of critical stresses in buckling and its applicability in solution of the stability problems.

4.

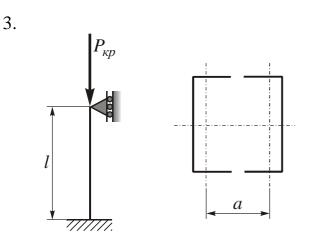
2. General assumptions in Laplace formula proof.

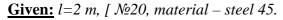
- <u>Given:</u> a=1 m, [s] = 160 MPa, P = 10 kN, q=10 kN/m.
- <u>Aim:</u> calculate diameter of round section of third portion.
- <u>Given:</u> *l*=1.5 m, [№18, material steel Cm3, P=5 *kN*, *M*=20 *kNm*, *a*=1 *m*.

<u>Aim</u>: design the graphs N_x, Q_z, M_y .

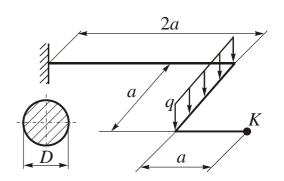
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 22


- 1. Laplace formula for calculating stresses in thin-walled shell (proof).
- 2. Nominal and local stresses. Theoretical and effective stress concentration factors.

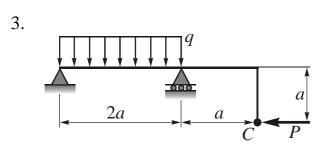
4.

<u>Aim:</u> calculate optimal value of the distance a from the viewpoint of equistability and critical force P_{cr}

Given:
$$a=0.4 m$$
, $q=10 kN/m$, $D = 18 \times 10^{-2} m$,
 $E = 2 \times 10^5 MPa$, $G = 8 \times 10^4 MPa$.

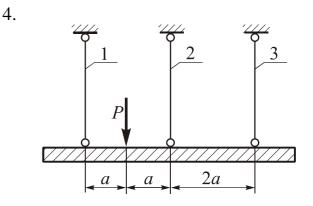
Aim: calculate vertical displacement of *K*-point.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 23

- 1. Method of thin-walled shell stress state analysis under hydraulic pressure (proof of the equations and analysis of stress distribution along the vertical axis of the shell).
- 2. Limitations of Euler's formula application. Dependence of critical stress on actual slenderness ratio of a post.

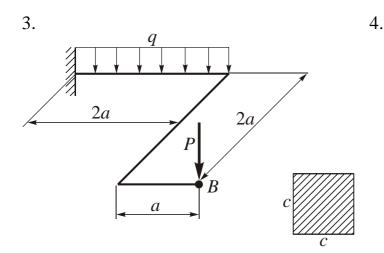
<u>Given:</u> a=1 m, q=6 kN/m, P=8 kN, round crosssection, d=0.1 m, $E=2\times 10^5 MPa$.

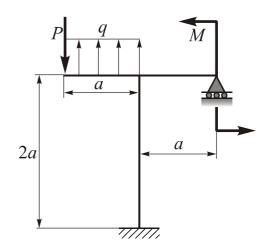
Aim: calculate angle of twist of *C*-section.

<u>Given:</u> AB – absolutely rigid beam, $A_1 = A_2 = A_3 = A = 2 \times 10^{-4} m^2$ $\mathbf{s}_y = 300 MPa, K = 2$

Aim: calculate allowable force [*P*].

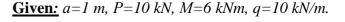
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 24


- 1. Theories (hypothesys) of strength. Conditions of strength for principal planes.
- 2. The concept of critical force.

<u>Given:</u> a=1 m, q=10 kN/m P=10 kN, $c=8 \times 10^{-2} m$ (square cross-section), $G=8 \times 10^4 MPa$, $E=2 \times 10^5 MPa$.

Aim: calculate vertical displacement of *B*-point.

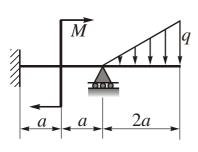
<u>Aim</u>: design the graphs N_x, Q_z, M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

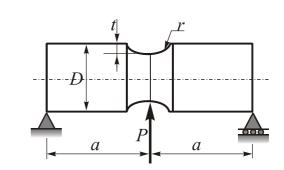
Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 25

1. Eccentric tension-compression of the rod. Calculation of acting stresses in an arbitrary section, condition of strength and neutral axis position.


4.

2. General assumptions in proof of dynamic factor formula.

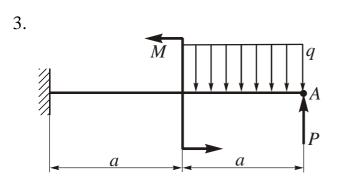
<u>Given:</u> *a*=2 *m*, *q*=30 *kN/m*, *M*=25 *kNm*.

Given:
$$a=1 m$$
, $D = 10 \times 10^{-2} m$, $t=r$,
 $P_{\text{max}} = 15 \text{ kN}$, $P_{\text{min}} = -5 \text{ kN}$,
 $r = 0.6 \times 10^{-2} m$, steel 50XH, grinding.

<u>Aim</u>: design the graphs Q_z, M_y .

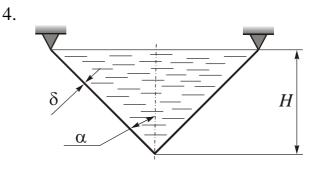
<u>Aim</u>: calculate n_S in groove section.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 26

- 1. Stresses at impact loading. Proff the formula for dynamic factor.
- 2. The concepts of base and equivalent systems in the force method (as examples).

<u>Given:</u> a=2 m, q=30 kN/m, M=10 kNm, P=10 kN, EI=const.

Aim: calculate vertical displacement of A-point.

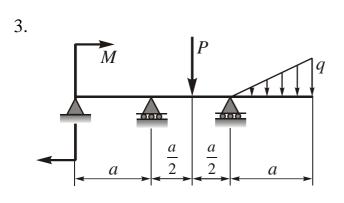
Given:
$$H=1 m$$
, $a = 45^{\circ}$, $d = 1 \times 10^{-2} m$,
 $r = 10^3 kg/m^3$.

<u>Aim</u>: design the graph of s_q distribution along vertical axis of the shell.

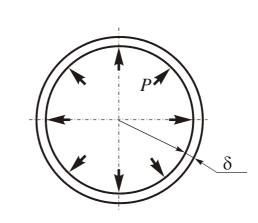
Accepted by Department of Aircraft Strength meeting.

Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 27

- 1. Strength analysis in buckling using stress reduction factor f(l). Condition of stability and the problems which are solved using this condition.
- 2. The concepts "oblique bending" and "eccentric tension-compression" and their particularities. Method of stress analysis in oblique bending and eccentric tension-compression.

4.

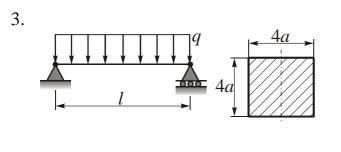
<u>Given:</u> a=3 m, q=20 kN/m, P=10 kN, M=20 kNm. <u>Aim:</u> design the graphs Q_z , M_y .

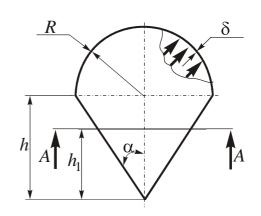
<u>Given:</u> R=0.2 m, P=10 MPa, [s] = 150 MPa.

<u>Aim</u>: calculate thickness d.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 28

4.

- 1. Essence of the force method, its general features and particularities (examples).
- 2. Limitations on Euler formula application.

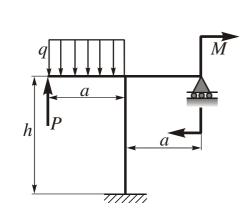
<u>Given:</u> $a = 4 \times 10^{-2} m$, l = 2 m, $s_y = 240 MPa$, n=2.

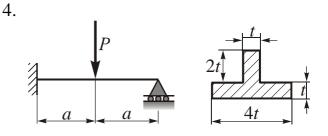
<u>Aim</u>: calculate ultimate and allowable values of distributed load $(q_{ult}, [q])$.

<u>Given:</u> R=0.5 m, P=30 MPa, $d = 2 \times 10^{-2} m$, h=0.5 m, $h_1=0.1 m$, $a = 45^{\circ}$.

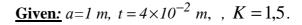
Aim: calculate acting stresses in A-A section.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 29

- 1. Graphical method of factor of safety canculation in periodical loading.
- 2. Allowable stress in stability and its determination using stress reduction factor.

<u>Given:</u> a=1 m, h=2 m, q=20 kN/m, M=20 kNm, P=10 kN.

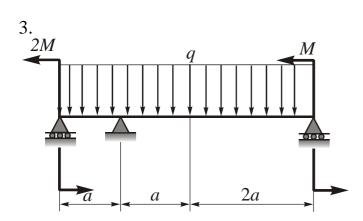
<u>Aim</u>: calculate P_{ult} and [P].

<u>Aim</u>: design the graphs N_x, Q_z, M_y .

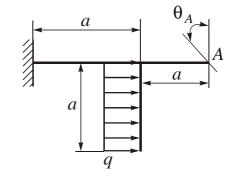
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner


3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 30

- 1. Proof of Euler formula for critical force calculation.
- 2. Stress analysis of multispan beams (an example of three moment equation application).

4.

<u>Given:</u> a=1.5 m, q=2 kN/m, M=6 kNm $EI_v = const$.

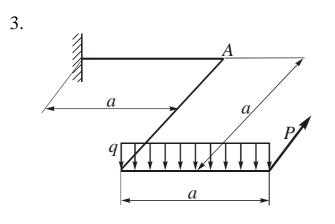
<u>Given</u>: a=2 m, $E = 2 \times 10^5 MPa$, cross-section – rectangle, $(b = 8 \times 10^{-2} m)$, $h = 16 \times 10^{-2} m$, $q_A = 0.01 rad$.

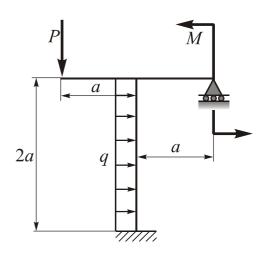
<u>Aim:</u> calculate the intensity of external load q, which creates specified value of \boldsymbol{q}_A .

<u>Aim</u>: design the graphs Q_z, M_y .

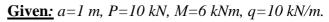
Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 31

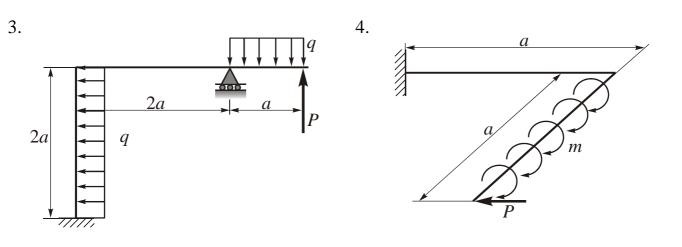

4.

- 1. Second strength theory and its application.
- 2. Assumptions in Laplace formula proof.

- <u>Given:</u> a=1 m, P=20 kN, q=10 kN/m, [s] = 160 MPa.
- <u>Aim:</u> calculate dimensions of square cross-section in third portion.

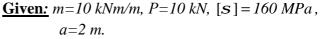
<u>Aim</u>: design the graphs N_x, Q_z, M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 32

- 1. Forth strength theory and conditions of strength for planes of general position and principal planes.
- 2. Eccentric tension-compression: method of critical point determination. Condition of strength.

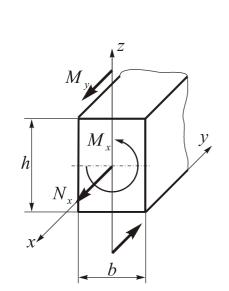
<u>Given:</u> a=1 m, P=10 kN, q=10 kN/m.

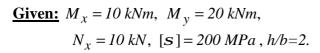
<u>Aim</u>: design the graphs N_x, Q_z, M_y

Aim: calculate diameter of second portion.

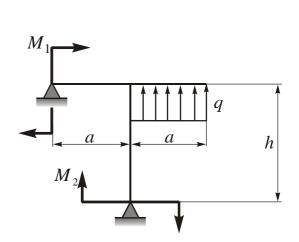
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 33


- 1. Third strength theory, its limitation and condition of strength.
- 2. Oblique bending, its features and method of critical point determination. Condition of strength.

4.

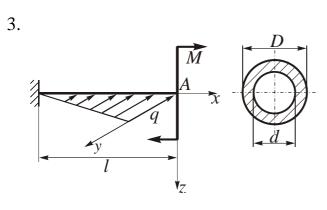
Aim: calculate dimensions of cross-section.

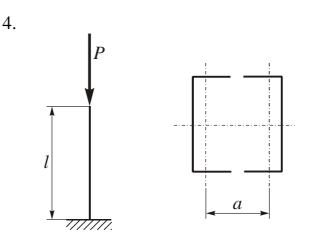
<u>Given:</u> a=1 m, h=2 m, $M_1 = 10 kNm$, $M_2 = 20 kNm$, q=10 kN/m.

<u>Aim</u>: design the graphs N_x, Q_z, M_y

Accepted by Department of Aircraft Strength meeting. Record of proceeding № **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 34

- 1. Force method for opening the statical indeterminacy of rod systems. An example of presentation.
- 2. Description of oblique bending and eccentric tension-compression deformations. Position of neutral axis.

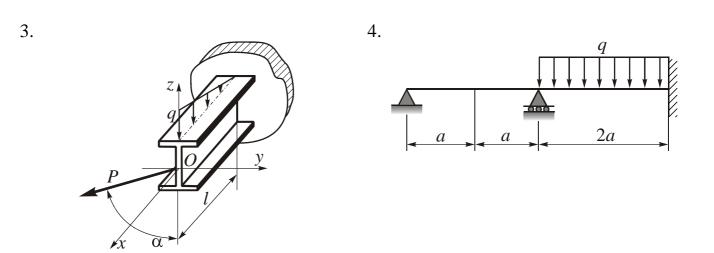
<u>Given:</u> a = d / D = 0.8, [s] = 160 MPa, q = 10 kN/m, l = 3 m, M = 10 kNm.

Aim: calculate diameters *d* and *D*.

<u>Given:</u> *l*=2 *m*, channel *N*24, *material* – *steel* 20.

<u>Aim</u>: calculate optimal size a from the viewpoint of post equistability and the value of critical force P_{cr} .

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

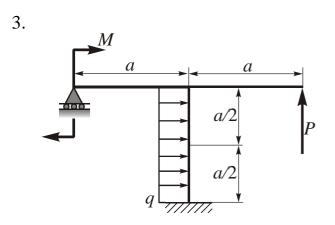
Examination card № 35

- 1. Third strength theory: determination of equivalent stresses, condition of strength for planes of general position and principal planes..
- 2. Oblique bending: determination of critical points and critical stresses. Condition of strength.

- <u>Given:</u> IN16, $q=10 \ kN/m$, $P=10 \ kN$, $l=2 \ m$, $[s]=160 \ MPa$, $a = 30^{\circ}$ (in YOZ plane).
- <u>**Given:**</u> *q*=20 *kN/m*, *a*=1 *m*.
- **<u>Aim</u>:** design the graphs $Q_z(x)$, $M_y(x)$ (use three moment equations).

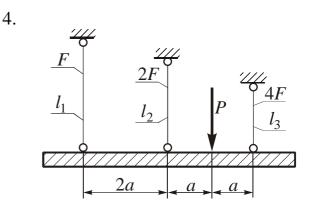
Aim: check strength of the beam.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 36

- 1. Proof of the reciprocal theorem.
- 2. Selection of equivalent system in force method and geometrical sense of canonical equations.

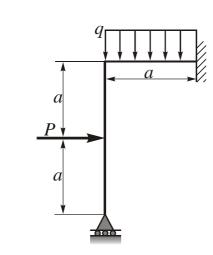
<u>Given:</u> *q*=10 kN/m, P=10 kN, M=10 kNm, a=2 m.

<u>Aim</u>: design the graphs N_x , Q_z , M_y .

<u>Given:</u> $A=1 \ cm^2$, $S_y = 150 \ MPa$, $l_1 = 3 \ m$, $l_2 = 2 \ m$, $l_3 = 1 \ m$, $a=2 \ m$, n=2.

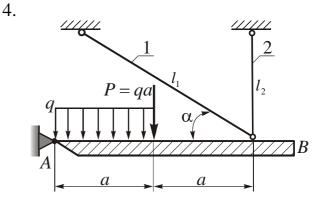
Aim: calculate ultimate force *P*.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 37

- 1. Canonical equations of the force method (proof).
- 2. Conditions of Euler formula applicability.

<u>Given:</u> *P*=10 *kN*, *q*=10 *kN/m*, *a*=2 *m*.

<u>Aim</u>: design the graphs N_x , Q_z , M_y .

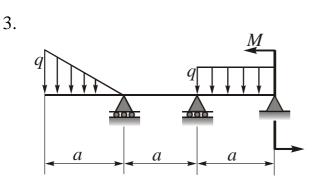
<u>Given:</u> $l_2 = 2 m$, $a = 30^\circ$, a=2 m, $A_1 = A_2 = A = 2 cm^2$, $s_y = 200 MPa$, n=2.

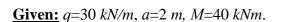
<u>Aim:</u> calculate allowable intensity of distributed load [q].

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

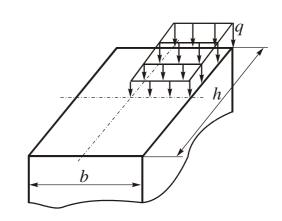
Head of Department, Doctor of Science, Professor

Examiner


3.


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 38


4.

- 1. Three moment equation (proof).
- 2. Factors which influence the value of stress reduction factor in buckling analysis.

<u>Aim</u>: design the graphs Q_z , M_y .

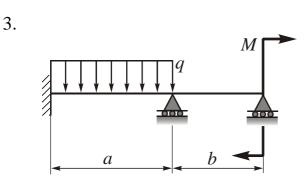
<u>Given:</u> $q=10 \text{ kN/m}^2$, b=4 cm, h=8 cm.

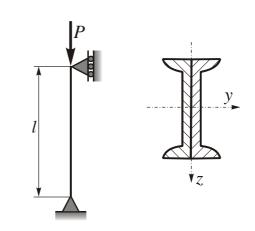
<u>Aim:</u> design the graph of stress distribution in an arbitrary cross-section and calculate maximum stresses.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 39

1. Proof of the three moment equation in opening of statical indeterminacy of multispan beams.

4.

2. Concept of theoretical stress concentration factor.

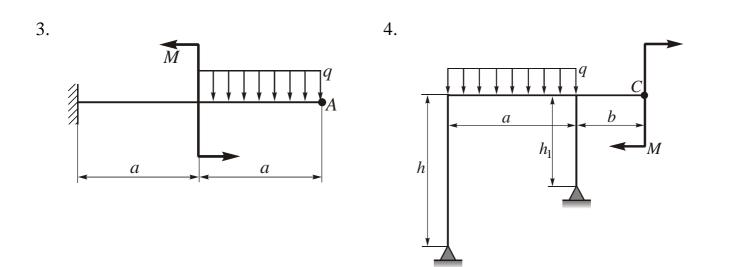
<u>Given:</u> *M*=20 *kNm*, *q*=20 *kN/m*, *a*=2 *m*.

<u>Aim</u>: design the graphs $Q_z(x)$, $M_y(x)$.

<u>Given:</u> two channels N12, l=2 m, P=20 kN, $[s]_c = 200 MPa$.

Aim: check stability of the post.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 40

- 1. Proof of the Euler formula in analysis of the rod buckling.
- 2. The concept of material fatigue limit and its experimental study.

<u>Given:</u> a=2 m, q=20 kN/m, M=40 kNm, $E = 2 \cdot 10^{11} Pa$, cross-section – round, d = 10 cm.

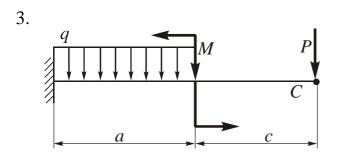
 $m, M=40 \ kNm.$

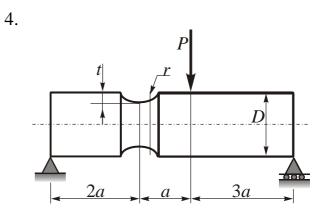
Aim: calculate vertical displacement of A-point.

<u>Aim</u>: design the graphs N_x , Q_z , M_y .

<u>Given:</u> $q=20 \text{ kN/m}, a=2 \text{ m}, b=1 \text{ m}, h=4 \text{ m}, h_1 = 3$

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 41

- 1. Influence of different boundary conditions on the magnitude of critical force.
- 2. Concept of stress reduction factor in buckling problem.

<u>Given:</u> a=2 m, c=3 m, P=10 kN, M=40 kNm, $E = 2 \cdot 10^{11} Pa, \text{cross-section} - \text{rectangle}$ (b=4 cm, h=8 cm).

Aim: calculate angle of rotation of *C*-section.

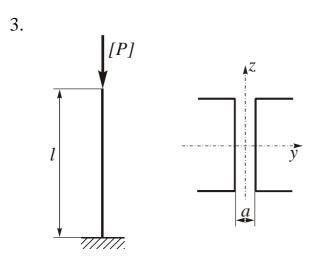
<u>Given:</u> $P_{max} = 15 \ kN, \ P_{min} = -8 \ kN, \ a=1 \ m,$ $D = 10 \ cm, \ t = r, \ r = 0,6 \ cm, \ steel$ 50XH, grinding.

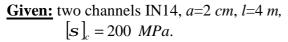
<u>Aim</u>: calculate n_s in groove cross-section.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

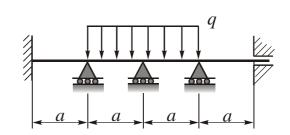
Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 42

1. Stresses in axysymmetrical thin-walled shell under uniform or hydraulic pressure. Laplace formula (proof).


4.

2. Nominal and local stresses: essence and distinction.

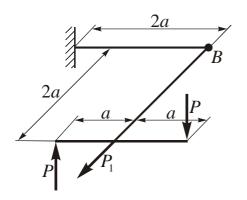
<u>Aim</u>: calculate allowable load [P].

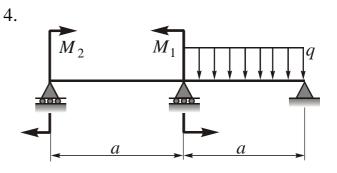
<u>Given:</u> a=2 m, cross-section – round, d=5 cm, $S_v = 200$ MPa.

Aim: calculate ultimate external load.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

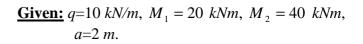
Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 43

- 1. Proof of the reciprocal theorems.
- 2. External bending moments at left and right supports in three moment equation.

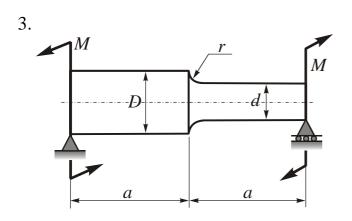

3.

<u>Given:</u> $P=10 \ kN$, $P_1 = 20 \ kN$, $a=2 \ m$, $[s] = 160 \ MPa$, cross-section – square $(5 \times 5 \ cm)$.

Aim: check the strength of fourth portion.

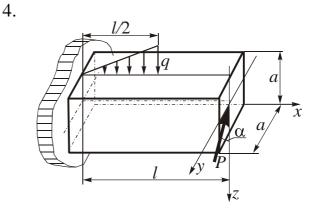
<u>Aim</u>: design the graphs $Q_z(x)$, $M_y(x)$.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 44

- 1. Method of buckling problem solution based on the concept of critical load. Condition of stability.
- 2. Concept of asymmetry factor.

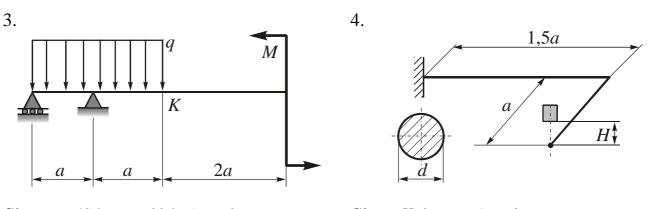
<u>Given:</u> a=1 m, $M_{max} = 20 kNm$, $M_{min} = -30 kNm$, D = 9 cm, d = 6 cm, r = 0.1d, material – steel 18XH, polishing.

<u>Aim</u>: calculate n_t in cross-section with fillet.

- <u>Given:</u> $q=20 \text{ kN/m}, l=6 \text{ m}, P=10 \text{ kN}, a = 30^{\circ}, a=10 \text{ cm}.$
- <u>Aim:</u> find critical section and draw the graph of stress distribution in it. Determine position of neutral axis.

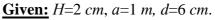
Accepted by Department of Aircraft Strength meeting.

Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 45

- 1. Method of stress analysis in buckling based on the stress reduction factor f(1).
- 2. Diagram of critical stresses in buckling. Short, intermediate, and high flexible posts accordingly to the diagram of critical stresses.

<u>Given:</u> *M*=40 *kNm*, *q*=20 *kN/m*, *a*=2 *m*.

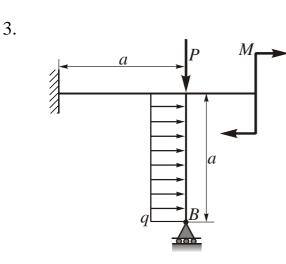
<u>Aim</u>: draw the graphs $Q_z(x)$, $M_y(x)$.

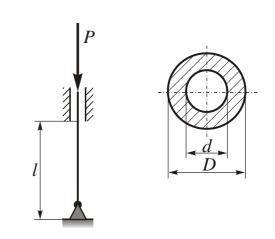
Aim: calculate maximum dynamic stress

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 46

1. General case of rectangle cross-section loading. Finding the critical points and conditions of strength.

4.

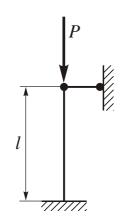
2. Conditions of Euler formula applicability.

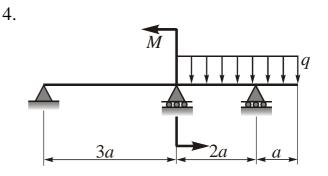
<u>Given:</u> q=10 kN/m, P=20 kN, a=2 m, M=40 kNm. <u>Aim:</u> draw the graphs $N_x(x)$, $Q_z(x)$, $M_y(x)$.

<u>Given:</u> d=6cm, D=7 cm, l=4 m, $S_{pr} = 160$ MPa. Aim: calculate critical force for the post.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 47

- 1. Method of experimental study of fatigue limit. Vohler's curve.
- 2. Essence of stress analysis in dynamic loading. Concept of dynamic factor.

<u>**Given:**</u> l = 4 m, cross-section – channel No14.

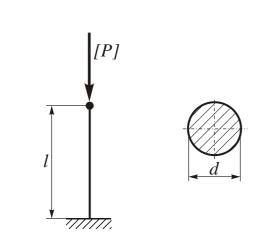
Aim: calculate critical force.

<u>Given:</u> *M*=20 *kNm*, *q*=20 *kN/m*, *a*=1 *m*.

<u>Aim</u>: draw the graphs $Q_z(x)$, $M_y(x)$.

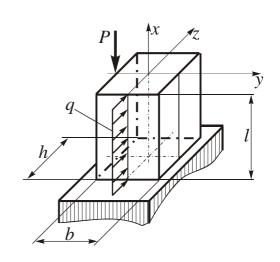
Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 48


4.

- 1. Dynamic factor formula (proof). General assumptions.
- 2. General characteristics of cycle of loading.

<u>Given:</u> $d=8 \ cm, \ l=3 \ m, \ [s]_c = 160 \ MPa.$

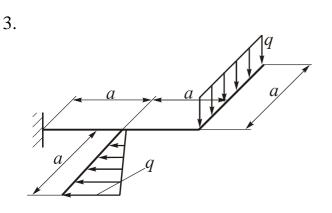
Aim: calculate allowable compressive force.

<u>Given:</u> *q*=20 *kNm*, *P*=20 *kN*, *h*=8 *cm*, *b*=4 *cm*.

<u>Aim:</u> draw the graph of stress distribution in critical section, calculate maximum stresses.

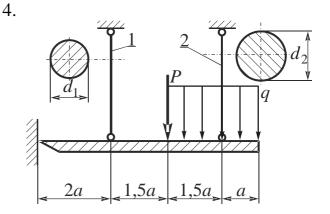
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 49

- 1. Euler formula proof. Limitations of its application.
- 2. Assumptions in proof of Laplace formula.

<u>Given:</u> $q=10 \ kN/m, a=3 \ m, \text{ cross-section}$ rectangle $(h=10 \ cm, b=5 \ cm), [s] = 160 \ MPa.$

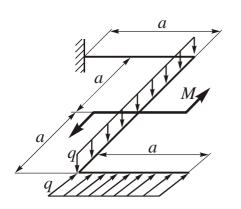
<u>Aim:</u> check strength of fourth portion.

<u>Given:</u> $d_1 = 4$ cm, $d_2 = 6$ cm, $l_1 = l_2 = 4$ m, q = 10 kN/m, P = 10 kN, a = 1 m, $S_y = 200$ MPa, n = 2.

Aim: check load-carrying ability of the rod system.

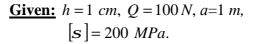
Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 50


- 1. Diagram of critical stresses in buckling problem. Euler and Yasinski formulae for critical stresses..
- 2. Conditions of rational Vereschagin method application.

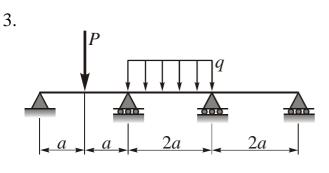
<u>Given:</u> a=2 m, q=10 kN/m, M=10 kNm, [s]=160MPa.

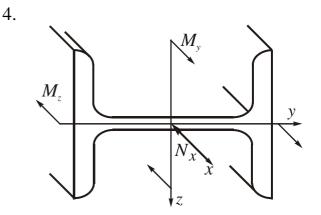
<u>Aim:</u> determine diameter of round section at fourth section.

Aim: check dynamic strength of a beam.

Accepted by Department of Aircraft Strength meeting.

Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 51

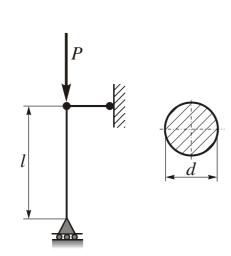
- 1. Force method of frame statical indeterminacy opening (the example).
- 2. Eccentric tension compression as important particularity of combined loading. Finding the critical point.

<u>Given:</u> a=1 m, P=10 kN, q = 20 kN/m.

<u>Aim:</u> design the graphs $Q_z(x)$, $M_y(x)$. Use three moment equations to open statical indeterminacy.

Check strength of the section (I-beam No18). $M_y = 10 \ kNm, \ M_z = 20 \ kNm, \ N_x = 30 \ kN,$ $[s] = 160 \ MPa.$

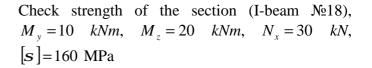
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 52

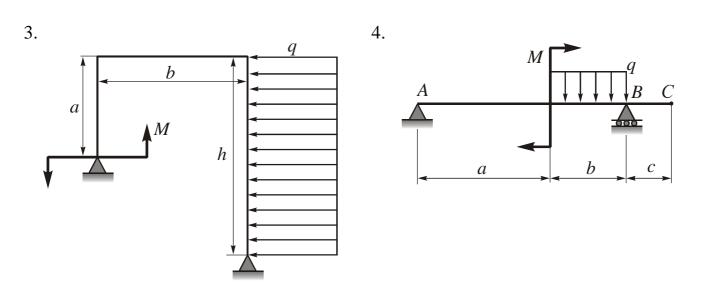

- 1. Third strength theory (theory of maximum shear stresses). Proof of strength condition for principal planes and planes of general position.
- 2. Oblique bending deformation. The method of critical points determination. Condition of strength.

<u>Given:</u> $l=2 m, P=20 kN, [s]_c = 160 MPa.$

Aim: calculate diameter of the post *d*.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 53

- 1. Von Mises strength theory. Proof of strength condition for principal planes and planes of general position.
- 2. Eccentric tension-compression. Description and method of critical point finding.

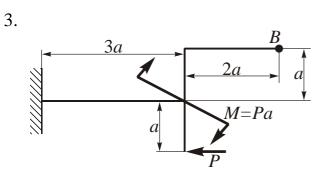
<u>Given:</u> *a*=1 *m*, *b*=2 *m*, *h*=2 *m*, *q*=20 *kN/m*, *M*=20 *kNm*.

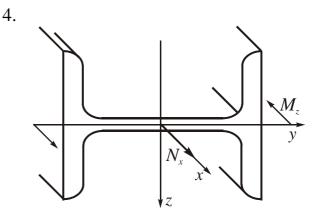
<u>Aim</u>: design the graphs $N_x(x)$, $Q_z(x)$, $M_y(x)$.

<u>Given:</u> *a*=3 *m*, *b*=2 *m*, *c*=1 *m*, *M*=20 *kNm*, *q*=10 *kN/m*, *EI*=const.

Aim: calculate vertical displacement of C-point.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 54

- 1. Stress analysis in buckling using stress reduction factor. Condition of stability. Types of problems which are solved using it.
- 2. Equation of three moments (formula and description of components).

Given: *a*=1 *m*, *P*=20 *kN*, *EI*=const.

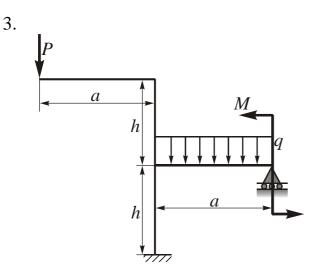
<u>Aim:</u> calculate angle of rotation in *B*-section.

Find neutral axis position in the section (I-beam No16). $M_z = 10 \ kNm$, $N_x = 10 \ kN$. Check the strength if $[s] = 150 \ MPa$.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

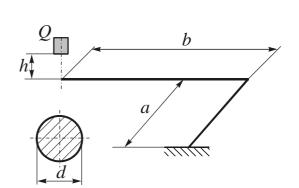
Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 55

4.


1. Laplace formula (proof).

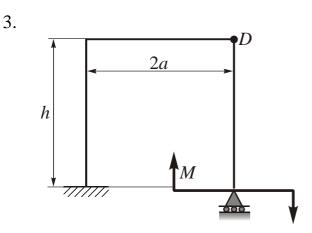
2. General characteristics of cycle of periodical loading.

<u>Given:</u> a=1 m, h = 2 m, q=20 kN/m, P=10 kN, M=40 kNm.

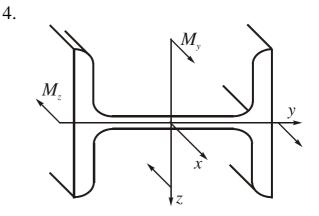
<u>Aim</u>: design the graphs $N_x(x)$, $Q_z(x)$, $M_y(x)$.

- <u>Given:</u> a=1 m, b=2 m, Q=10 kN, h=0,02 m, d=5 cm.
- <u>**Aim:**</u> calculate $S_{\max dyn}$.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 56

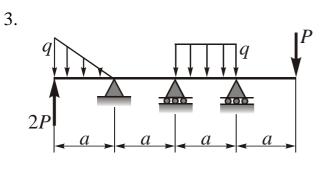
- 1. Generalized forces and displacements. Reciprocal theorems.
- 2. Influence of different boundary conditions on critical force.

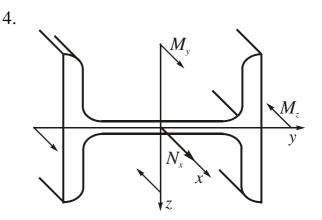
<u>Given:</u> a=1 m, h=2 m, M=20 kNm.

Check strength of the section (I-beam No18). $M_y = 10 \ kNm, \ M_z = 20 \ kNm, \ [s] = 160 \ MPa$

<u>Aim:</u> calculate angle of rotation in *D*-point of statically indeterminate frame.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 57

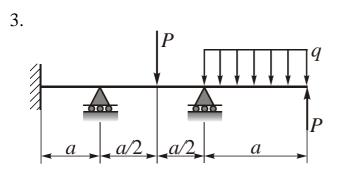
- 1. Reciprocal theorems (proof).
- 2. Fatigue strength diagram (description of the method of its design).

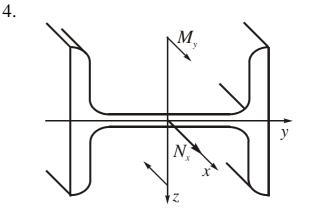
<u>Given:</u> a=1 m, P=10 kN, q=30 kN/m.

<u>Aim</u>: design the graphs $Q_z(x)$, $M_y(x)$.

Check strength of the section (I-beam No18). $M_y = 10 \ kNm, \ M_z = 20 \ kNm, \ N_x = 30 \ kN,$ $[s] = 160 \ MPa$

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 58

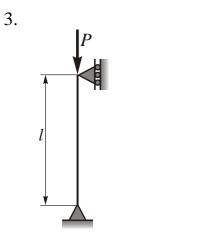
- 1. Mohr's integral (proof).
- 2. Essence of material fatigue failure.

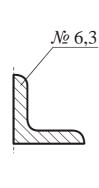
<u>Given:</u> a=2 m, q=4 kN/m, P=10 kN.

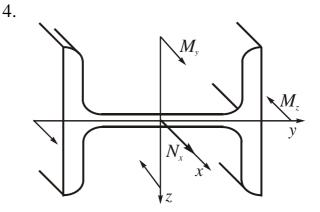
<u>Aim</u>: design the graphs Q_z, M_y .

Find position of cross-section neutral axis (I-beam $N_{2}16$) and check its strength. $M_{y} = 10 \ kNm$, $N_{x} = 10 \ kN$.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 59

- 1. Vereschagin's formula (proof).
- 2. Graphical determination of safety factor in fatigue.

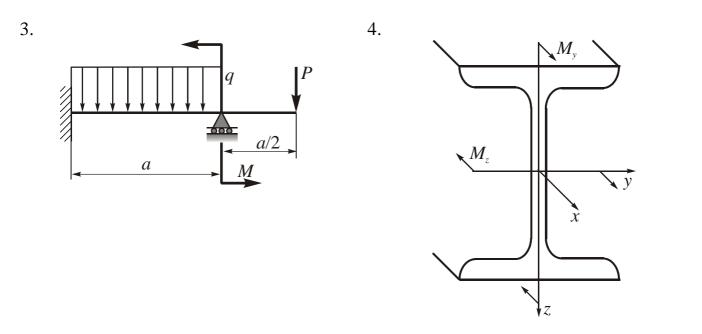
<u>Given:</u> l=2 m, $\lfloor N \ge 6, 3(4)$, material steel Cm3, [s] = 160 MPa.

Aim: calculate [P].

Find position of cross-section neutral axis (I-beam $N \ge 16$) and check its strength. $M_z = 10 \ kNm$, $N_x = 10 \ kN$, $M_y = 20 \ kNm$.

Accepted by Department of Aircraft Strength meeting.

Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 60

- 1. Force method. Proof of canonical equation.
- 2. Limitations on Yasinsky formula application.

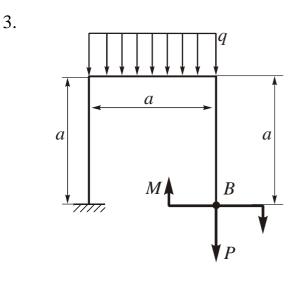
<u>Given:</u> a=3 m, q=30 kN/m, M=10 kNm, P=10 kN, [s] = 160 MPa.

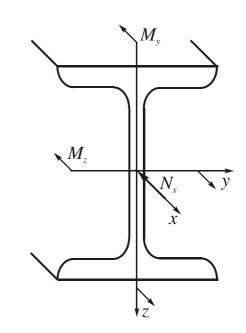
Check the cross-section strength (I-beam No16), $M_y = 30 \ kNm, \ M_z = 10 \ kNm, \ [s] = 160 \ MPa$

<u>Aim:</u> design the graphs Q_z and M_y and calculate diameter of round section. To open statical indeterminacy use the method of sections.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 61

4.

- 1. Multispan beams, Proof of three moment equation.
- 2. Determination of generalized force concept.

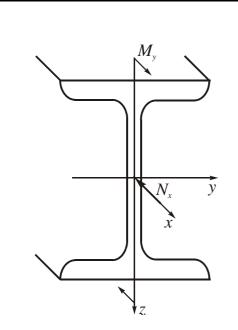
<u>Given:</u> a=1 m, q=30 kN/m, M=10 kNm, P=10 kN, EI = const.

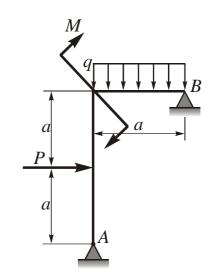
Check the cross-section strength (I-beam No16). $N_x = 50kN$, $M_y = 30$ kNm, $M_z = 10$ kNm, [s] = 160 MPa

Aim: calculate horizontal displacement of *B*-point.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 62

- 1. Experimental study of fatigue failure. Vohler's curve. Fatigue limit experimental determination.
- 2. Concept of stress reduction factor in stability problem. Factors which influence stress reduction factor.

4.

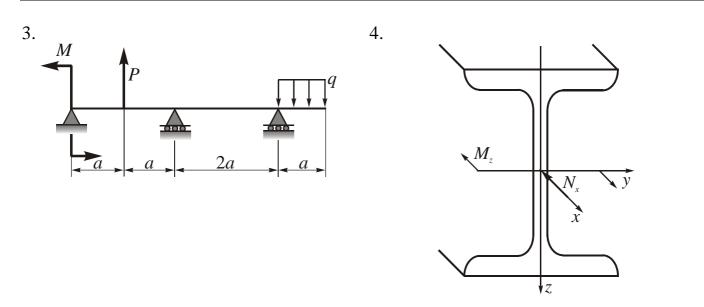
Find position of cross-section neutral axis (I-beam $N_{2}18$). $M_{y} = 10 \ kNm$, $N_{x} = 10 \ kN$

<u>Given:</u> a=2 m, M=30 kNm, P=20 kN, q=4 kN/m.

<u>Aim</u>: design the graphs N_x, Q_z, M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 63

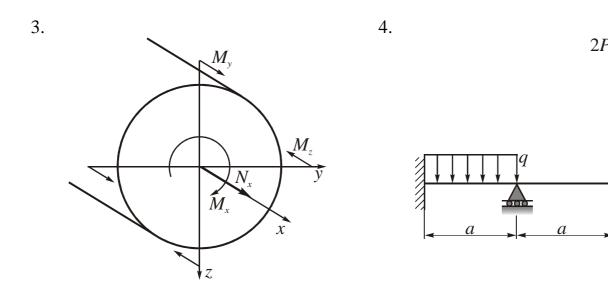
- 1. Three moment equation (proof).
- 2. How to determine statical deformation in dynamic factor formula.

<u>Given:</u> a=1 m, q=2 kN/m, M=20 kNm, P=8 kN, $EI_v = const$.

Check the strength of cross-section (I-beam No18), if $M_z = 10 \ kNm$, $N_x = 10 \ kN$

<u>Aim:</u> design the graphs Q_z, M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 64

- 1. Graphical calculation of factor of safety in fatigue using fatigue strength diagram.
- 2. Three moment equation. Description of its components.

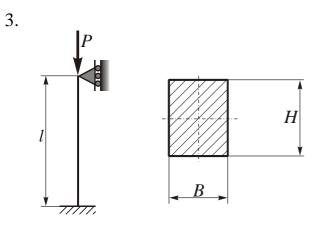
Calculate cross-ectional diameter, if $M_x = 10 \ kNm$, $M_y = 20 \ kNm$, $M_z = 30 \ kNm$, $[s] = 160 \ MPa$, $N_x = 40 \ kN$

<u>Given:</u> a=1 m, q=10 kN/m, P=10 kN.

<u>Aim:</u> design the graphs N_x , Q_z , M_y , using three moment equation to open statical indeterminacy.

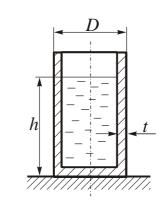
Accepted by Department of Aircraft Strength meeting. Record of proceeding № **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 65


4.

- 1. Laplace formula (proof).
- 2. Conditions of rational use of Vereschagin's formula.

<u>Given:</u> l=3 m, $B=8 \times 10^{-2} m$, $H=12 \times 10^{-2} m$, $n_s=3$, material – steel Cm3.

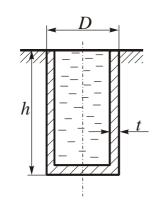
<u>Aim:</u> calculate P_{cr} , [P]

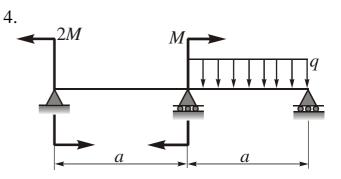
<u>Given:</u> h=1 m, D=0.8 m, $r=10^3 kg/m^3$, [s]=100 MPa.

Aim: calculate thickness of cylindrical shell *t*.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

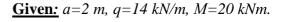
Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 66

- 1. Fatigue strength diagram, its design and features
- 2. Selection of basic and equivalent systems in force method (example).


3.

<u>Given:</u> $h=1 m, D=0.8 m, r=10^3 kg/m^3,$ [s]=100 MPa.

Aim: calculate thickness of the shell *t*.

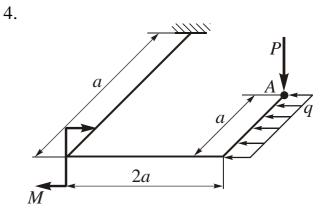
<u>Aim</u>: design the graphs Q_z and M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 67

- 1. Proof of Euler formula for critical force.
- 2. Fatigue limit and its experimental determination.

<u>Given:</u> $l=2 m, h=2b, b = 10 \times 10^{-2} m, P=15 kN,$ [*s*] = 10 MPa, material of the post – pine.

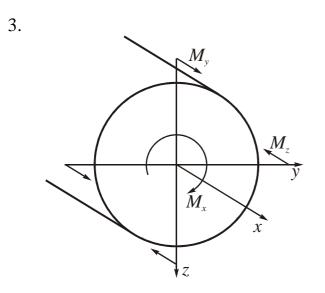
Aim: check the stability of the post.

<u>Given:</u> a=1 m, q=2 kN/m, P=20 kN, M=20 kNm. [s] = 140 MPa, $E = 2 \times 10^5 MPa$.

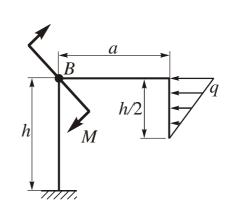
<u>Aim:</u> calculate diameter of round cross-section in third portion.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 68

4.

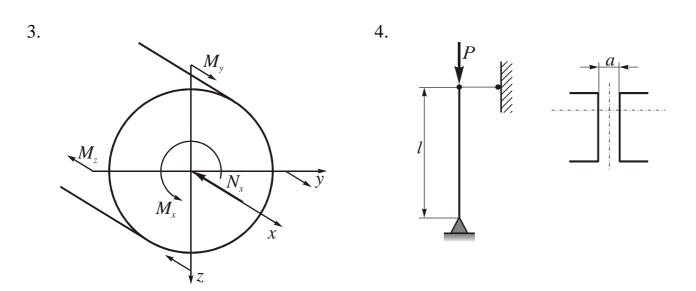
- 1. Influence of boundary conditions on critical force.
- 2. Concept of asymmetry factor. What cycle is the most dangerous?

Calculate diametrer of round section. $M_x = 10$ kNm, $M_y = 20$ kNm, $M_z = 30$ kNm, [s] = 160MPa

Given: h=2 m, a=2 m, q=30 kN/m, M=20 kNm, $EI_{n.a.} = const.$

Aim: calculate angle of rotation of *B*-section using Vereschagin's methot.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

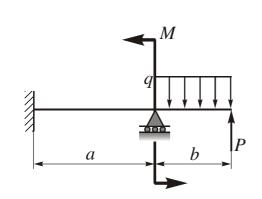
Examination card № 69

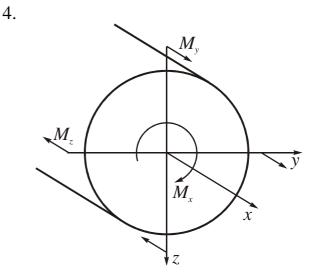
- 1. Diagram of critical stresses in buckling. Yasinski formula, its description and limitations on application.
- 2. Selection of basic and equivalent systems in force method (example).

Find position of cross-sectional critical point if $M_x = 10$ kNm, $M_y = 20$ kNm, $M_z = 40$ kNm, [s] = 160 MPa, $N_x = 30$ kN K = 2.5, $a = 4 \times 10^{-2}$ m, material – steel Cm3.

<u>Aim</u>: calculate P_{cr} , [P]

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 70

- 1. Stress analysis in buckling: description of two possible methods.
- 2. How to improve fatigue strength?

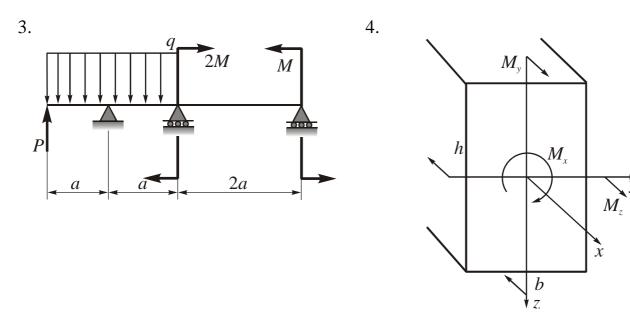
<u>Given:</u> *a*=4 *m*, *b*=2 *m*, *q*=10 *kN/m*, *M*=20 *kNm*, *P*=10 *kN*.

<u>Aim</u>: design the graphs Q_z, M_y .

Find position of cross-sectional critical point and calculate the diameter if $M_x = 10 \ kNm$, $M_y = 20 \ kNm$, $M_z = 40 \ kNm$, $[s] = 160 \ MPa$

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 71

- 1. Laplace formula (proof).
- 2. Theoretical and effective stress concentration factors.

<u>Given:</u> a=1.5 m, q=2 kN/m, M=6 kNm, P=10 kN, $EI_v = const.$

Calculate cross-sectional dimensions if h/b = 2, $[s] = 160 \quad MPa, \quad M_y = 40 \quad kNm, \quad M_z = 20 \quad kNm,$ $M_x = 40 \quad kNm.$

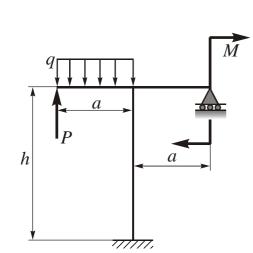
<u>Aim:</u> design the graphs of internal forces.

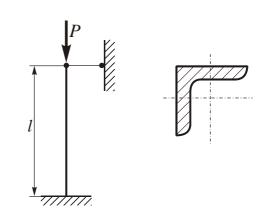
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

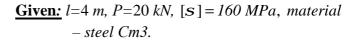
Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 72


4.

1. Laplace formula (proof).


3.

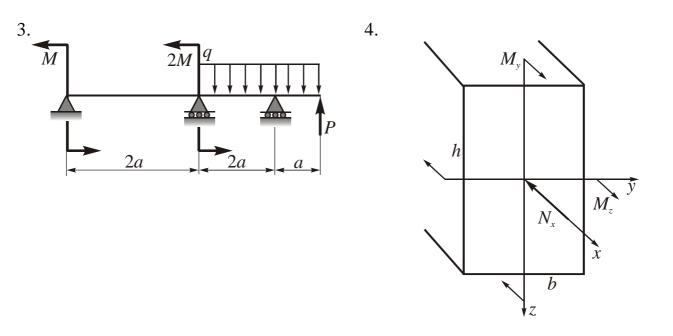
2. Concept of stress concentration factor.

<u>Given:</u> a=1 m, h=2 m, q=30 kN/m, M=20 kNm, P=10 kN.

<u>Aim:</u> determine number of equileg angle profile.

<u>Aim</u>: design the graphs N_x, Q_z, M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 73

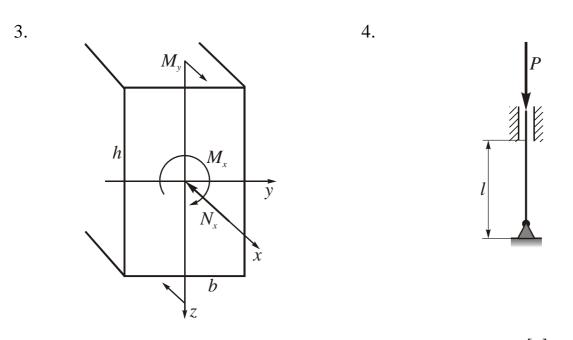
- 1. General case of combined loading of round section. Critical points, condition of strength, solution of design problem.
- 2. Complementary equation for calculating acting stresses in thin-walled shell.

<u>Given:</u> *a*=1 *m*, *q*=20 *kN/m*, *M*=10 *kNm*, *P*=30*kN*.

Calculate cross-sectional dimensions if h/b=2, $[s]=160 \quad MPa, \quad M_y = 40 \quad kNm, \quad M_z = 20 \quad kNm,$ $N_x = 10 \quad kN$

<u>Aim</u>: design the graphs Q_z and M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 74

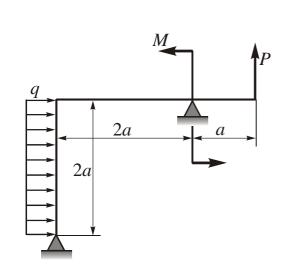
- 1. General case of combined loading of rectangle cross-section.Critical points, condition of strength, solution of design problem.
- 2. Difference between concepts "stress concentrator" and "stress concentration".

Calculate cross-sectional dimensions h/b = 2, <u>Given:</u> l=2 m, P=40 kN, $[s]_c = 160 MPa$, material [s]=160 MPa, $M_y = 40 kNm$, $M_x = 20 kNm$, -steel Cm5. $N_x = 10 kN$

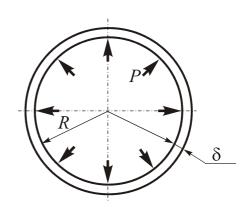
Aim: determine number of I-beam sections.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 75

4.

- 1. Second strength theory: condition of strength for principal stresses.
- 2. Assumptions to applicability of superposition principle.

Given: a=1 m, q=2 kN/m, M=20 kNm, P=30 kN, EI=const.

<u>**Given:**</u>*R*=0.2 m, *P*=10 MPa, [*s*]=150 MPa.

<u>Aim</u>: determine thickness of the shell d.

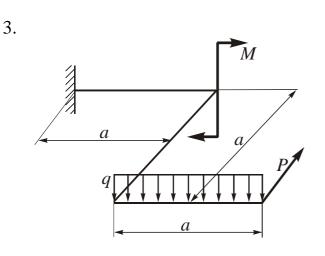
<u>Aim</u>: design the graphs N, Q_z, M_y .

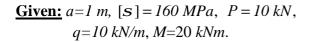
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

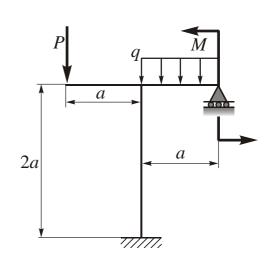
Examiner

3.


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 76

1. First strength theory (theory of maximum normal stresses): condition of strength for principal stresses.


4.

2. Assumptions in proof of Laplace formula.

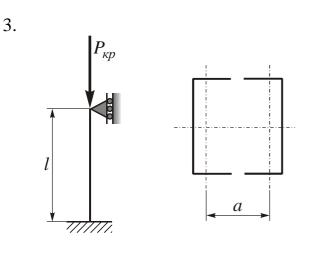
Aim: determine diameter of the third portion.

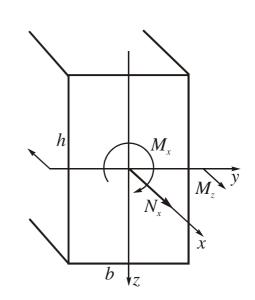
<u>Given:</u> l=1.5 m, *I-beam section* $N \ge 18$, material – steel Cm3, q = 10 kN/m, P=5 kN, M=20 kNm, a=1 m.

<u>Aim</u>: design the graphs N_x, Q_z, M_y and check its strength if [s] = 160 MPa.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 77

4.

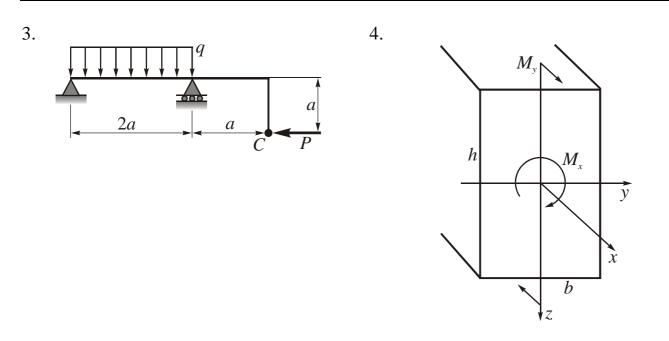
- 1. Laplace formula (proof).
- 2. Nominal and local stresses. Concepts of theoretical stress concentration factor.

<u>Given:</u> *l*=4 *m*, two channels №24, material – steel 45.

<u>Aim</u>: determine optimal distance *a* from condition of equistability and calculate critical force P_{cr} .

Determine cross-sectional dimensions if h/b = 2, [s] = 160 MPa, $M_z = 40$ kNm, $M_x = 20$ kNm, $N_x = 10$ kN

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 78

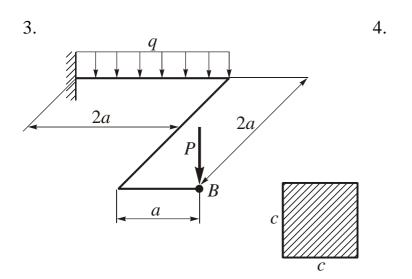
- 1. Stress analysis of cylindrical pressure vessel under hydraulic pressure. Stress distribution along the height, critical section, condition of strength.
- 2. Limitations on Laplace formula application. Graph of critical stresses.

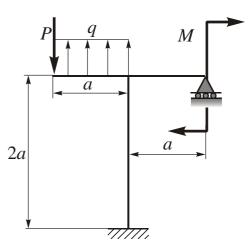
<u>Given:</u> a=1 m, q=6 kN/m, P=8 kN, cross-section – round, d=0.1 m, $E=2\times 10^5 MPa$.

Calculate cross-sectional dimensions if h/b = 2, [s]=160 MPa, $M_y = 40$ kNm, $M_x = 20$ kNm

Aim: calculate horizontal displacement of C-point.

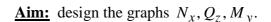
Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

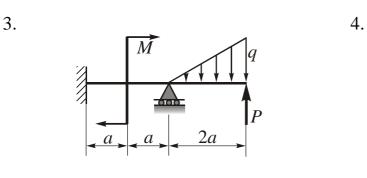
Examination card № 79

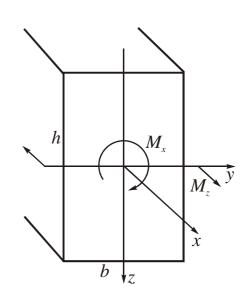

- 1. Third strength theory (theory of maximum shear stresses). Condition of strength for principal and arbitrary planes.
- 2. Concept of critical force.

<u>Given:</u> a=1 m, q=10 kN/m, P=10 kN, $c=8\times10^{-2} m$ (cross-section – square), $G=8\times10^4 MPa$, $E=2\times10^5 MPa$, [s]=160 MPa. <u>Given:</u> a=1 m, P=10 kN, M=6 kNm, q=10 kN/m.

Aim: check strength of third portion.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 80

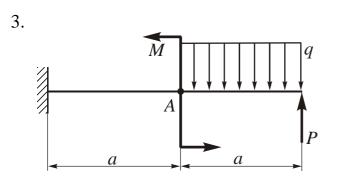
- 1. Eccentric tension-compression. Calculation of acting stresses in cross-section, critical point, condition of strength, position of neutral axis.
- 2. Assumptions in proof of dynamic factor formula.

<u>Given:</u> *a*=2 *m*, *q*=30 *kN/m*, *M*=25 *kNm*, *P*=10 *kN*.

Calculate cross-sectional dimensions, if h/b = 2, [s]=160 MPa, $M_z = 40$ kNm, $M_x = 20$ kNm

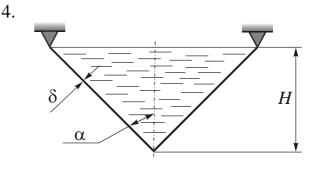
<u>Aim</u>: design the graphs Q_z and M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 81

- 1. Stress analysis under dymamic loading. Proof of the formula for dynamic factor.
- 2. Basic and equivalent systems in force method. Geometrical essence of canonical equations.

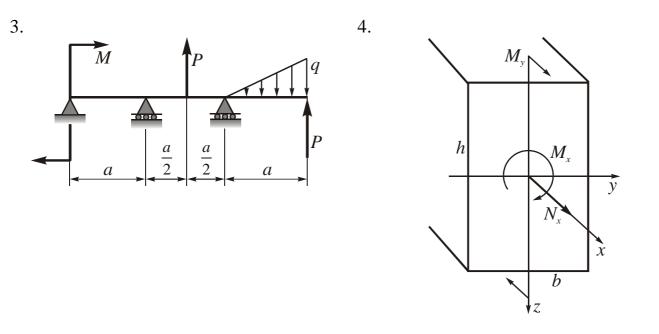
<u>Given:</u> a=2 m, q=30 kN/m, M=10 kNm, P=10 kN, EI=const.

Aim: calculate vertical displacement of A-section.

Given:
$$H=1 m$$
, $a = 30^{\circ}$, $d = 1 \times 10^{-2} m$,
 $r = 10^3 kg / m^3$.

<u>Aim</u>: design the graphs of meridional stress S_m distribution along vertical axis of the shell.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 82

- 1. Stress analysis in buckling using stress reduction factor. Condition of stability, problems which are solved by it.
- 2. Description of the method of opening statical indeterminacy of multispan beams.

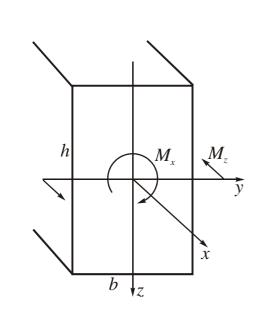
<u>Given:</u> a=3 m, q=20 kN/m, P=10 kN, M=20 kNm. <u>Aim:</u> design the graphs Q_{z} and M_{y} ..

Calculate cross-sectional dimensions if h/b = 2, $[s] = 160 \quad MPa, \quad M_y = 40 \quad kNm, \quad M_x = 20 \quad kNm,$ $N_x = 30kN.$

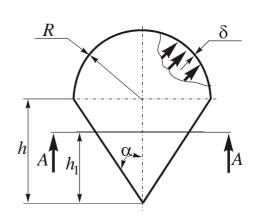
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 83


1. General case of combined loading of a round section. Critical point, condition of strength.

4.

2. Limitations on Euler's formula application.

Calculate cross-sectional dimensions if h/b = 2, [s]=160 MPa, $M_z = 40$ kNm, $M_x = 20$ kNm

<u>Given:</u> R=0.5 m, P=30 MPa, $d = 2 \times 10^{-2} m$, h=0.5 m, $h_1=0.1 m$, $a = 45^{\circ}$.

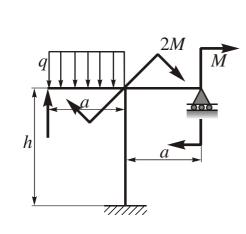
<u>Aim:</u> calculate acting stresses in A-A section of the conical shell.

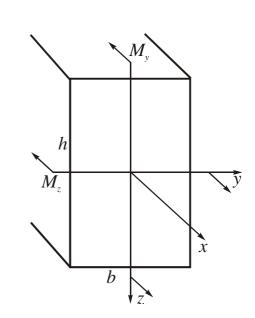
Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner

3.


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 84

1. Experimental study of fatigue limit: test device, Vohler's curve, fatigue limit determination.

4.

2. Allowable stress in stability and its calculation using stress reduction factor.

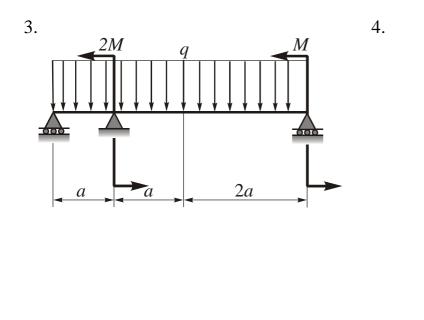
<u>Given:</u> a=1 m, h=2 m, q=20 kN/m, M=20 kNm, P=10 kN.

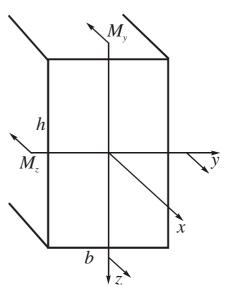
<u>Aim</u>: design the graphs N_x, Q_z, M_y .

Check the strength of cross-section if [s] = 160MPa, $M_y = 20$ kNm, $M_z = 40$ kNm, $h = 10^{-1}$ m, $b = 5 \cdot 10^{-2}$ m.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner


3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 85

- 1. Proof of Euler's formula.
- 2. Concepts of theoretical and effective stress-concentration factors.

<u>Given:</u> a=1.5 m, q=2 kN/m, M=6 kNm $EI_v = const$.

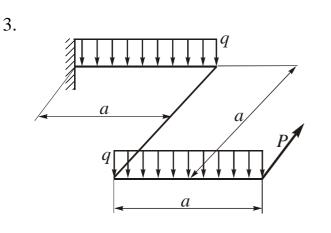
Find position of cross-sectional neutral axis and check its strength if [s] = 160 MPa, $M_y = 20 kNm$, $M_z = 40 kNm$, $h = 10^{-1} m$, $b = 5 \cdot 10^{-2} m$.

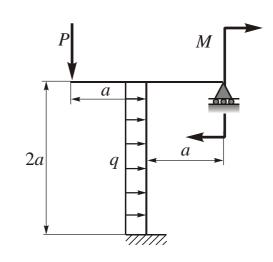
<u>Aim</u>: design the graphs Q_z, M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

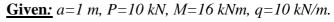
Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 86

1. General case of rectangle section combined loading. Critical points, conditions of strength.


4.

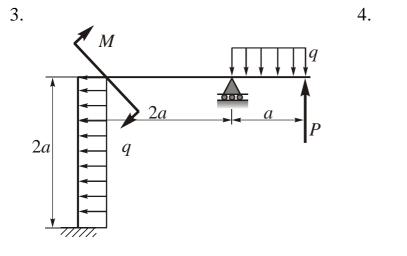
2. Assumptions in Laplace formula proof.

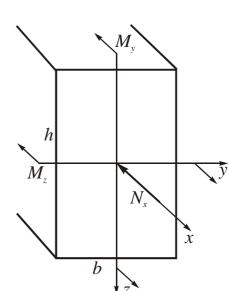
<u>Given:</u> a=1 m, P=20 kN, q=10 kN/m, [s]=160 MPa, h/b=2

<u>Aim</u>: design the graphs N_x, Q_z, M_y .

<u>Aim:</u> determine rectangle cross-section dimensions at third portion.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 87

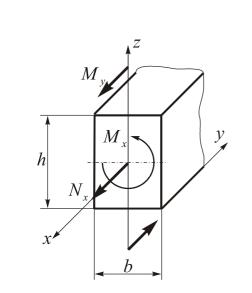
- 1. Von Mises strength theory: proof of condition of strength for principle and arbitrary planes.
- 2. Eccentric compression: description, critical point, condition of strength.

<u>Given:</u> *a*=1 *m*, *P*=10 *kN*, *q*=10 *kN/m*, *M*=10 *kNm*

<u>Aim</u>: design the graphs N_x, Q_z, M_y

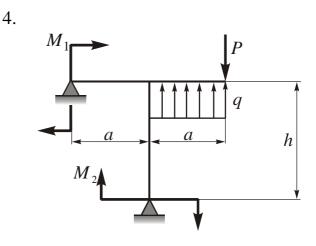
Checkthe strength of cross-section if [s] = 160 MPa, $M_y = 20 kNm$, $M_z = 40 kNm$, $h = 10^{-1} m$, $b = 5 \cdot 10^{-2} m$, $N_x = 10 kN$

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 88

- 1. Third strength theory (theory of maximum shear stresses): determination and condition of strength.
- 2. Oblique bending: critical points and condition of strength. Graphical calculation of neutral axis position.

<u>Given:</u> $M_x = 10 \text{ kNm}, M_y = 20 \text{ kNm},$ $N_x = 10 \text{ kN}, [s] = 200 \text{ MPa}, h/b=2.$

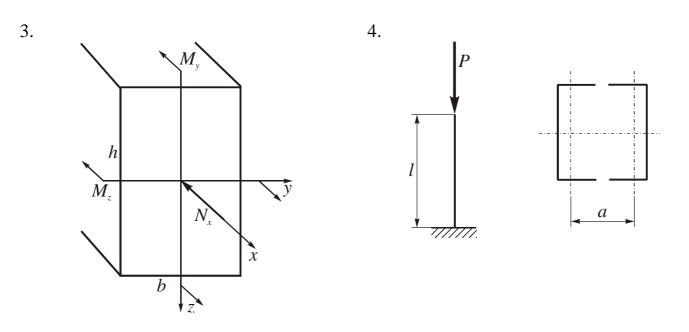
Aim: calculate cross-section dimensions.

<u>Given:</u> a=1 m, h=2 m, $M_1 = 10 kNm$, $M_2 = 20 kNm$, q=10 kN/m, P=10 kN

<u>Aim</u>: design the graphs N_x, Q_z, M_y

Accepted by Department of Aircraft Strength meeting. Record of proceeding № **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 89

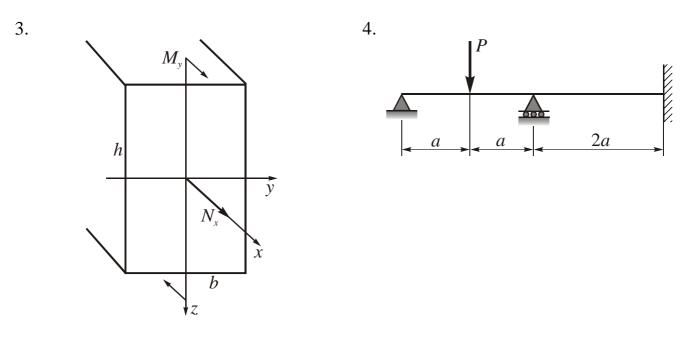
- 1. Force method for opening statical indeterminacy of frames.
- 2. Concepts of "oblique bending" and "eccentric tension" deformations.

Determine neutral axis position and check strength of the section if [s]=160 MPa, $M_y = 20$ kNm, $M_z = 40$ kNm, $h = 10^{-1}$ m, $b = 5 \cdot 10^{-2}$ m, $N_x = 10$ kN

<u>Given:</u> l=3 m, two channels N20, material – steel 20.

<u>Aim:</u> find optimal *a* distance from condition of equistability and calculate P_{cr} .

Accepted by Department of Aircraft Strength meeting. Record of proceeding № **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 90

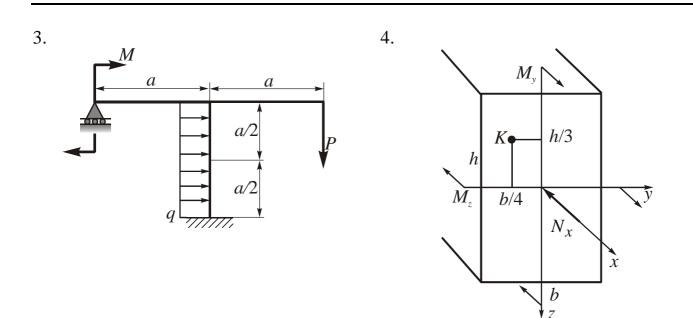
- 1. Third strength theory (theory of maximum shear stresses): finding equivalent stresses, condition of strength for principal stresses.
- 2. Oblique bending: finding critical points and condition of strength.

Determine neutral axis position and check its strength if [s] = 160 MPa, $M_y = 40 kNm$, $h = 10^{-1}$ m, $b = 5 \cdot 10^{-2}$ m, $N_x = 10 kN$

<u>Given:</u> *P*=10 *kN*, *a*=1 *m*.

<u>Aim</u>: design the graphs $Q_z(x)$, $M_y(x)$ using three moment equation to open statical indeterminacy.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 91

- 1. Reciprocal theorems (proof).
- 2. Selection of equivalent system and development of canonical equation in force method.

<u>Given:</u> *q*=10 kN/m, P=10 kN, M=10 kNm, a=2 m.

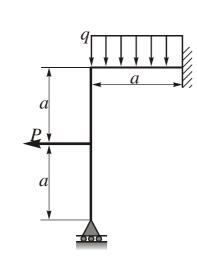
<u>Aim</u>: design the graphs N_x , Q_z , M_y .

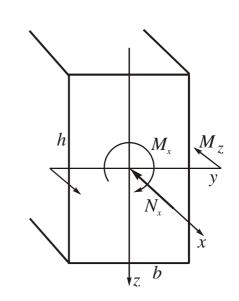
Calculate acting stresses in *K*-point, if $h = 10^{-1}$ m, $b = 5 \cdot 10^{-2}$ m, $M_y = 50$ kNm, $M_z = 20$ kNm, $N_x = 10$ kN, and estimate its stress state.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner


Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"


Examination card № 92

1. Proof of canonical equation of force method for singly statically indeterminate frame.

4.

2. Limitations on Euler's formula application.

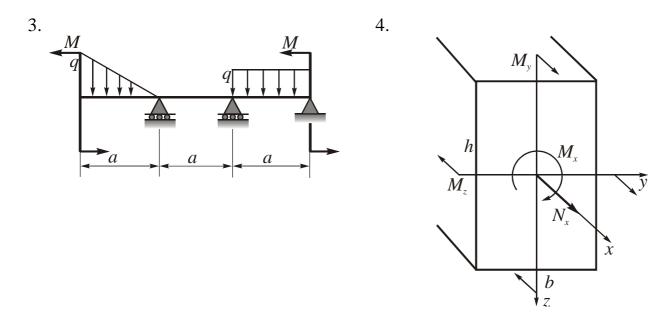
<u>Given:</u> *P*=10 *kN*, *q*=10 *kN/m*, *a*=2 *m*.

Find critical points of the section and check its strength if [s] = 160 MPa, $M_x = 40 kNm$, $h = 10^{-1}$ m, $b = 2 \cdot 10^{-2}$ m, $N_x = 10 kN$, $M_z = 20 kNm$.

<u>Aim</u>: design the graphs N_x , Q_z , M_y .

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

3.

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 93

- 1. Equation of three moments (proof).
- 2. Conditions of Euler's formula applicability.

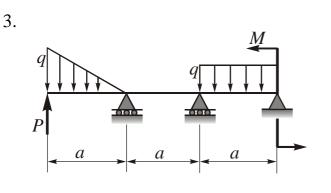
<u>Given:</u> *q*=30 *kN/m*, *a*=2 *m*, *M*=40 *kNm*.

<u>**Aim:**</u> design the graphs Q_z , M_y .

Check cross-sectional strength if [s] = 160 MPa, $M_x = 20 kNm$, $M_y = 30 kNm$, $M_z = 40 kNm$, $h = 10^{-1} m$, $b = 5 \cdot 10^{-2} m$, $N_x = 10 kN$

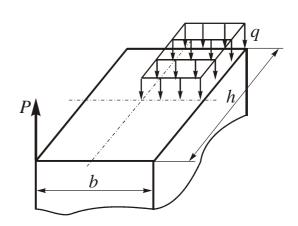
Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 94


4.

- 1. Equation of three moments (proof).
- 2. Assumptions in Laplace formula proof.

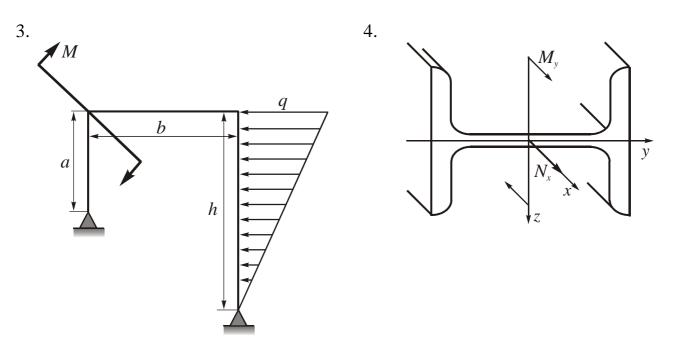
<u>Given:</u> *P*=20 kN, q=30 kN/m, a=2 m, M=40 kNm.

<u>Aim</u>: design the graphs Q_z , M_y .

<u>Given:</u> *P=20 kN, q=*10 *kN/m*², *b=*4 *см, h=*8 *сm*.

<u>Aim:</u> design graphs of stress distribution in an arbitrary section and find maximum stress.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011


Head of Department, Doctor of Science, Professor

Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 95

- 1. Von Mises strength theory: proof of the condition of strength for principal and arbitrary stresses.
- 2. Eccentric compression: essence and method of critical point determination. Condition of strength.

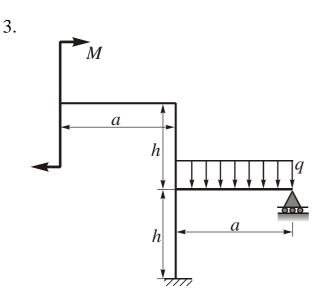
<u>Given:</u> a=2 m, b=4 m, h=3 m, q=20 kN/m, M=40 kNm.

Find position of neutral axis of I-beam No16 and check its strength if $M_y = 10 \ kNm$, $N_x = 10 \ kN$, [s] = 160 MPa.

<u>Aim</u>: design the graphs $N_x(x)$, $Q_z(x)$, $M_y(x)$.

Accepted by Department of Aircraft Strength meeting. Record of proceeding № 3, 21 November, 2011

Head of Department, Doctor of Science, Professor


Examiner

Degree B. Sc.Branch of education: 1001Aerospace EngineeringSemesterIVCourse"Mechanics of materials"

Examination card № 96

4.

- 1. Laplace formula (proof).
- 2. General characteristics of the cycle of loading.

<u>Given:</u> a=2 m, h=2 m, q=10 kN/m, M=20 kNm. <u>Aim:</u> design the graphs $N_x(x)$, $Q_z(x)$, $M_y(x)$.

Check strength of the section (I-beam No16), if $M_y = 30 \ kNm$, $M_z = 10 \ kNm$, $[s] = 160 \ MPa$. Find position of neutral axis.

Accepted by Department of Aircraft Strength meeting. Record of proceeding N_{2} **3**, 21 November, 2011

Head of Department, Doctor of Science, Professor

Examiner